首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
硼同位素地球化学及其示踪意义   总被引:4,自引:1,他引:4  
由于硼在自然界中分布较集中,平均丰度底,而且11B和10B之间质量差大,分馏效应显著,故硼同位素组成可以作为判定硼来源的效示踪剂和指相标志。硼同位素的分馏方式主要有吸附作用,蒸发(沸腾)作用和风化,淋滤作用。温度和pH是控制硼同位素分馏的重要条件。地壳中的硼为主要有碎屑,陆相蒸发岩和海相蒸发岩,次之为中酸性火山岩(硼丰度很低)。慢源岩和陨石中的硼含量极低。这些岩石中的硼丰度和δγγB值标志为我们判  相似文献   

2.
南海珊瑚礁硼同位素组成及其环境意义   总被引:21,自引:2,他引:21  
刘卫国  肖应凯 《地球化学》1999,28(6):534-541
采用正热电离质谱方法测定了中国南海诸岛7000a以来的珊瑚礁的硼同位素的硼含量。讨论了珊瑚礁中硼同位素 硼含量,P不管不顾忻代等参数的关系。结果表明,所测定的珊瑚礁硼同位素组成变化范围为22.7 ̄24.8‰,并且与珊瑚 硼含量呈正相关关系。根据硼同位素与海水PH值的关系计算出过去7000a南海泊PH值变化8.10 ̄8.41。初步探讨了硼同位素组成与南海海平面变化的关系。  相似文献   

3.
黄土-古土壤沉积物中酸溶相硼的分离及其同位素测定   总被引:5,自引:0,他引:5  
用0.5mol/LHCl提取黄土、古土壤中的酸溶相成分,并用混合树脂法和硼特效树脂法两方法叠加以硼进行分离和纯化,Cs2BO2^+法测同位素比值。结果表明,虽然混合树脂法和硼特效脂法都是较成熟的方法,但用来处理杂质离子含量相对高而硼含量低的样品深液并不成功。两种方法叠加处理后达到理想的效果,重复处理黄土-古土壤样品的精度(2RSD)在0.4‰~0.4‰之间,这与标样(NIST SRM951)水平(  相似文献   

4.
四川盆地海相三叠系硫同位素组成及其地质意义   总被引:10,自引:0,他引:10  
系统整理研究了四川盆地海相三叠系硬石膏和卤水的硫同位素组成,演化特点及其地质意义。这对促进四川和全球海相三叠系到盐硫同位素的研究有重要参考价值。  相似文献   

5.
硼及其同位素对水体污染物的示踪研究   总被引:2,自引:0,他引:2  
硼的易溶性和硼化合物的广泛使用 ,以及污水处理过程中除硼的困难 ,最终导致地表地下水体富集硼及有关污染物。海滨地下水受到海水入侵 ,硼含量及 ρ(B) / ρ(Cl)比值发生明显变化。混合、吸附、水岩等作用使得硼同位素发生分馏 ,显著区别于区域背景值。因此 ,结合其它同位素、水化学等信息 ,硼及其同位素作为良好示踪剂为研究水圈中物质的地球化学循环过程提供了新的手段。文中总结了部分天然水体的硼含量和硼同位素组成特征 ,综述了近年来用硼同位素示踪水体的污染物来源、程度和范围等方面新的研究成果。  相似文献   

6.
里伍式富铜矿床同位素示踪及其成矿地质意义   总被引:14,自引:0,他引:14  
笔者在分析江浪变质穹隆成矿地质构造背景、含矿变质岩系以及矿床成矿特征的基础上,采用Si、Pb、S等同位素示踪和Ar-Ar同位素等定年方法,分别对不同类型的矿石进行了同位素示踪,并对改造期形成的团块状矿石进行了定年.笔者通过研究认为,该类型矿床的Si、Pb等成矿物质主要来自于江浪变质穹隆含矿变质岩系;而矿床中的硫则主要来自于该岩性段中前变质的火山物质.同时,根据硫同位素组成在不同矿石类型的分布规律,判断含矿变质岩系曾经历过区域变质作用、成穹过程中所产生的塑性流变和流体作用等,对其进行了强烈的改造,从而形成富铜矿床.  相似文献   

7.
造礁珊瑚是研究热带海洋高分辨率气候环境演变的重要载体。对采自海南岛南部三亚湾的活体滨珊瑚SY10进行了约为月分辨率的碳、氧、硼同位素组成分析,并利用珊瑚δ11B重建了海水pH。结果显示,所测量样品的δ13C变化范围为–3.32‰~–1.76‰,δ18O为–6.13‰~–4.78‰,δ11B为23.51‰~26.23‰,且这些珊瑚样品的碳、氧、硼同位素组成均存在明显的季节性周期波动。其中pH与δ18O之间存在明显的正相关关系,高的pH值更倾向于在低温的季节出现,这意味着短时间尺度该处珊瑚礁海水pH可能主要不是受海水CO2溶解度控制,而是与生物活动有密切的关系。利用SY10珊瑚样品硼同位素组成重建的海水pH值变化范围为7.77~8.37,并呈季节性周期波动,这种大幅度的周期波动与我们对三亚珊瑚礁海水pH进行现场观测所得到的结果以及前人的研究成果相符,说明了利用珊瑚δ11B重建海水pH记录是可靠的。  相似文献   

8.
气候是土壤形成的要素之一,土壤形成过程中物质的分解、合成、迁移和累积等过程都留有气候变迁的记录。近几年来,土壤碳酸盐(特别是成壤作用过程中产生的次生碳酸盐)的稳定同位素组成已被用作反演古气候、古植被演替的重要手段,其基本原理在于土壤碳酸盐与成壤环境之间达到同位素平衡。但要求土壤碳酸盐形成后未受后期的成岩作用改造,  相似文献   

9.
河水样品中硼的分离及其同位素组成测定   总被引:1,自引:0,他引:1  
对河水样品中低含量硼的分离方法及硼同位素组成的测定进行了研究。将约1000mL河水样品分别用硼特效树脂,混合树脂富集和纯化后,紫外灯照射去除有机质,蒸发浓缩至小体积,采用正热离子质谱法进行硼同位素组成的测定。全流程回收率在95%以上,同位素稀释法测得全流程空白为41ng。经该方法处理后的样品能满足同位素质谱测定的需要。不产生同位素分馏,测试精度基本在0.6‰以内。  相似文献   

10.
本研究基于青海囊谦盆地8个盐泉的元素组成和稳定同位素分析,研究了盆地中高浓度盐泉盐类物质的来源与形成条件。结果表明,青海囊谦盐泉的平均矿化度为254.6 g/L,在空间上矿化度从西到东逐渐升高,水化学类型为硫酸盐型,pH为中性,盐泉元素可分为三类—Na~+-Cl-~-K~+-Br~-,B~(3+)-Li~+-SO_4~(2-)-HCO_3~-,Ca~(2+)-Mg~(2+)。盆地中高浓度盐泉的大面积出现,及盐泉元素地球化学分析均表明囊谦盆地地下有丰富的含盐地层。盐泉的成因类型为溶滤盐泉,溶滤的主要矿物为石盐,其次还有少量灰岩和石膏岩。盐泉的硼同位素研究结果表明,盐泉水δ~(11)B值在+3.55‰~+35.49‰之间变化,分布范围较大,从北西向南东逐渐降低,结合盐泉的Br含量,指示该含盐地层应属陆相成因。此外,盐泉水硼含量与硼同位素呈反比关系,呈现出高B低δ11B值端元和低B高δ~(11B)值端元,盐泉的p H值与硼同位素组成也呈一定的反比关系。通过对盐泉和区域地质的综合研究,我们认为多伦多盐泉地区出露的大量火山物质可能是盐泉硼的一个重要来源。综合对比研究认为囊谦盐泉的形成条件为:(1)盆地内的含盐地层为盐类物源;(2)稳定的降水为盐泉提供了持续的水源;(3)广布的断裂构造为盐泉的发育提供了通道;(4)地形高差大为其提供了水力梯度。  相似文献   

11.
云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义   总被引:44,自引:15,他引:44  
为探讨兰坪盆地内白秧坪银铜多金属矿集区水_岩反应的可能性 ,对矿集区的热液矿物、蚀变岩石和原岩的碳、氧同位素组成进行了分析。分析结果显示 ,热液成矿阶段形成的方解石、菱铁矿、菱锶矿的δ13 CPDB 值为-8.3‰~ + 2 .7‰ ,相对变化较小 ;而δ18OSMOW 值为 -2 .5‰~ + 2 4.3‰ ,变化较大 ,且出现了自然界中少见的极低值(± 0‰ )。水岩交换模拟反应显示 ,在成矿早阶段 ,成矿流体的δ13 C和δ18O值分别为 -7‰和 + 7‰ ,与岩浆水组成特征相似 ,它是一种具有深源CO2 的热卤水。在此流体中 ,可溶性碳以HCO-3 为主 ,方解石等热液矿物的形成温度为3 0 0~ 160℃ ,水岩交换比值较小 (0~ 0 .4)。在成矿晚阶段 ,成矿流体的δ13 C和δ18O值分别为 -2 .5‰和 -12 .5‰ ,可溶性碳以H2 CO3 为主 ,方解石等形成温度为 2 50~ 150℃ ,水岩交换比值稍大 (0 .2~ 0 .6) ,显示出晚阶段成矿流体具有大气降水的特征。δ13 C值的增加 ,很可能与降温作用和灰岩的溶解或去碳酸盐化作用有关  相似文献   

12.
滩间山金矿床产于中元古界蓟县系万洞沟群碳质糜棱片岩和华力西晚期侵入岩中,该金矿床是在热水沉积,区域变质和热变质预富集的基础上,与区域绿片岩相脆韧性剪切变形变质带的退化演化同步,经历了脆韧性,韧脆性和脆性剪切变形成矿阶段的演化,并遭受华力西晚期侵入岩浆活动的改造而形成的。矿区地层,侵入岩,矿石及黄铁矿的铅同位素组成表现出良好的亲缘关系,较清楚地反映了地层和侵入岩浆活动对成矿物质的贡献。  相似文献   

13.
四川盆地海相三叠系地层发育齐全。通过盆地海相三叠系各层段众多的硫酸盐( 石膏、硬石膏) 和盐卤水硫同位素分析样的系统整理和研究,可见同一层段的硫同位素(δ34S)组成稳定,而沿剖面由下而上δ34S呈阶梯状递减轻化趋势,与已知全球海相三叠硫酸盐δ34S的研究的结果有明显差异,这对全球海相三叠系硫酸盐δ34S的研究是一个重要的补充和贡献。对地层划分对比、盐卤水产层和成因、蒸发岩形成环境、咸化发展方向及成钾预测等方面的研究,也有重要意义。  相似文献   

14.
顾海欧  刘倩  孙贺  顾笑龑  汪方跃 《地质学报》2022,96(12):4331-4339
钾(K)是主要造岩元素之一,高水溶性,高活动性,同时具有高度的不相容性。尽管K同位素组成的测试始于20世纪初,但其高精度测试一直发展缓慢,直到近年来得益于多接收电感耦合等离子体质谱(MC- ICP- MS)的快速发展, K同位素的分析精度得到显著提升,极大地促进了K同位素地球化学的发展。目前已经基本查明地球各主要储库的K同位素组成,并对一些地质和物理化学过程中的K同位素分馏开展了研究工作。研究结果表明海水的K同位素组成(均值0. 11‰±0. 08‰)显著高于硅酸盐地球的K同位素组成(估计值-0. 44‰±0. 04‰);而主要地质过程中,低温风化过程中风化壳一般富集轻的同位素,而与之平衡的水体富集重的同位素;高温岩浆分异过程中目前尚未观察到显著的同位素分馏。目前K同位素已经被广泛应用于俯冲循环地壳物质或板片流体活动的示踪上,如幔源岩浆的地幔源区过程示踪等。由于浅部物质的K含量远高于地幔源区,在俯冲循环过程中,地幔源区的K同位素组成对于交代、混染等过程比较敏感。因此,K同位素在示踪地幔组成变化方面可能会具有广阔的应用前景。  相似文献   

15.
本文初步建立了一种用硼特效树脂和阴、阳混和离子交换树脂相结合进行有孔虫中硼的分离和同位素测定的方法。该方法适用低硼含量 (纳克级 )的微体古生物中的硼的分离和同位素测定 ,分离过程不产生同位素分馏 ,满足了正热电离质谱法测定硼同位素的要求。  相似文献   

16.
陆生植物氮同位素组成与气候环境变化研究进展   总被引:3,自引:0,他引:3  
近年来,由于植物氮同位素组成(δ15N)记载了气候环境变化的信息,因而被广泛应用于全球变化研究中,成为古气候环境再造和了解现代气候环境变化信息的有力工具。然而,人们对气候环境引起的δ15N变化及其指示的气候环境意义并不完全清楚,这就有可能限制植物δ15N在古气候环境变化等领域研究中的应用。在概述植物氮同位素分馏和植物不同氮源的氮同位素分布的基础上,分析了温度、降水、大气CO2浓度和海拔高度等气候环境因子对陆生植物δ15N的影响以及它们的关系。指出了目前研究中存在的问题及其研究前景,认为在全球变化研究中利用植物氮同位素技术不仅可以重建古气候环境(如重建大气CO2浓度变化),揭示历史时期温度、降水的变化,而且还可以在一定的时间和空间上综合反映生态系统氮循环的特征。  相似文献   

17.
青藏高原的隆起与海洋锶同位素组成的演化   总被引:3,自引:2,他引:3  
近年来,随着构造隆升驱动气候变化假说的提出,青藏高原的隆起受到越来越多的关注,并将之与大陆化学风化速率及海洋锶同位素的演化紧密联系。围绕青藏高原的隆升及其环境与气候效应,对海洋锶同位素组成的演化特征及其影响因素的较为全面而详细的论述表明:将青藏高原的隆升与全球气候变化、大陆化学风化速率及海洋锶同位素组成的演化相联系,也许是解决目前关于海洋锶同位素组成的演化及其物源问题的重要手段,根据海洋锶同位素的演化历史来研究全球气候变化规律及青藏高原的构造演化历史将是本研究领域的重点。  相似文献   

18.
青藏高原的隆起与海洋锶同位素组成的演化   总被引:2,自引:1,他引:2  
近年来,随着构造隆升驱动气候变化假说的提出,青藏高原的隆起受到越来越多的关注,并将之与大陆化学风化速率及海洋锶同位素的演化紧密联系.围绕青藏高原的隆升及其环境与气候效应,对海洋锶同位素组成的演化特征及其影响因素的较为全面而详细的论述表明:将青藏高原的隆升与全球气候变化、大陆化学风化速率及海洋锶同位素组成的演化相联系,也许是解决目前关于海洋锶同位素组成的演化及其物源问题的重要手段,根据海洋锶同位素的演化历史来研究全球气候变化规律及青藏高原的构造演化历史将是本研究领域的重点.  相似文献   

19.
黄土沉积物中碳酸盐同位素组成的研究方法   总被引:3,自引:0,他引:3  
利用逐段加热法获得的黄土沉积物中碳酸盐的碳、氧同位素组成表明,黄土沉积物中的碳酸盐是不同来源和成因的碳酸盐的混合物。不同来源和成因的碳酸盐具有不同的碳、氧同位素组成,其示踪意义也不同,700~800℃的δ13C比用磷酸法获得的δ13C更灵敏于古气候的变化。因此,采用磷酸法研究黄土沉积物碳酸盐的同位素组成是不适宜的。  相似文献   

20.
东南极拉斯曼丘陵地区麻粒岩相岩石中出露一套罕见的含硅硼镁铝矿-柱晶石-电气石矿物组合的富硼岩系.由于高级变质作用已使原岩的性质难以确定,变质原岩及其形成环境的恢复变得十分困难,而硼同位素组成则可以作为判定硼来源的有效示踪剂和指相标志.报道了东南极拉斯曼丘陵硅硼镁铝矿-柱晶石-电气石富硼岩系的硼同位素组成资料,其δ11B值变化范围为-12.0‰~-34.6‰,硼同位素的低比值和其他地质证据表明,其原岩为非海相蒸发硼酸盐岩.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号