首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
As a consequence of rapid and immoderate urbanization, simulating urban growth in metropolitan areas effectively becomes a crucial and yet difficult task. Cellular automata (CA) model is an attractive tool for understanding complex geographical phenomena. Although intercity urban flows, the key factors in metropolitan development, have already been taken into consideration in CA models, there is still room for improvement because the influences of urban flows may not necessarily follow the distance decay relationship and may change over time. A feasible solution is to define the weights of intercity urban flows. Therefore, this study presents a novel method based on weighted urban flows (CAWeightedFlow) with the support of web search engine. The relatedness measured by the co-occurrences of the cities’ names (toponyms) on massive web pages can be deemed as the weights of intercity urban flows. After applying the weights, the gravitational field model is integrated with Logistic-CA to fulfill the modeling task. This method is employed to the urban growth simulation in the Pearl River Delta, one of the most urbanized metropolitan areas in China, from 2005 to 2008. The results indicate that our method outperforms traditional methods with respect to two measures of calibration goodness-of-fit. For example, CAWeightedFlow can yield the best value of ‘figure of merit’. Moreover, the proposed method can be further used to explore various development possibilities by simply changing the weights.  相似文献   

2.
Cellular automata (CA) models are used to analyze and simulate the global phenomenon of urban growth. However, these models are characterized by ignoring spatially heterogeneous transition rules and asynchronous evolving rates, which make it difficult to improve urban growth simulations. In this paper, a partitioned and asynchronous cellular automata (PACA) model was developed by implementing the spatial heterogeneity of both transition rules and evolving rates in urban growth simulations. After dividing the study area into several subregions by k-means and knn-cluster algorithms, a C5.0 decision tree algorithm was employed to identify the transition rules in each subregion. The evolving rates for cells in each regularly divided grid were calculated by the rate of changed cells. The proposed PACA model was implemented to simulate urban growth in Wuhan, a large city in central China. The results showed that PACA performed better than traditional CA models in both a cell-to-cell accuracy assessment and a shape dimension accuracy assessment. Figure of merit of PACA is 0.368 in this research, which is significantly higher than that of partitioned CA (0.327) and traditional CA (0.247). As for the shape dimension accuracy, PACA has a fractal dimension of 1.542, which is the closest to that of the actual land use (1.535). However, fractal dimension of traditional CA (1.548) is closer to that of the actual land use than that of partitioned CA (1.285). It indicates that partitioned transition rules play an important role in the cell-to-cell accuracy of CA models, whereas the combination of partitioned transition rules and asynchronous evolving rates results in improved cell-to-cell accuracy and shape dimension accuracy. Thus, implementing partitioned transition rules and asynchronous evolving rates yields better CA model performance in urban growth simulations due to its accordance with actual urban growth processes.  相似文献   

3.
Cellular automata (CA) models can simulate complex urban systems through simple rules and have become important tools for studying the spatio-temporal evolution of urban land use. However, the multiple and large-volume data layers, massive geospatial processing and complicated algorithms for automatic calibration in the urban CA models require a high level of computational capability. Unfortunately, the limited performance of sequential computation on a single computing unit (i.e. a central processing unit (CPU) or a graphics processing unit (GPU)) and the high cost of parallel design and programming make it difficult to establish a high-performance urban CA model. As a result of its powerful computational ability and scalability, the vectorization paradigm is becoming increasingly important and has received wide attention with regard to this kind of computational problem. This paper presents a high-performance CA model using vectorization and parallel computing technology for the computation-intensive and data-intensive geospatial processing in urban simulation. To transfer the original algorithm to a vectorized algorithm, we define the neighborhood set of the cell space and improve the operation paradigm of neighborhood computation, transition probability calculation, and cell state transition. The experiments undertaken in this study demonstrate that the vectorized algorithm can greatly reduce the computation time, especially in the environment of a vector programming language, and it is possible to parallelize the algorithm as the data volume increases. The execution time for the simulation of 5-m resolution and 3 × 3 neighborhood decreased from 38,220.43 s to 803.36 s with the vectorized algorithm and was further shortened to 476.54 s by dividing the domain into four computing units. The experiments also indicated that the computational efficiency of the vectorized algorithm is closely related to the neighborhood size and configuration, as well as the shape of the research domain. We can conclude that the combination of vectorization and parallel computing technology can provide scalable solutions to significantly improve the applicability of urban CA.  相似文献   

4.
本文首先对都市区、城市群概念、标准进行界定,并将城市群建立在都市区基础上,从而为城市群的认定划分提供了具体的指标依据;进而用近两次人口普查和2011年区域经济统计年鉴数据,对社会经济意义上的长江中游地区湖北、湖南、江西、安徽四省进行实证研究。结果表明,2010年长江中游地区共有都市区22个,比2000年新增2个;长江中游城市群由四省内部相对独立的四个小城市群,沿东北-西南和西北-东南十字形轴向组合而成。最后根据长江中游城市群大分散、小集中的特点和区位价值的提升等提出四点发展建议。  相似文献   

5.
Spatially explicit urban expansion models that can trace urban development in the past and predict the expansion scenarios in the future are indispensable for examining urban planning policies. This paper demonstrates a new urban expansion scenario (UES) model by coupling one “bottom-up” cellular automata (CA)-based model and one “top-down” system dynamics (SD)-based model. By implementing the UES model in Beijing, the urban evolution from 1991 to 2004 was simulated and the UESs from 2004 to 2020 were predicted. The results suggest that a dilemma of urban expansion versus limited water resource and environment deterioration exists. Dealing with such a dilemma remains a challenge for the local government.  相似文献   

6.
ABSTRACT

Modeling urban growth in Economic development zones (EDZs) can help planners determine appropriate land policies for these regions. However, sometimes EDZs are established in remote areas outside of central cities that have no historical urban areas. Existing models are unable to simulate the emergence of urban areas without historical urban land in EDZs. In this study, a cellular automaton (CA) model based on fuzzy clustering is developed to address this issue. This model is implemented by coupling an unsupervised classification method and a modified CA model with an urban emergence mechanism based on local maxima. Through an analysis of the planning policies and existing infrastructure, the proposed model can detect the potential start zones and simulate the trajectory of urban growth independent of the historical urban land use. The method is validated in the urban emergence simulation of the Taiping Bay development zone in Dalian, China from 2013 to 2019. The proposed model is applied to future simulation in 2019–2030. The results demonstrate that the proposed model can be used to predict urban emergence and generate the possible future urban form, which will assist planners in determining the urban layout and controlling urban growth in EDZs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号