首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transformation of atmospheric acoustic waves into plasma waves in the ionosphere is investigated. The transformation mechanism is based on plasma wave exitation by growing acoustic waves, when a frequency/wavelength matching situation is reached. The interaction of acoustic and plasma waves occurs through collisions of neutral particles with ions. For the case of ion-sound waves, oscillations on ion cyclotron frequency and Alfvén waves is considered. A peculiarity of Alfvén waves is the wide frequency band which may be stimulated through wave-wave interaction.  相似文献   

2.
Nonsteady interaction of plasma with bodies moving in space   总被引:2,自引:0,他引:2  
Nonsteady interactions between spacecraft and plasma are investigated in detail. The system of equations describing these interactions is obtained. It is shown that an electromagnetic soliton is excited via the modulational instabilities, which result from the radiation of antenna systems on the body which are the source of waves. In the meantime the density in far wake diminishes, and its disturbance becomes also a soliton if the pump wave is sufficiently intense.  相似文献   

3.
It has been shown that non-spherical waves could be excited in rotating stellar convective envelopes. In this paper, the manner of excitation of such waves is examined in the presence of toroidal magnetic field. The result shows that one of these waves might be considered to induce the formation of the observed magnetic unipolar regions of the sun.Visiting Scientist to the High Altitude Observatory on leave of absence from the Department of Astronomy, University of Tokyo, Japan.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
We study a nonlinear mechanism for the excitation of kinetic Alfvén waves (KAWs) by fast magneto-acoustic waves (FWs) in the solar atmosphere. Our focus is on the excitation of KAWs that have very small wavelengths in the direction perpendicular to the background magnetic field. Because of their small perpendicular length scales, these waves are very efficient in the energy exchange with plasmas and other waves. We show that the nonlinear coupling of the energy of the finite-amplitude FWs to the small-scale KAWs can be much faster than other dissipation mechanisms for fast wave, such as electron viscous damping, Landau damping, and modulational instability. The nonlinear damping of the FWs due to decay FW = KAW + KAW places a limit on the amplitude of the magnetic field in the fast waves in the solar corona and solar-wind at the level B/B 0∼10−2. In turn, the nonlinearly excited small-scale KAWs undergo strong dissipation due to resistive or Landau damping and can provide coronal and solar-wind heating. The transient coronal heating observed by Yohkoh and SOHO may be produced by the kinetic Alfvén waves that are excited by parametric decay of fast waves propagating from the reconnection sites.  相似文献   

5.
Field-aligned currents (FAC) can be generated during a plasma jet or the motion of a body with a plasma shell in a transverse magnetic field. They can be investigated in an active space experiment. For the proper choice of diagnostics and for evaluation of expected results a laboratory simulation is carried out. The preliminary results show FAC generation in conditions correlated with conditions in space.  相似文献   

6.
Field-aligned currents (FAC) can be generated during a plasma jet or the motion of a body with a plasma shell in a transverse magnetic field. They can be investigated in an active space experiment. For the proper choice of diagnostics and for evaluation of expected results a laboratory simulation is carried out. The preliminary results show FAC generation in conditions correlated with conditions in space.  相似文献   

7.
The propagation of hydromagnetic and low frequency radio waves in all directions in a fully ionized gas containing a magnetic field is examined. For longitudinal and transverse propagation the addition of one extra term in the magneto-ionic formulae (without collisions) accounts for the presence of heavy ions.

The partition of energy of disturbance between kinetic (K) and magnetic (M) for longitudinal propagation of all frequencies is given by

where V is the Alfvén speed. Thus approximate equipartition may exist for some audio- and radio-frequencies in the Earth's exosphere.

Some errors in Paper I of this series are corrected.  相似文献   


8.
We study the magneto-thermal instability in ionized plasmas including the effects of Ohmic, ambipolar and Hall diffusion. The magnetic field in the single-fluid approximation does not allow for transverse thermal condensations; however, non-ideal effects highly diminish the stabilizing role of the magnetic field in thermally unstable plasmas. Therefore, the enhanced growth rate of thermal condensation modes in the presence of the diffusion mechanisms speed up the rate of structure formation.  相似文献   

9.
Excitation of electron cyclotron waves and whistlers by reflected auroral electrons which possess a loss-cone distribution is investigated. Based on a given magnetic field and density model, the instability problem is studied over a broad region along the auroral field lines. This region covers altitudes ranging from one quarter of an Earth radius to five Earth radii. It is found that the growth rate is significant only in the region of low altitude, say below the source region of the auroral kilometric radiation. In the high altitude region the instability is insignificant either because of low refractive indices or because of small loss cone angles.  相似文献   

10.
Based on a plane-parallel isothermal model solar atmosphere permeated by a uniform magnetic field directed against the action of gravity, we investigate the parametric generation of acoustic-gravity disturbances by Alfvén waves propagating along the corresponding field lines. We established that for a weak linear coupling of Alfvén waves, the nonlinear interaction of Alfvén waves propagating in opposite directions (rather than in the same direction) is the predominant generation mechanism of acoustic-gravity disturbances at the difference frequency. In this case, no acoustic flow (wind) was found to emerge at a zero difference frequency in the acoustic-gravity field.  相似文献   

11.
B. N. Andersen 《Solar physics》1994,152(1):241-246
The interaction between convection and gravity waves are simulated numerically in a model closely corresponding to the physical conditions in the solar interior.The penetration of convective elements into the stably stratified interior is shown to generate gravity waves. The energy efficiency of this generation is less than 0.1 %. The simulations also show that the convective overshoot region is very shallow, 0.02–0.06 pressure scaleheights.  相似文献   

12.
We study the process of occurrence of “quasi-mode” decay instability of kinetic Alfven waves (KAW) in the chromosphere of a solar active region before a flare, namely, in plasma of magnetic loops near their footpoints. The decay of a primary KAW into a kinetic ion-acoustic wave and a secondary KAW was considered as a specific type of three-wave interaction. Necessary conditions for the KAW decay instability occurrence were found for two semiempirical models of the solar atmosphere with the use of a modified expression for the growth rate of instability in the case of nonlinear interaction of low-frequency waves with an abnormally low excitation threshold. It was shown that the main criteria for the development of this instability significantly depend on the amplitude of external magnetic field in the region under study as well as on a model of the solar atmosphere.  相似文献   

13.
Y. D. Zhugzdha 《Solar physics》1989,124(2):205-209
The properties of five-minute temperature waves in the photosphere are investigated. The phase and amplitude relations of temperature and acoustic waves are deduced. It is expected that the five-minute oscillations represent a mixture of acoustic and temperature waves. The temperature waves are generated due to linear interaction with acoustic waves.It is well known that concurrent with the acoustic waves, temperature or heat waves can appear in the case of nonadiabatic disturbances (Landau and Lifshitz, 1959). The temperature waves are dissipative damped waves. Propagation of nonadiabatic hydrodynamic waves in a stratified medium have been considered by Zhugzdha (1983). If stratification of heat exchange exists, a linear interaction of hydrodynamic and temperature waves arises. The temperature waves must be present in the solar atmosphere.  相似文献   

14.
A model for ion-acoustic waves in the solar atmosphere is presented. In the limit of strongly magnetized plasma this model leads to the Zakharov-Kuznetsov equation which possesses a flat solitary wave solution. An initial-value problem for this equation is solved numerically to show a transition of the flat solitary waves into spherical solitary waves. The paper suggests further developments of an ion-acoustic wave theory that may improve our knowledge of ion-acoustic waves and lead to the possibility of their being detected in the solar atmosphere.  相似文献   

15.
A 3-D particle simulation of excitation of whistler waves driven by an electron temperature anisotropy (T > T ) is presented. Results show that whistler waves can have appreciable growth driven by the anisotropy. The maximum intensity of the excited whistler waves increases as a quadratic function of the anisotropy. Due to the presence of a threshold, one needs a relatively large electron temperature anisotropy above threshold to generate large-amplitude whistler waves. The average amplitude of turbulence in the context of whistler waves is up to as large as about 1% of the ambient magnetic field when T /T . The total energy density of the whistler turbulence is adequate for production of relativistic electrons in solar flares through stochastic acceleration.  相似文献   

16.
We revisit the problem of clump formation due to thermal instabilities in a weakly ionized plasma with the help of a linear perturbation analysis, as discussed by Nejad-Asghar & Ghanbari. In the absence of a magnetic field and ambipolar diffusion the characteristic equation reduces to the thermal instability described by Field. We derive the critical wavelengths, which separate the spatial ranges of stability and instability. Contrary to the original analysis of Nejad-Asghar & Ghanbari, perturbations with a wavelength larger than the critical wavelength destabilize the cloud. Moreover, the instability regime of isentropic perturbations is drastically reduced. Isobaric modes with real values of the critical wavelength appear only if the density dependence of the cooling rate is more pronounced than the temperature dependence. Isentropic modes arise only if the power of the density in the cooling rate is smaller than 1/2, which is not fulfilled for CO cooling. We find that ambipolar diffusion is not a dominating heating process in molecular gas.  相似文献   

17.
Curt Covey  Gerald Schubert 《Icarus》1981,47(1):130-138
Ultraviolet albedo contrasts in the Venus atmosphere are probably large-scale atmospheric waves propagating slowly with respect to the rapid cloud-top zonal winds. Using a simple theoretical model and profiles of mean wind and thermal structure based on Pioneer Venus data, we find planetary-scale gravity waves with phase velocities matching the speeds of the uv markings. We propose an upward-propagating wave and waves trapped at cloud levels as candidates to explain the observed uv features.  相似文献   

18.
Darrell F. Strobel 《Icarus》2006,182(1):251-258
Tidal waves driven by Titan's orbital eccentricity through the time-dependent component of Saturn's gravitational potential attain nonlinear, saturation amplitudes (|T|>10 K, , and ) in the upper atmosphere (?500 km) due to the approximate exponential growth as the inverse square root of pressure. The gravitational tides, with vertical wavelengths of ∼100-150 km above 500 km altitude, carry energy fluxes sufficient in magnitude to affect the energy balance of the upper atmosphere with heating rates in the altitude range of 500-900 km.  相似文献   

19.
The propagation and dissipation of acoustic waves in the lower solar atmosphere is studied. The level of shock formation is computed for various initial conditions. It is shown that shocks form rather low in the atmosphere and that this result does not depend critically on the assumed initial conditions.  相似文献   

20.
Transport equations are used to determine coefficients which are generalizations for any frequency of electric field of the parallel, Pedersen and Hall conductivities in a fully ionized gas.

These coefficients are used in an investigation of the propagation of weak electromagnetic and hydromagnetic waves of all frequencies across a homogeneous and constant magnetic field in a rarefied fully ionized gas. For propagation perpendicular to the magnetic field it is found for all frequencies

(i)
(ii)
where V2 = H2/4π and v, h are the perturbations of the velocity, magnetic field. Similar relationships are deduced for propagation at any angle to the field for frequencies greater than about 10 times the gyrofrequency of electrons.

The theory is applied to discuss transmission of disturbance across the interplanetary medium, the temperature of the solar corona and the earth's outer atmosphere, the emission of non-thermal solar radio noise, cosmic radio noise and the anomalous emission of light from shock fronts.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号