首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 997 毫秒
1.
Ocean temperature changes between 1991 and 2005 in the eastern Tasman Sea were analysed. This area was chosen because of a combination of data availability, low mesoscale variability and because of its importance in determining the climate of the downwind New Zealand landmass. A large warming extending to the full depth of the water column (c. 800 m) was found to have occurred between 1996 and 2002. This warming was seen in measurements by expendable bathythermographs and also in satellite sea surface temperature and sea surface height products, and has a clear impact on New Zealand's terrestrial temperature. The nature of the warming is discussed, together with likely forcing mechanisms. No local forcing mechanisms are consistent with the observed warming, leading to the conclusion that the signal seen in the Tasman Sea is part of a larger South Pacific‐wide phenomenon.  相似文献   

2.
The Pacific Decadal Oscillation   总被引:60,自引:1,他引:60  
The Pacific Decadal Oscillation (PDO) has been described by some as a long-lived El Niño-like pattern of Pacific climate variability, and by others as a blend of two sometimes independent modes having distinct spatial and temporal characteristics of North Pacific sea surface temperature (SST) variability. A growing body of evidence highlights a strong tendency for PDO impacts in the Southern Hemisphere, with important surface climate anomalies over the mid-latitude South Pacific Ocean, Australia and South America. Several independent studies find evidence for just two full PDO cycles in the past century: “cool” PDO regimes prevailed from 1890–1924 and again from 1947–1976, while “warm” PDO regimes dominated from 1925–1946 and from 1977 through (at least) the mid-1990's. Interdecadal changes in Pacific climate have widespread impacts on natural systems, including water resources in the Americas and many marine fisheries in the North Pacific. Tree-ring and Pacific coral based climate reconstructions suggest that PDO variations—at a range of varying time scales—can be traced back to at least 1600, although there are important differences between different proxy reconstructions. While 20th Century PDO fluctuations were most energetic in two general periodicities—one from 15-to-25 years, and the other from 50-to-70 years—the mechanisms causing PDO variability remain unclear. To date, there is little in the way of observational evidence to support a mid-latitude coupled air-sea interaction for PDO, though there are several well-understood mechanisms that promote multi-year persistence in North Pacific upper ocean temperature anomalies.  相似文献   

3.
4.

The Indonesian throughflow (ITF) transports a significant amount of warm freshwater from the Pacific to the Indian Ocean, making it critical to the global climate system. This study examines decadal ITF variations using ocean reanalysis data as well as climate model simulations from the Coupled Model Inter-comparison Project Phase 5 (CMIP5). While the observed annual cycle of ITF transport is known to be correlated with the annual cycle of sea surface height (SSH) difference between the Pacific and Indian Oceans, ocean reanalysis data (1959–2015) show that the Pacific Ocean SSH variability controls more than 85% of ITF variation on decadal timescales. In contrast, the Indian Ocean SSH variability contributes less than 15%. While those observed contributions are mostly reproduced in the CMIP5 historical simulations, an analysis of future climate projections shows a 25–30% increase in the Indian Ocean SSH variability to decadal ITF variations and a corresponding decrease in the Pacific contribution. These projected changes in the Indian Ocean SSH variability are associated with a 23% increase in the amplitudes of negative zonal wind stress anomalies over the equatorial Indian Ocean, along with a 12º eastward shift in the center of action in these anomalies. This combined effect of the increased amplitude and eastward shift in the zonal wind stress increases the SSHA variance over the Indian Ocean, increasing its contribution to the ITF variation. The decadal ITF changes discussed in this study will be crucial in understanding the future global climate variability, strongly coupled to Indo-Pacific interactions.

  相似文献   

5.
《Ocean Modelling》2008,20(2):157-169
The dynamical link between mean state biases and dominant timescales of interannual variability is examined using the output from two state-of-the-art coupled model simulations, results from an ocean-only simulation forced with observed surface fields, and various observational data sets. The focus of this study is the relative role of the mean upper ocean density structure vs. anomalous wind forcing in controlling the spectral characteristics of tropical Pacific interannual variability. It is shown that an extensive South Pacific Convergence Zone (SPCZ) creates a potential vorticity (PV) barrier in the Southern Hemisphere similar to the one associated with the Intertropical Convergence Zone (ITCZ) in the Northern Hemisphere in both climate models. The PV barrier in the Southern Hemisphere strongly constrains the mean equatorward flow in the ocean model pycnocline, creating a “choke point” for the mean flow around 10°S. It is then examined whether the PV barrier can also limit the anomalous flow associated with mass recharge/discharge to/from the equatorial thermocline at interannual timescales. If the anomalous flow were impeded by the mean PV structure the meridional extent of the area involved in the mass recharge/discharge process would be narrower, leading to a shorter adjustment (and ENSO) timescale. Comparison of the two climate models, both of which have similarly erroneous PV structures in the southern tropical Pacific, but different interannual timescales, shows that the meridional extent of the anomalous meridional transport is primarily controlled by the latitudinal location of the wind stress curl anomalies, while the mean state bias in the Southern Hemisphere does not seem to have any significant influence.  相似文献   

6.
西太平洋暖池研究综述   总被引:2,自引:0,他引:2  
西太平洋暖池(Western Pacific Warm Pool)是全球海温最高的海域,汇聚了巨大的热能,在地球气候系统中具有非常重要的作用。本文综述了近30年来有关西太平洋暖池的研究进展,包括西太平洋暖池的维持机制、在不同时间尺度西太平洋暖池的变异特征和物理机制,以及西太平洋暖池的观测和数值模拟等领域的研究进展。西太平洋暖池的维持是现有地形下大气过程和海洋过程相互作用导致的,在季节内到世纪尺度均存在很强的变化。其中:季节内变化的驱动机制主要包括与大气季节内振荡(Madden Julian Oscillation)相关的对流和海表面热通量变化,以及海洋波动等海洋动力过程;季节变化主要是太阳辐射的季节变化导致;在年际尺度上,西太平洋暖池作为El Ni?o-Southern Oscillation的一部分而振荡具有显著年际变化;太平洋代际振荡(Pacific Decadal Oscillation)和大西洋代际振荡(Atlantic Multi-decadal Oscillation)驱动着西太平洋暖池的年代际变化;世纪尺度的变化显示全球变暖背景下西太平洋暖池存在扩张趋势。人类对西太平洋暖池的系统观测始于海洋观测卫星的使用,随后历经WCRP/TOGA、TAO/TRITON、TOGA-COARE、WOCE、Argo、SPICE、NPOCE等多个观测计划,极大促进了西太平洋暖池的研究。但截止到第五次耦合模式比对计划(Coupled Model Intercomparison Project 5),多数气候模式仍未能克服热带模拟偏差,对西太平洋暖池的模拟效果较差,表明在西太平洋暖池动力学的理解和模拟方面仍有较大进步空间。  相似文献   

7.
The shelfbreak wintertime thermal front in the Northeastern Gulf of Mexico often exhibits meandering, eddy formation and warm-water intrusion. A high level of frontal variability plays an essential role in exchange processes across the shelf. This study examines the impacts of local frontal instability and bottom topography on turbulent heat exchange across the front using the results of two numerical models. Analysis of a series of numerical experiments reveals that the flow is baroclinically unstable. Predicted frontal instability contributes significantly to cross-frontal exchange and accounts for about 35% of the total eddy heat flux. Onshore eddy heat flux has the highest intensity at the frontal position. In addition, eddy activity and heat flux are sensitive to variation of bottom topography. For topographic features and frontal characteristics that are typical of the area, bottom steepness enhances the flux and is nearly proportional to the cross-frontal heat exchange. The study attempts to explain physical mechanisms that drive frontal circulation in the area and to quantify heat transport across the shelf. Estimated heat fluxes can provide important information for climate and ecosystem modeling of the Mississippi Bight.  相似文献   

8.
Recent progress in studies of the South China Sea circulation   总被引:12,自引:1,他引:12  
The South China Sea (SCS) is a semi-enclosed marginal sea with deep a basin. The SCS is located at low latitudes, where the ocean circulations are driven principally by the Asia-Australia monsoon. Ocean circulation in the SCS is very complex and plays an important role in both the marine environment and climate variability. Due to the monsoon-mountain interactions the seasonal spatial pattern of the sea surface wind stress curl is very specific. These distinct patterns induce different basin-scale circulation and gyre in summer and winter, respectively. The intensified western boundary currents associated with the cyclonic and anticyclonic gyres in the SCS play important roles in the sea surface temperature variability of the basin. The mesoscale eddies in the SCS are rather active and their formation mechanisms have been described in recent studies. The water exchange through the Luzon Strait and other straits could give rise to the relation between the Pacific and the SCS. This paper reviews the research results mentioned above.  相似文献   

9.
Response of the North Pacific subtropical countercurrent (STCC) and its variability to global warming is examined in a state-of-the-art coupled model that is forced by increasing greenhouse gas concentrations. Compared with the present climate, the upper ocean is more stratified, and the mixed layer depth (MLD) shoals in warmer climate. The maximum change of winter MLD appears in the Kuroshio–Oyashio extension (KOE) region, where the mean MLD is the deepest in the North Pacific. This weakens the MLD front and reduces lateral induction. As a result of the reduced subduction rate and a decrease in sea surface density in KOE, mode waters form on lighter isopycnals with reduced thickness. Advected southward, the weakened mode waters decelerate the STCC. On decadal timescales, the dominant mode of sea surface height in the central subtropical gyre represents STCC variability. This STCC mode decays as CO2 concentrations double in the twenty-first century, owing both to weakened mode waters in the mean state and to reduced variability in mode waters. The reduced mode-water variability can be traced upstream to reduced variations in winter MLD front and subduction in the KOE region where mode water forms.  相似文献   

10.
In the Northwest Pacific Ocean, the squid jigging fisheries from China, Japan and other countries and regions have targeted the west winter-spring cohort of neon flying squid(Ommastrephes bartramii) from August to November since the 1970 s. This squid is a short-lived ecological opportunist with a life-span of about one year,and its population is labile and recruitment variability is driven by the environment or climate change. This variability provides a challenge for ones to forecast the key habitats affected by climate change. The catch data of O. bartramii from Chinese squid jigging fishery and the satellite-derived sea surface temperature(SST) data are used in the Northwest Pacific Ocean from August to November of 1998 to 2004, the SST preferences of O.bartramii corresponding to high values of catch per fishing day(CPUE) are determined and monthly potential habitats are predicted using a histogram analysis of the SST data. The possible changes in the potential habitats of O. bartramii in the Northwest Pacific Ocean are estimated under four climate change scenarios based on the Fourth Assessment Report(AR4) of the Intergovernmental Panel on Climate Change, i.e., 0.5, 1, 2 and 4°C increases in the SST because of the climate change. The results reveal an obvious poleward shift of the potential habitats of O. bartramii in the Northwest Pacific Ocean.  相似文献   

11.
热带太平洋海温异常气候态变率与我国气候异常   总被引:1,自引:0,他引:1       下载免费PDF全文
用Kaplan等重建的1856-2001年全球海面水 温距平(SSTA)资料,分析了热带太平洋SSTA气候态变率,其主模态以热带西太平洋和赤道南北两侧的热带东太平洋大值同号为主要特征,其时间系数具60a左右的显著周期,它与全球气候跃变和夏季西北太平洋副热带高压及我国汛期降水的长期变化有密切联系。根据热带太平洋气候态变率60a左右的时间尺度,预测未来10a内,我国汛期降水仍以长江流域偏多为主,华北干旱形势难以缓解。  相似文献   

12.
Observational studies of the Pacific basin since the 1950s have demonstrated that a decrease (increase) in tropical Pacific sea surface temperatures (SSTs) is significantly correlated with a spin-up (slow-down) of the Pacific Subtropical Cells (STCs). STCs are shallow wind-driven overturning circulations that provide a pathway by which extratropical atmospheric variability can impact the equatorial Pacific thermocline and, through upwelling in the eastern equatorial Pacific, tropical Pacific SSTs. Recent studies have shown that this observed relationship between SSTs and STCs is absent in coupled climate model simulations of the late 19th–20th centuries. In this paper we investigate what causes this relationship to breakdown and to what extent this limits the models’ ability to simulate observed climate change in the equatorial Pacific since the late 19th century. To provide insight into these questions we first show that the NCAR Community Climate System Model’s simulation of observed climate change since the 1970s has a robust signal in the equatorial Pacific that bears a close resemblance to observations. Strikingly, absent is a robust signal in the equatorial thermocline. Our results suggest that the coupled model may be reproducing the observed local ocean response to changes in forcing but inadequately reproducing the remote STC-forcing of the tropical Pacific due to the underestimate of extratropical winds that force these ocean circulations. These conclusions are found to be valid in five different coupled climate model simulations of the late 19th–20th centuries (CCSM3, GISS EH, GFDL CM2.1, CSIRO-Mk3, and HadCM3).  相似文献   

13.
《Ocean Modelling》2007,16(3-4):236-249
Observational studies of the Pacific basin since the 1950s have demonstrated that a decrease (increase) in tropical Pacific sea surface temperatures (SSTs) is significantly correlated with a spin-up (slow-down) of the Pacific Subtropical Cells (STCs). STCs are shallow wind-driven overturning circulations that provide a pathway by which extratropical atmospheric variability can impact the equatorial Pacific thermocline and, through upwelling in the eastern equatorial Pacific, tropical Pacific SSTs. Recent studies have shown that this observed relationship between SSTs and STCs is absent in coupled climate model simulations of the late 19th–20th centuries. In this paper we investigate what causes this relationship to breakdown and to what extent this limits the models’ ability to simulate observed climate change in the equatorial Pacific since the late 19th century. To provide insight into these questions we first show that the NCAR Community Climate System Model’s simulation of observed climate change since the 1970s has a robust signal in the equatorial Pacific that bears a close resemblance to observations. Strikingly, absent is a robust signal in the equatorial thermocline. Our results suggest that the coupled model may be reproducing the observed local ocean response to changes in forcing but inadequately reproducing the remote STC-forcing of the tropical Pacific due to the underestimate of extratropical winds that force these ocean circulations. These conclusions are found to be valid in five different coupled climate model simulations of the late 19th–20th centuries (CCSM3, GISS EH, GFDL CM2.1, CSIRO-Mk3, and HadCM3).  相似文献   

14.
Interdecadal Pacific variability (IPV) is commonly observed in both the tropical and mid-latitude Pacific Ocean, and has a widespread influence on surface climate in the Pan-Pacific Basin. This variability is recorded by climate proxies such as geochemical parameters preserved in corals. However, the origins of IPV remain uncertain. To shed light on this, interdecadal variations in two long coral δ18O records from Nauru Island and the South China Sea (SCS), respectively located in the tropical Pacific and the mid-latitude North Pacific Ocean, were investigated. The interdecadal fluctuations in the δ18O series from Nauru Island (tropical Pacific) match those of the NINO3.4 index reasonably well (r=–0.30, n=96, p=0.0015), but are not correlated with those of the Pacific decadal oscillation (PDO) index (r=–0.17, n=96, p=0.05). The δ18O time series from the SCS (northwestern Pacific), by contrast, co-vary with the PDO index (r=–0.30, n=156, p=0.0007), but are out of phase with the NINO3.4 index at the interdecadal timescale (r=0.04, n=156, p=0.31). The impact on the interdecadal variability of processes occurring outside the growth region of corals is generally weak. The results thus do not support a tropical origin of IPV, but demonstrate that the interdecadal variability in the tropical Pacific and the North Pacific originates predominantly from local coupled ocean–atmosphere processes within these regions. The results also suggest that tropical–extratropical interactions played a role in IPV between 1920 and 1940, which indicates that IPV is a complex climatic phenomenon that involves multiple forcing mechanisms.  相似文献   

15.
太平洋年代际变化研究进展浅析   总被引:1,自引:3,他引:1  
综述了近几年太平洋年代际变化形成机制或起因的7种代表性观点,对已有观点作了初步评述,并提出未来太平洋年代际变化研究应关注以下方面:太平洋年代际变化的多重模态及相应的多重机制,不同时空尺度海洋现象间的相互作用,南太平洋年代际变化及在全太平洋年代际变化中的作用,ENSO与PDO的预测,海洋环流的年代际变化及其对气候变化的作用,海洋热能、机械能的收支及转换等关键问题.  相似文献   

16.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
When considering physical mechanisms for decadal-timescale climate variability in the North Pacific, it is useful to describe in detail the expected response of the ocean to the chaotic atmospheric forcing. The expected response to this white-noise forcing includes strongly enhanced power in the decadal frequency band relative to higher frequencies, pronounced changes in basin-wide climate that resemble regime shifts, preferred patterns of spatial variability, and a depth-dependent profile that includes variability with a standard deviation of 0.2–0.4°C over the top 50–100 m. Weak spectral peaks are also possible, given ocean dynamics. Detecting coupled ocean–atmosphere modes of variability in the real climate system is difficult against the spectral and spatial structure of this ‘null-hypothesis’ of how the ocean and atmosphere interact, especially given the impossibility of experimentally decoupling the ocean from the atmosphere. Turning to coupled ocean–atmosphere models to address this question, a method for identifying coupled modes by using models of increasing physical complexity is illustrated. It is found that a coupled ocean–atmosphere mode accounts for enhanced variability with a time scale of 20 years/cycle in the Kuroshio extension region of the model's North Pacific. The observed Pacific Decadal Oscillation (PDO) has many similarities to the expected noise-forced response and few similarities to the model's coupled ocean–atmosphere variability. However, model deficiencies and some analyses of observations by other workers indicate that the possibility that part of the PDO arises from a coupled ocean–atmosphere mode cannot be ruled out.  相似文献   

18.
The spatial and temporal variability and size fractionation of chlorophyll a(Chl a) were investigated in the tropical and subtropical Pacific Ocean during four survey cruises from 2005 to 2009.The surface Chl a(S-Chl a) concentration ranged from 0.002 to 0.497 mg/m 3 and was obviously higher in the eastern Pacific than in the western and central Pacific.The vertical distribution of Chl a displayed a single peak pattern,and the maximum Chl a layer(MCL) was observed at a shallower depth in the eastern Pacific than in the western Pacific.All three size fractions of Chl a measurements in the surface water showed a similar distribution to total Chl a and were found in higher concentrations in the eastern Pacific than in the western and central Pacific.Picoplankton dominated the phytoplankton in the surveyed tropical and subtropical Pacific Ocean.Furthermore,pico-Chl a(0.2-2 μm) accounted for a larger percentage of the total Chl a in the central Pacific than it did in the western Pacific and eastern Pacific.In the western Pacific,there seemed to be a latitudinal variability in the phytoplankton community composition where small-sized phytoplankton(<2 μm) were more dominant in the tropical than in the subtropical western Pacific.The spatial and temporal variability and size fractionation of Chl a were controlled by hydrological and chemical characteristics and climate events,such as El Nin o and La Nin a.  相似文献   

19.
The notion of mode interaction is proposed as a deterministic concept for understanding climatic modes at various time-scales. This concept is based on the distinction between fundamental modes relying on their own physical mechanisms and derived modes that emerge from the interaction of two other modes. The notion is introduced and applied to interannual climate variability. Observational evidence is presented for the tropospheric biennial variability to be the result of the interaction between the annual cycle and a quasi-decadal mode originating in the Atlantic basin. Within the same framework, Pacific interannual variability at time-scales of about 4 and 6 yr is interpreted as the result of interactions between the biennial and quasi-decadal modes of climate variability. We show that the negative feedback of the interannual modes is linked to the annual cycle and the quasi-decadal mode, both originating outside the Pacific basin, whereas the strong amplitudes of interannual modes result from resonance and local positive feedback. It is argued that such a distinction between fundamental and derived modes of variability is important for understanding the underlying physics of climatic modes, with strong implications for climate predictability.  相似文献   

20.
综述了近20年来国内外学者在研究北太平洋西边界流的平均结构及NEC分叉动力机制、NM K流系平均输运的分配及变化、NM K流系季节及年际变化规律及其与EN SO之间的关系、NM K流系在热带和亚热带水交换中的作用以及水团的平均分布特征等方面所取得的主要成果。通过分析,发现东亚季风、R ossby波和K e lv in波等是影响北太平洋西边界流的主要因素;而缺乏长期直接的海流观测资料是深入研究北太平洋西边界流遇到的最大障碍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号