首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garnets from the S⊍strene island, Antarctica, show reaction textures corresponding to two metamorphic episodes, one at c. 1000 Ma (M1) and the other at c. 500 Ma (M2). The latter is associated with a Pan-African tectono-metamorphic event that has been interpreted to represent a continent-continent collision followed by extensional collapse. Reaction-diffusion modeling of the compositional zoning of garnet associated with the development of reaction texture during M2 yields a time scale of ∼ 5–16 Myr for the duration of the peak of this overprinting metamorphism at ∼ 730 ± 20‡C. The associated velocity of the reaction front is ∼∼ 5.0-1.6Μm/Myr. The inferred duration of peak metamorphism during the Pan-African event seems to be in good agreement with the available U-Pb SHRIMP ages of zircon and monazite that may be interpreted to have formed at the beginning and end stages of crystallization of granite during the metamorphic peak.  相似文献   

2.
Zircon from a lower crustal metapelitic granulite (Val Malenco, N‐Italy) display inherited cores, and three metamorphic overgrowths with ages of 281 ± 2, 269 ± 3 and 258 ± 4 Ma. Using mineral inclusions in zircon and garnet and their rare earth element characteristics it is possible to relate the ages to distinct stages of granulite facies metamorphism. The first zircon overgrowth formed during prograde fluid‐absent partial melting of muscovite and biotite apparently caused by the intrusion of a Permian gabbro complex. The second metamorphic zircon grew after formation of peak garnet, during cooling from 850 °C to c. 700 °C. It crystallized from partial melts that were depleted in heavy rare earth elements because of previous, extensive garnet crystallization. A second stage of partial melting is documented in new growth of garnet and produced the third metamorphic zircon. The ages obtained indicate that the granulite facies metamorphism lasted for about 20 Myr and was related to two phases of partial melting producing strongly restitic metapelites. Monazite records three metamorphic stages at 279 ± 5, 270 ± 5 and 257 ± 4 Ma, indicating that formation ages can be obtained in monazite that underwent even granulite facies conditions. However, monazite displays less clear relationships between growth zones and mineral inclusions than zircon, hampering the correlation of age to metamorphism. To overcome this problem garnet–monazite trace element partitioning was determined for the first time, which can be used in future studies to relate monazite formation to garnet growth.  相似文献   

3.
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies – including metabasites – lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet–olivine assemblages (i.e. ≥18–20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P–T path and peak conditions of 800–850 °C and 23–25 kbar. These conditions correspond to ∼70 km depth of burial and a metamorphic gradient of 11–12 °C km−1 that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet–whole-rock Sm–Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.  相似文献   

4.
Two granitoid intrusions within the Bu Khang extensional complex in central Vietnam have been dated by U–Pb and Rb–Sr geochronology. A monazite U–Pb age of 26.0 ± 0.2 (2σ) Myr was obtained for the Bu Khang pluton and 23.7 + 1.6/–1.7 Myr for monazite, allanite and zircon from the Dai Loc intrusion. These ages date crystallization of magmas previously assigned Precambrian to Devonian. Rb–Sr analyses of K-feldspar and biotite fractions from the samples yield ages of 19.8 ± 0.6 (2σ) Myr and 19.6 ± 0.5 Myr, respectively. The thermal history recorded by the different geochronometers implies an average exhumation rate of ∼2 mm yr−1 corresponding to ∼9 km of unroofing. Magmatism was either (i) induced passively by lithospheric thinning driven by changes in regional tectonic stresses, or (ii) triggered actively by an ascending plume. Tertiary exhumation and magmatism documented elsewhere in Indochina (e.g. Ailao Shan-Red River and Wang Chao shear zones) favours a regional tectonic cause for extension and granitoid magmatism in the Bu Khang complex. On the other hand, the presence of an upwelling thermal anomaly since at least 35 Ma, causing mantle melting below Indochina, is supported by shear-wave velocity variations in the mantle, and source geochemistry of both the Bu Khang plutons and the Red River belt intrusions. In either case, Tertiary exhumation of the Bu Khang complex can account for previously undocumented NE–SW-directed extension, which is required in northern Vietnam to account for structural changes related to the opening of the South China Sea.  相似文献   

5.
Integrated, in situ textural, chemical and electron microprobe age analysis of monazite grains in a migmatitic metapelitic gneiss from the western Musgrave Block, central Australia has identified evidence for multiple events of growth and recrystallisation during poly-metamorphism in the Mesoproterozoic. Garnet + sillimanite-bearing metapelite underwent partial melting and segregation to palaeosome and leucosome during metamorphism between 1330 and 1296 Ma, with monazite grains in leucosome recording crystallisation at 1300 Ma. Monazite breakdown during melting is inferred to have occurred in the palaeosome. During a subsequent granulite facies event at 1200 Ma, deformation and metamorphism of leucosome and palaeosome resulted in partial disturbance of ages and potential minor growth on 1300 Ma monazite in leucosome. Growth of new, high-Y (+HREE) monazite in palaeosome domains occurred during garnet breakdown in the presence of sillimanite to cordierite and spinel, as a result of post-peak isothermal decompression. Diffusive enrichment of resorbed garnet rims in Y + HREE suggests garnet breakdown occurred slower than volume diffusion of REE. Monazite in both palaeosome and leucosome were subsequently partially to penetratively recrystallised during a retrogression event that is suggested to have occurred at 1150–1130 Ma. The intensity of recrystallisation and disturbance of ages appears linked to proximity to retrogressed garnet porphyroblasts and their occurrence in the relatively reactive or ‘fertile’ local environments provided by the palaeosome/mesosome volumes, which caused localised changes in retrogressive fluids towards compositions more aggressive to monazite. Like reaction textures, it is apparent that domainal equilibrium and reaction may control or at least strongly influence monazite REE and U–Th–Pb chemistry and hence ages.  相似文献   

6.
The presence of zircons of crustal origin in the dunites of Kytlym, a subduction-related concentrically zoned dunite–clinopyroxenite–gabbro massif of the Urals Platinum-Bearing Belt, may provide the first direct evidence of the recycling of continental crust into the mantle. Zircons were part of subducted sediments that melted to produce silicic magmas with entrained restitic zircons. These melts induced partial melting in the overlying mantle, which later crystallized as the Kytlym massif. Zircons rapidly captured into early formed dunites were prevented from dissolving completely and underwent different degrees of recrystallization. A few crystals still record their original ages, which range from ∼410 Myr to ∼2800 Myr, thus revealing a different origin. The majority, however, recrystallized in the presence of a limited amount of melt and record the diapir formation, 350–370 Ma, which was coeval with the Uralian high-pressure metamorphism. Lastly, several grains record an age of ∼330 Myr, which is identical, within error, to the Rb–Sr age of the tilaitic gabbros, (337 ± 22 Myr), and may, therefore, represent the crystallization age of the last melts formed during the evolution of Kytlym.  相似文献   

7.
Results from forward modelling of garnet growth and U–Th–Pb chemical dating suggest three periods of metamorphism that affected metapelitic rocks of the Rappold Complex (Eastern European Alps). Garnet first grew during Barrovian-type metamorphism, possibly during the Carboniferous Variscan orogeny. The second period of metamorphism produced monazite and resulted in minor garnet growth in some samples. Variable garnet growth was controlled by changes to the effective bulk rock composition resulting from resorption of older garnet porphyroblasts. Monazite crystals have variable morphology, textures and composition, but all yield Permian ages (267 ± 12 to 274 ± 17 Ma). In samples in which there was Permian garnet growth, monazite forms isolated and randomly distributed grains. In other samples, monazite formed pseudomorphous clusters after allanite. This difference is attributed to higher transport rates of monazite-forming elements in samples which underwent dehydration reactions during renewed garnet growth. The third and final period of garnet growth took place during Eo-Alpine (Cretaceous) metamorphism. Garnet of this age displays a wart-like texture. This may reflect transport-limited growth, possibly as a result of repeated dehydration during polyphase metamorphism.  相似文献   

8.
The easternmost domain of the Borborema Province, northeastern Brazil, presents widespread, extensional-related high-temperature metamorphism during the Brasiliano (=Pan-African) orogeny. This event reached the upper amphibolite to granulite facies and provoked generalized migmatization of Proterozoic metapelitic rocks of the Seridó Group and tonalitic to granodioritic orthogneisses of the Archean to Paleoproterozoic basement. We report new geochronological data based on electron microprobe dating of monazite from metapelitic migmatite and leuconorite within the high-T shear zones that make up the eastern continuation of the huge E–W Patos shear belt. These data were also constrained by using the Sm–Nd isotopic systematic on garnet from a syntectonic alkaline granite and two garnet-bearing leucosomes. The results suggest an age of about 578 to 574 Ma for the peak of the widespread high-T metamorphism. This event is best recorded by Sm–Nd garnet-whole rock ages. The U–Th–Pb isotopes on monazite of the metapelitic migmatite show a younger thermal event at 553 ± 10 Ma. When compared to the Sm–Nd garnet-whole rock ages, the U–Th–Pb electron probe monazite ages seem to record an event of slightly lower temperatures after the peak of the high-T metamorphism. This may reflect the difference in the isotopic behavior of the geochronological methods employed. Otherwise, the U–Th–Pb ages on monazites could indicate an event not yet very well defined. In anyway, this paper reveals the partial or even complete re-opening and resetting of the U–Th–Pb isotopic system produced by the action of low-T Ca-rich fluid.  相似文献   

9.
In situ monazite microprobe dating has been performed, for the first time, on trondhjemite and amphibolite facies metasediments from the Peloritani Mountains in order to obtain information about the age of metamorphism and intrusive magmatism within this still poorly known sector of the Hercynian Belt. All samples show single-stage monazite growth of Hercynian age. One migmatite and one biotitic paragneiss yielded monazite ages of 311 ± 4 and 298 ± 6 Ma, respectively. These ages fit with previous age determinations in similar rocks from southern Calabria, indicating a thermal metamorphic peak at about 300 Ma, at the same time as widespread granitoid magmatism. The older of the two ages might represent a slightly earlier event, possibly associated with the emplacement of an adjacent trondhjemite pluton, previously dated by SHRIMP at 314 Ma. No evidence for pre-Hercynian events and only a little indication for some monazite crystallization starting from ca. 360 Ma were obtained from monazite dating of the metasediments, suggesting either a single-stage metamorphic evolution or a significant resetting of the monazite isotope system during the main Hercynian event (ca. 300 Ma). Rare monazite from a trondhjemite sample yields evidence for a late-Hercynian age of about 275 Ma. This age is interpreted as representing a post-magmatic stage of metasomatic monazite crystallization, which significantly postdates the emplacement of the original magmatic body.  相似文献   

10.
For many economically important deposits, precise duration and age of hydrothermal ore-formation are poorly known. We tackle these questions for the large Trimouns talc-chlorite deposit by U–Pb analyses of xenotime and monazite, which crystallized within cm-size geodes in the hanging wall dolostones. Formation of geodes and REE-minerals occurred in relation to 300–350°C/0.2–0.3 GPa metasomatism along a host shear zone. Sixteen xenotime fragments, broken off from four single euhedral grains, define an age-range from 112 to 97 Myr, and a monazite age of 99 Myr. Some ages of individual fragments are grain-specific, whereas others show the same range of dates. Given the analytical uncertainties on individual fragments (about ± 1 Myr), the absence of inherited components, and the fact that no thermal event has affected these crystals after their formation, these ages are interpreted to record continuous crystallization between 112 and 97 Ma. This means that the Trimouns deposit was produced by hydrothermal activity lasting for at least 16 million years, occurring along a shear zone through which fluids continuously (or episodically) circulated to allow ion transport from the country gneisses to the deposit locality. Persistent deformation and high heat flow, related to the transtensional regime that opened the Bay of Biscay, seems to be the most likely tectonic scenario to explain this activity.  相似文献   

11.
Two stages of granitic magmatism occurred during the Pan-African evolution of the Kerala Khondalite Belt (KKB) in southern India. Granitic gneisses were derived from porphyritic granites, which intruded prior to the main stage of deformation and peak-metamorphism. Subsequently, leucogranites and leucotonalites formed during fluid-absent melting and intruded the gneiss sequences. Monazites from granitic gneisses, leucogranites and a leucotonalite were investigated by conventional U-Pb and electron microprobe dating in order to distinguish the different stages of magma emplacement. U-Pb monazite dating yielded a wide range of ages between 590–520 Ma which are interpreted to date high-grade metamorphism rather than magma emplacement. The results of this study indicate that the KKB experienced protracted heating (>50 Ma) at temperatures above 750–800 °C during the Pan-African orogeny. The tectonometamorphic evolution of the study area is comparable to southern Madagascar which underwent a similar sequence of events earlier than the KKB. The results of this study further substantiate previous assertions that the timing of high-grade metamorphism in East Gondwana shifted from west to east during the Late Proterozoic.  相似文献   

12.
Ultra-high-pressure eclogites from the Dabie orogen that formed over a range in temperatures (∼600 to > 700 °C) have been investigated with combined Lu–Hf and Sm–Nd geochronology. Three eclogites, sampled from Zhujiachong, Huangzhen and Shima, yield Lu–Hf ages of 240.0 ± 5.0, 224.4 ± 1.9 and 230.8 ± 5.0 Ma and corresponding Sm–Nd ages of 222.5 ± 5.0, 217.6 ± 6.1 and 224.2 ± 2.1 Ma respectively. Well-preserved prograde major- and trace-element zoning in garnet in the Zhujiachong eclogite suggests that the Lu–Hf age mostly reflects an early phase of garnet growth that continued over a time interval of c. 17.5 Myr. For the Huangzhen eclogite, despite preserved elemental growth zoning in garnet, textural study reveals that the Lu–Hf age is biased towards a later garnet growth episode rather than representing early growth. The narrow time interval of <6.6 Myr defined by the difference between Lu–Hf and Sm–Nd ages indicates a short final garnet growth episode and suggests a rapid cooling stage. By contrast, the rather flat element zoning in garnet in the Shima eclogite suggests that Lu–Hf and Sm–Nd ages for this sample have been reset by diffusion and are cooling ages. The new Lu–Hf ages point to an initiation of prograde metamorphism prior to c . 240 Ma for the Dabie orogen, while the exact peak metamorphic timing experienced by specific samples ranges between c . 230 to c. 220 Ma.  相似文献   

13.
Abstract Existing geochronological data are reviewed and new Rb-Sr, K-Ar and 39Ar–40Ar ages are presented, including a suite of 33 mica ages from a 20 km north–south tunnel section. These data are discussed in relation to the thermal history from the overthrusting of the Autroalpine nappes c. 65 Myr ago to the present. The earliest phase of metamorphism, involving lawsonite crystallization, is associated with emplacement of these nappes. Subsequently, temperatures in the rocks beneath rose, at a mean rate of 3–6°C/Myr, until the climax of metamorphism.
At high structural levels, published data indicate an age > 35 Myr for the metamorphic climax. In contrast, a new 39Ar–40Ar step-heating age of 23.8 ± 0.8 Myr on amphibole, from near the base of Peripheral Schieferhülle, closely approximates the age of metamorphism and provides the first clear indication that the climax of metamorphism occurred later at deeper structure levels. Following the climax, near-isothermal uplift and erosion reduced pressure to c. 1 kbar before white mica closure at 19 Myr; this implies uplift at >3 mm/yr.
Along the tunnel section, white mica K-Ar ages vary systematically from 24 Myr to 16.5 Myr with position relative to a late 4 km amplitude dome whereas biotite Rb-Sr ages are uniform at 16.5 Myr across the whole profile; doming is thus dated at 16.5 Myr with transient uplift rates >5 mm/yr. At other times uplift rates were <1 mm/yr.  相似文献   

14.
苟正彬  刘函  段瑶瑶  李俊  张士贞 《地球科学》2020,45(8):2894-2904
高喜马拉雅结晶岩系由中-高级变质岩和淡色花岗岩组成,是研究喜马拉雅造山带形成与演化的天然实验室.高喜马拉雅结晶岩系混合岩和淡色花岗岩中锆石和独居石的定年结果往往是分散的,对这些定年结果的解释还存在争议,严重制约了对高喜马拉雅结晶岩系变质、部分熔融作用的起始时间和持续过程的理解.对造山带中段亚东地区高喜马拉雅结晶岩系上部构造层位的乃堆拉混合岩进行了锆石U-Pb年代学研究.研究结果显示,乃堆拉混合岩暗色体给出了29.1~24.7 Ma的进变质和部分熔融的时间,混合岩浅色体获得了25.0~13.7 Ma的退变质和熔体结晶的时间,表明亚东地区高喜马拉雅结晶岩系的部分熔融作用大约开始于30 Ma并持续到13 Ma,暗示它是一个长期、持续的过程.亚东地区高喜马拉雅结晶岩系发生部分熔融的时间明显早于藏南拆离系和主中央断裂开始活动的时间,部分熔融可能在高喜马拉雅结晶岩系俯冲过程中就已经发生了.相关成果为建立造山带构造演化模型提供了新信息.   相似文献   

15.
Geothermometry and mineral assemblages show an increase of temperature structurally upwards across the Main Central Thrust (MCT); however, peak metamorphic pressures are similar across the boundary, and correspond to depths of 35–45 km. Garnet‐bearing samples from the uppermost Lesser Himalayan sequence (LHS) yield metamorphic conditions of 650–675 °C and 9–13 kbar. Staurolite‐kyanite schists, about 30 m above the MCT, yield P‐T conditions near 650 °C, 8–10 kbar. Kyanite‐bearing migmatites from the Greater Himalayan sequence (GHS) yield pressures of 10–14 kbar at 750–800 °C. Top‐to‐the‐south shearing is synchronous with, and postdates peak metamorphic mineral growth. Metamorphic monazite from a deformed and metamorphosed Proterozoic gneiss within the upper LHS yield U/Pb ages of 20–18 Ma. Staurolite‐kyanite schists within the GHS, a few metres above the MCT, yield monazite ages of c. 22 ± 1 Ma. We interpret these ages to reflect that prograde metamorphism and deformation within the Main Central Thrust Zone (MCTZ) was underway by c. 23 Ma. U/Pb crystallization ages of monazite and xenotime in a deformed kyanite‐bearing leucogranite and kyanite‐garnet migmatites about 2 km above the MCT suggest crystallization of partial melts at 18–16 Ma. Higher in the hanging wall, south‐verging shear bands filled with leucogranite and pegmatite yield U/Pb crystallization ages for monazite and xenotime of 14–15 Ma, and a 1–2 km thick leucogranite sill is 13.4 ± 0.2 Ma. Thus, metamorphism, plutonism and deformation within the GHS continued until at least 13 Ma. P‐T conditions at this time are estimated to be 500–600 °C and near 5 kbar. From these data we infer that the exhumation of the MCT zone from 35 to 45 km to around 18 km, occurred from 18 to 16 to c. 13 Ma, yielding an average exhumation rate of 3–9 mm year?1. This process of exhumation may reflect the ductile extrusion (by channel flow) of the MCTZ from between the overlying Tibetan Plateau and the underthrusting Indian plate, coupled with rapid erosion.  相似文献   

16.
The Early Palaeozoic Orogen of SE China consists of three litho-tectonic elements, from top to bottom: a sedimentary Upper Unit, a metamorphic Lower Unit and a gneissic basement. The boundaries between these units are flat lying, south directed, ductile decollements. The lower one is coeval with an amphibolite facies metamorphism (M1). The belt is reworked by migmatite–granite domes, high-temperature metamorphism (M2) and granitic plutons related to post-orogenic crustal melting. We date here the syn-M1 ductile shearing at 453 ± 7 Ma by U-Th/Pb method on monazite. Previous ages and our new 40Ar/39Ar ages of biotites and muscovites show that the metamorphic rocks experienced syn-M2 exhumation from 440 to 400 Ma. The Early Palaeozoic Orogen of SE China is an intracontinental belt in which decollements accommodated the north-directed subduction of the Cathaysian continent. This orogen is an example of intracontinental subduction that was not preceded by oceanic subduction.  相似文献   

17.
Monazite in melt-producing, poly-metamorphic terranes can grow, dissolve or reprecipitate at different stages during orogenic evolution particularly in hot, slowly cooling orogens such as the Svecofennian. Owing to the high heat flow in such orogens, small variations in pressure, temperature or deformation intensity may promote a mineral reaction. Monazite in diatexites and leucogranites from two Svecofennian domains yields older, coeval and younger U–Pb SIMS and EMP ages than zircon from the same rock. As zircon precipitated during the melt-bearing stage, its U–Pb ages reflect the timing of peak metamorphism, which is associated with partial melting and leucogranite formation. In one of the domains, the Granite and Diatexite Belt, zircon ages range between 1.87 and 1.86 Ga, whereas monazite yields two distinct double peaks at 1.87–1.86 and 1.82–1.80 Ga. The younger double peak is related to monazite growth or reprecipitation during subsolidus conditions associated with deformation along late-orogenic shear zones. Magmatic monazite in leucogranite records systematic variations in composition and age during growth that can be directly linked to Th/U ratios and preferential growth sites of zircon, reflecting the transition from melt to melt crystallisation of the magma. In the adjacent Ljusdal Domain, peak metamorphism in amphibolite facies occurred at 1.83–1.82 Ga as given by both zircon and monazite chronology. Pre-partial melting, 1.85 Ga contact metamorphic monazite is preserved, in spite of the high-grade overprint. By combining structural analysis, petrography and monazite and zircon geochronology, a metamorphic terrane boundary has been identified. It is concluded that the boundary formed by crustal shortening accommodated by major thrusting.  相似文献   

18.
刘晓春 《岩石学报》2009,25(8):1808-1818
东南极普里兹带是一条经受格林维尔期和泛非期高级构造热事件影响的多相变质带,其构造演化过程与罗迪尼亚和冈瓦纳超大陆的形成密切相关.新的岩石学和年代学资料表明,普里兹带中的格林维尔期高级变质作用是区域性的,并经历了>970Ma和930~900Ma两个演化阶段(期),变质条件达到相对高温高压的麻粒岩相.格林维尔期造山作用起始于活动大陆边缘或岛弧环境下的岩浆增生,最后发展到陆陆碰撞,从而使印度、东南极西陆块和非洲的卡拉哈里克拉通拼合在一起,构成了罗迪尼亚超大陆的重要组成部分之一.普里兹带中的泛非期高级变质作用并不象前人认为的那样只发生在中低压麻粒岩相条件下,而是达到高压麻粒岩相,并具有近等温减压的顺时针P-T演化轨迹.格林维尔期变质先驱的普遍存在说明泛非期碰撞造山事件主要叠加在印度-南极陆块东缘的基底杂岩之上,所以其主缝合线的位置应该在现今普里兹带的东南方向,并可能向南极内陆延伸到甘布尔采夫冰下山脉.对不同类型岩石的精细定年揭示,普里兹带中泛非期造山作用过程从570Ma一直持续到490Ma,这与东非造山带的晚期碰撞阶段大致相吻合.因此,冈瓦纳超大陆的最后拼合可能是通过西冈瓦纳、印度-南极陆块和澳大利亚-南极陆块等三个陆块的近于同期碰撞来完成的.  相似文献   

19.
Mineral equilibria modelling and electron microprobe chemical dating of monazite in granulite facies metapelitic assemblages from the MacRobertson Land coastline, Rayner Complex, east Antarctica, are consistent with an 'anticlockwise' Neoproterozoic P–T–t path. Metamorphism occurred at c. 990–970 Ma, achieving peak conditions of 850 °C and 5.6–6.2 kbar at Cape Bruce, and 900 °C and 5.4–6.2 kbar at the Forbes Glacier ∼50 km to the east. These peak metamorphic conditions preceded the emplacement of regionally extensive syntectonic charnockite. High temperature conditions are likely to have been sustained for 80 Myr by lithospheric thinning and repeated pluton emplacement; advection was accompanied by crustal thickening to maximum pressures of 6–7 kbar, followed by near-isobaric cooling. This P–T–t path is distinct from that of rocks in adjacent Kemp Land, ∼50 km to the west, where a 'clockwise' P–T–t path from higher- P conditions at c. 940 Ma may reflect the response of a cratonic margin displaced from the main magma flux. In this scenario, crustal shortening was initially accommodated in younger, fertile crust (MacRobertson Land) involving metasediments and felsic plutons with the transfer of strain to adjacent older crust (Kemp Land) subsequent to charnockite emplacement.  相似文献   

20.
柴达木地块位于青藏高原东北缘的祁连-阿尔金-昆仑早古生代造山系之中,它的西段出露一套(超)高温变质岩组合:变泥质岩、长英质片麻岩、基性麻粒岩、钙硅酸盐岩、含橄榄石大理岩及少量Mg-Al麻粒岩。本文以相平衡模拟和独居石U-Pb年代学为主要手段,限定柴西缘变泥质岩的变质作用P-T-t轨迹。变泥质岩记录了顺时针P-T轨迹,其中,压力峰期条件约为0.89GPa和800℃,温度峰期条件约为0.64GPa和825℃,退变质条件为0.58GPa和800℃至0.37±0.05GPa和702±50℃。变泥质岩的独居石U-Pb年龄集中在517~496Ma之间,三个样品的加权平均年龄分别为508±2Ma(MSWD=2.0)、506±1Ma(MSWD=1.7)、506±1Ma(MSWD=1.3)。本文将其解释为独居石的形成年龄,并认为独居石主要形成于退变质过程中的残留熔体结晶阶段(0.58GPa和800℃左右)。结合已有的工作可以得出,柴达木地块西段麻粒岩相变质作用具有顺时针P-T轨迹和1000~1300℃/GPa的峰期T/P值,并且在高温变质条件(>800℃)持续了超过30Myr。该类高T/P型变质作用最有可能发生在大型碰撞造山带内,可以与冈瓦纳大陆内部的晚泛非期的高T/P型变质作用对比,很可能是与冈瓦纳大陆最终拼合有关的晚泛非期造山事件的体现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号