首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of pristine block-and-ash flow deposits from the May–June 2006 eruption of Merapi represent an exceptional record of small-volume pyroclastic flows generated by gravitational lava-dome collapses over a period of about two months. The deposits form nine overlapping lobes reaching ~ 7 km from the summit in the Gendol River valley on the volcano's southern flank, which were produced by successive flows generated during and after the major dome-collapse event on June 14. Both, single pulse (post-June 14 events) and multiple-pulse pyroclastic flows generated by sustained dome collapses on June 14 are recognised and three types of deposits, spread over an area of 4.7 km², are distinguished, totalling 13.3 × 106 m3: (1) valley-confined basal avalanche deposits (11.7 × 106 m3) in the Gendol River valley, (2) overbank pyroclastic-flow and associated surge deposits (1.4 × 106 m3), where parts of the basal avalanche spread laterally onto interfluves and were subsequently channeled into the surrounding river valleys and (3) dilute ash-cloud surge deposits (0.2 × 106 m3) along valley margins. Variations in the distribution, surface morphology and lithology of the deposits are related to the source materials involved in individual pyroclastic-flow-forming events and varying modes of transport and deposition of the different flows. Inferred flow velocities of the largest block-and-ash flows generated on June 14 vary from 43.8–13.5 m/s for the basal avalanche and from 62.6–24.2 m/s for the ash-cloud surge. The minimum temperatures range from 400 °C for the basal avalanche to 165 °C for the overlying ash cloud. Due to the potential of being re-channeled into adjacent river valleys and flowing laterally away from the main river channel, the overbank pyroclastic flows are considered the most hazardous part of the block-and-ash flow system. The conditions that lead to their development during flow transport and deposition must be taken into account when assessing future pyroclastic flow hazards at Merapi and similar volcanoes elsewhere.  相似文献   

2.
A study of emplacement temperatures was carried out for the largest of the 22 November 1994 nuée ardente deposits at Merapi Volcano, based mainly on the response of plastic and woody materials subjected to the hot pyroclastic current and the deposits, and to some extent on eyewitness observations. The study emphasizes the Turgo–Kaliurang area in the distal part of the area affected by the nuée ardente, where nearly 100 casualties occurred. The term nuée ardente as used here includes channeled block-and-ash flows, and associated ash-clouds of surge and fallout origins. The emplacement temperature of the 8 m thick channeled block-and-ash deposit was relatively high, 550°C, based mainly on eyewitness reports of visual thermal radiance. Emplacement temperatures for ash-cloud deposits a few cm thick were deduced from polymer objects collected at Turgo and Kaliurang. Most polymers do not display a sharp melting range, but polyethylene terephthalate used in water bottles melts between 245 and 265°C, and parts of the bottles that had been deformed during fabrication molding turn a milky color at 200°C. The experimental evidence suggests that deposits in the Turgo area briefly achieved a maximum temperature near 300°C, whereas those near Kaliurang were <200°C. Maximum ash deposit temperatures occurred in fallout with a local source in the channeled block-and-ash flow of the Boyong river valley; the surge deposit was cooler (180°C) due to entrainment of cool air and soils, and tree singe-zone temperatures were around 100°C.  相似文献   

3.
The eruption commenced on July 7th 1963 with activity at the summit crater which had been dormant for at least 50 years. Production of lava spatte r characterised the opening stages of the eruption, and although hot lava blocks avalanched down the north-eastern slope no flows were produced. In August a crater opened at a height of approximately 1,000 metres at the head of a north-west trending fissure, the site of the 1960 eruption. Intermittent lava fountaining up to a height of 600 feet took place at the crater which was active throughout the remainder of the eruption, and viscous steep-sided tongues of «aa» lava flowed from it. A new east-west trending fissure 200 feet deep and 400 feet wide opened in September at a height of approximately 240 metres and extended up the slope to a point approximately 660 metres above sea level. From this fissure lavas of more fluid character though identical in mineral composition to tongues issuing from the flank crater flowed into the sea until mid November when activity at the fissure ceased. Whilst the fissure was active gas issued from a vent located immediately beyond it’s uper end. The slopes above the anchorage at Tematu were the site of subsidiary activity. Four small fissures opened at heights of up to 180 metres above sea level from mid-October to February 1964 producing short tongues of «aa» lava which flowed into the water. Emission of small ash clouds at sporadic intervals was noted at a crater situated in the highest fissure during a visit in December, 1963. There was a change from activity of «Strombolian type» with associated production of lava flows at the flank crater from November 1963 when the proportion of ash emitted increased. Ash emission became the predominant type of activity throughout the remainder of the eruption. Although the interval between successive outbursts lengthened progressively during 1964 the activity reached a climax on April 8th when the ash column attained a height of 30,000 feet, the maximum recorded during the course of the eruption. There was also an increase in July culminating in the production of a dense ash cloud 15 miles in diameter on the 26th. The activity entered a new phase in July 1964 when fissures producing lava tongues opened not only on the northern slopes but on the east side of the volcano as well. Activity continued on the opposite side to the north-west quadrant in which it had previously been localised when a fissure with a small crater at it’s head appeared in September on the south-east slopes a few hundred metres above sea level. The infrequency of outbursts during 1965 suggests that the present cycle of activity is waning, and that the volcano will soon become quiescent once more. Structures of interest in the lava flows include channels and tunnels. Hypersthene andesite was produced simultaneously with tholeiitic olivine bearing basalt during the opening stages of the eruption although the lavas produced later were all of the latter type. It is suggested that the hypersthene andesite was formed by magmatic differentiation of an olivine-bearing basalt parent magma, the lighter more acid fraction being tapped first at the beginning of the eruption. Such differentiation could account for similar basalt-andesite associations in older volcanic sequences within the central area.  相似文献   

4.
We provide data concerning a weak phreatic eruption of Ekarma Volcano on Ekarma Island, in the Kurils, in June 2010. The ash plumes did not rise higher than 3 km above sea level. A preliminary estimate of the volume of erupted resurgent material (mostly tephra) is on order 2 × 105 m3. Reconstruction of the volcano??s history and the dynamics of its eruptive activity for the last 4500?C5000 years suggests that a larger eruption can occur during the next few decades that will discharge juvenile pyroclastics and/or lava.  相似文献   

5.
We present Titan2D simulations of two well-characterized block-and-ash flow (BAF) events of the 2006 eruption of Merapi (Java, Indonesia) that affected the Gendol valley on the volcano’s southern flank and adjacent, densely populated interfluve (non-valley) areas: (1) a single dome-collapse event to the south that generated one of the smaller, post-June 14 flows and (2) a sustained, multiple dome-collapse event, also directed to the south, that produced the largest flows of the 2006 eruption emplaced in the afternoon of June 14. Using spatially varying bed friction angles, Titan2D is capable of reproducing the paths, velocities, runout distance, areas covered and deposited volumes of these flows over highly complex topography. The model results provide the basis for estimating the areas and levels of hazards associated with BAFs generated during relatively short as well as prolonged dome-collapse periods and guidance during future eruptive crises at Merapi.  相似文献   

6.
Six years after the 1991 Mt. Pinatubo eruption, deep erosion incisions into the pyroclastic deposits accumulated around the volcano enabled us to investigate the stratigraphy of the climactic deposits both in valley bottoms and on contiguous ridges. Stratigraphic relationships between fall, flow, and surge deposits in the Marella drainage system indicate that during the climactic eruption a progressive shift occurred from an early convective regime, to a transitional regime feeding both the plinian convective column and mostly dilute density currents, to a fully collapsing regime producing mostly dense pyroclastic flows. Syn-plinian dilute density currents (surges) propagated up to ~10 km from the crater, both along valley bottoms and on contiguous ridges of the Marella Valley, whereas post-plinian pyroclastic flows had greater runout (~13 km), were confined to valleys and were not associated with significant surges. Stratigraphic study and grain-size analyses allow the identification of three types of intra-plinian deposits: (a) lower and often coarse-grained surge deposits, emplaced during the accumulation of the coarsest portion of the fallout bed at time intervals of ~16-24 min; (b) upper fine-grained surge deposits, interstratified with the fine-grained portion of the fall bed and emplaced at shorter time intervals of ~3-13 min; and (c) small-volume, channel-confined, massive pumiceous flow deposits interbedded with the upper surges in the upper fine-grained fall bed. Maximum clast size isopleths of 1.6 and 0.8 cm for lithics (ML) and 2.0 and 4.0 cm for pumices (MP) show almost symmetrical distribution around the vent, indicating that the passing of the typhoon Yunya during the climactic eruption had little effect on trajectories of high-Reynold-number clasts. Significant distortion was, however, observed for the 3.2-cm ML and 6.0-cm MP proximal isopleths, whose patterns were probably influenced by the interaction of the clasts falling from column margins with the uprising co-ignimbrite ash plumes. Application of the Carey and Sparks (1986) model to the undisturbed isopleths generated by the umbrella cloud yields a maximum column height of ~42 km, in good agreement with satellite measurements. Systematic stratigraphic and vertical grain-size studies of the plinian fall deposit in the Marella Valley, combined with satellite data and eyewitness accounts, reveal that the carrying capacity of the convective column and related fallout activity peaked in the early phase of the eruption, beginning slightly before 13:41 and gradually declined until its cessation 3 h later. Most of the pumiceous pyroclastic flow deposits were emplaced after the end of the fallout activity at ~16:30 but before the summit caldera collapse at approximately 19:11. Only a small volume of pumiceous flow deposits accumulated after the final caldera collapse. In contrast to the previous reconstruction of Holasek et al. (1996), which interpreted the progressive lowering of the column, documented by satellite data, as due to a decreasing mass eruption rate, we suggest that a progressive shift from a plinian column to a large co-ignimbrite column could also account for such a variation.  相似文献   

7.
8.
The magma eruption rates of Merapi volcano form 1890 to 1992 are re-examined chronologically. For this volcano, movements of extruded lavas and domes as well as their extrusions are important because they control the modes of the subsequent activities and cause nuées ardentes and lahars. The monthly eruption rates varied widely, but the cumulative volume of lavas has increased linearly and is expressed as 0.1x106 m3/month. The magma production rate of this volcano may have been constant for these 100 years. Recurrent excessive effusion of lavas is tentatively interpreted by assuming a magma reservoir. The averaged eruption rate is small in comparison with other volcanoes such as Nyramuragia, Kilauea and Vesuvio. However, it is remarkable that the activity has been continuous for these 100 years and the total amount of lava discharged during this period reached more than 108 m3. A simple model for the formation of the 1992 lava dome is presented. The viscosity of the lavas is probably between 106 and 107 P and the length of the magma conduit is probably less than 10 km.  相似文献   

9.
We studied the distribution of tephra deposits discharged by the basaltic (52–54% SiO2) explosive eruption of 1973 on Tyatya Volcano (Kunashir I., Kuril Islands). We made maps showing lines of equal tephra thickness (isopachs) and lines of maximum size of pyroclastic particles (isopleths). These data were used to find the parameters of explosive activity using the standard techniques for each of the two phases of this eruption separately. The first, phreatomagmatic, phase discharged 0.008 km3 of tephra during the generation of maars on the volcano’s northern slope. The tephra mostly consisted of fragmented host rocks with admixtures of fragments of low vesiculated juvenile basalt. The phase lasted 20 hours, the rate of pyroclastic discharge was 2 × 105 kg/s; the eruptive plume reached heights of 4–6 km with wind speeds within 10 m/s. The second, magmatic, phase discharged 0.07 km3 of tephra during the generation of the Otvazhnyi scoria cone on the volcano’s southeastern slope. The tephra mostly consisted of juvenile basaltic scoria. The highly explosive Plinian part of this phase lasted 36 hours, the rate of pyroclastic discharge was 8 × 105 kg/s; the eruptive plume reached heights of 6–8 km with wind speeds of 10–20 m/s. The total tephra volume discharged by the eruption was approximately 0.08 km3; the total amount of ejected pyroclastic material (including the resulting monogenic edifices) was 0.11 km3; the volume of erupted magma was 0.05 km3 (the conversion was based on 2800 kg/m3 density); the volcanic explosivity index, or VEI, was 3. The production rate of the Tyatya plumbing system is estimated as 3 × 105 m3 magma per annum.  相似文献   

10.
3 [magma volume (DRE): 24 ± 5 km3]. The main phase (ca. 95 vol.%) is represented by comenditic tephra deposited dominantly as widespread fallout blankets and proximal ignimbrites. The eruption column is estimated to have reached ca. 25 km and thus entered the stratosphere. A late phase (5 vol.%) is represented by trachyte emplaced chiefly as moderately welded ignimbrites. The comendites contain  ∼ 3, and the trachytes 10–20 vol.% phenocrysts, mainly anorthoclase, hedenbergite, and fayalite. Primary glassy melt inclusions with no signs of leakage were found only in phenocrysts in the comenditic tephra, whereas those in phenocrysts in the trachytes are devitrified. The comendite magma is interpreted to have been generated by fractional crystallization from a trachyte magma represented by melt inclusions in the phenocrysts in the comendite tephra. The mass of volatiles emitted to the atmosphere during the eruption was estimated using the petrologic method. The average H2O concentration of the comenditic matrix glass is 1.5 wt.% (probably largely secondary) and of the corresponding melt inclusions  ∼ 5.2 wt.%. Melt inclusions in feldspar and quartz present the highest halogen concentrations with a calculated average for chlorine of 4762 ppm and for fluorine of 4294 ppm. The comenditic matrix glasses are represented by a fluorine-rich (3992 ppm F) and fluorine-poor group (2431 ppm F), averaging 3853 ppm for chlorine. Only 20% of all sulfur analyses of the comenditic matrix glasses and melt inclusions are above the detection limit of  ≥ 250 ppm S. The difference between pre- and post-eruptive concentration of H2O is at least 3.7 ± 0.6 wt.% H2O taking into consideration re-hydration of the matrix glass and possible leakage of melt inclusions. The difference between pre- and post-eruptive concentrations of the halogens amounts to 909 ± 90 ppm Cl, and 1863 ± 280 ppm and 302 ± 40 ppm F. The difference for S was estimated based on the average of the maximum S concentrations in the melt inclusions (455 ppm S) and the detection limit, resulting in 205 ± 40 ppm S. The calculated mass of volatiles injected into the atmosphere, based on the erupted magma volume and volatile data, is 1796 ± 453 megatons for H2O, 45 ± 10 megatons for chlorine, 42 ± 11 megatons for fluorine, and 2 ± 0.6 megatons for sulfur. The 969 ± 20 AD eruption of Baitoushan Volcano, one of the largest eruptions of the past 2000 years, is thought to have had a substantial but possibly short-lived effect on climate. Received: 25 July 1998 / Accepted: 8 September 1999  相似文献   

11.
Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:1,他引:0  
Lateral migration of magma away from Miyakejima volcanic island, Japan, generated summit subsidence, associated with summit explosions in the summer of 2000. An earthquake swarm beneath Miyakejima began on the evening of 26 June 2000, followed by a submarine eruption the next morning. Strong seismic activity continued under the sea from beneath the coast of Miyakejima to a few tens of kilometers northwest of the island. Summit eruptive event began with subsidence of the summit on 8 July and both explosions and subsidence continued intermittently through July and August. The most intense eruptive event occurred on 18 August and was vulcanian to subplinian in type. Ash lofted into the stratosphere fell over the entire island, and abundant volcanic bombs were erupted at this time. Another large explosion took place on 29 August. This generated a low-temperature pyroclastic surge, which covered a residential area on the northern coast of the island. The total volume of tephra erupted was 9.3×106 m3 (DRE), much smaller than the volume of the resulting caldera (6×108 m3). Migration of magma away from Miyakejima was associated with crustal extension northwest of Miyakejima and coincident shrinkage of Miyakejima Island itself during July–August 2000. This magma migration probably caused stoping of roof rock into the magma reservoir, generating subsurface cavities filled with hydrothermal fluid and/or magmatic foam and formation of a caldera (Oyama Caldera) at the summit. Interaction of hydrothermal fluid with ascending magma drove a series of phreatic to phreatomagmatic eruptions. It is likely that new magma was supplied to the reservoir from the bottom during waning stage of magmas migration, resulting in explosive discharge on 18 August. The 18 August event and phreatic explosions on 29 August produced a conduit system that allowed abundant SO2 emission (as high as 460 kg s–1) after the major eruptive events were over. At the time of writing, inhabitants of the island (about 3,000) have been evacuated from Miyakejima for more than 3 years.  相似文献   

12.
The 1875 rhyolitic eruption of Askja volcano in Iceland was a complex but well-documented silicic explosive eruption. Eyewitness chronologies, coupled with examination of very proximal exposures and historical records of distal deposit thickness, provide an unusual opportunity for study of Plinian and phreatoplinian eruption and plume dynamics. The ∼ 17 hour-long main eruption was characterized by abrupt and reversible shifts in eruption style, e.g., from ‘wet’ to ‘dry’ eruption conditions, and transitions from fall to flow activity. The main eruption began with a ‘dry’ subplinian phase (B), followed by a shift to a very powerful phreatoplinian ‘wet’ eruptive phase (C1). A shift from sustained ‘wet’ activity to the formation of ‘wet’ pyroclastic density currents followed with the C2 pyroclastic density currents, which became dryer with time. Severe ground shaking accompanied a migration in vent position and the onset of the intense ‘dry’ Plinian phase (D). Each of the fall units can be modeled using the segmented exponential thinning method (Bonadonna et al. 1998), and three to five segments have been recognized on a semilog plot of thickness vs. area1/2. The availability of very proximal and far-distal thickness data in addition to detailed observations taken during this eruption has enabled calculations of eruption parameters such as volumes, intensities and eruption column heights. This comprehensive dataset has been used here to assess the bias of volume calculations when proximal and distal data are missing, and to evaluate power-law and segmented exponential thinning methods using limited datasets.  相似文献   

13.
Merapi Volcano (Central Java, Indonesia) has been frequently active during Middle to Late Holocene time producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from 1900 14C yr BP to the present. Radiocarbon dating of pyroclastic deposits indicates an almost continuous activity with periods of high eruption rates alternating with shorter time spans of distinctly reduced eruptive frequency since the first appearance of high-K volcanic rocks. Geochemical data of 28 well-dated, prehistoric pyroclastic flows of the Merapi high-K series indicate systematic cyclic variations. These medium-term compositional variations result from a complex interplay of several magmatic processes, which ultimately control the periodicity and frequency of eruptions at Merapi. Low eruption rates and the absence of new influxes of primitive magma from depth allow the generation of basaltic andesite magma (56–57 wt% SiO2) in a small-volume magma reservoir through fractional crystallisation from parental mafic magma (52–53 wt% SiO2) in periods of low eruptive frequency. Magmas of intermediate composition erupted during these stages provide evidence for periodic withdrawal of magma from a steadily fractionating magma chamber. Subsequent periods are characterised by high eruption rates that coincide with shifts of whole-rock compositions from basaltic andesite to basalt. This compositional variation is interpreted to originate from influxes of primitive magma into a continuously active magma chamber, triggering the eruption of evolved magma after periods of low eruptive frequency. Batches of primitive magma eventually mix with residual magma in the magmatic reservoir to decrease whole-rock SiO2 contents. Supply of primitive magma at Merapi appears to be sufficiently frequent that andesites or more differentiated rock types were not generated during the past 2000 years of activity. Cyclic variations also occurred during the recent eruptive period since AD 1883. The most recent eruptive episode of Merapi is characterised by essentially uniform magma compositions that may imply the existence of a continuously active magma reservoir, maintained in a quasi-steady state by magma recharge. The whole-rock compositions at the upper limit of the total SiO2 range of the Merapi suite could also indicate the beginning of another period of high eruption rates and shifts towards more mafic compositions.  相似文献   

14.
The 2006 eruption of Augustine Volcano, Alaska, began with an explosive phase comprising 13 discrete Vulcanian blasts. These events generated ash plumes reaching heights of 3–14 km. The eruption was recorded by a dense geophysical network including a pressure sensor located 3.2 km from the vent. Infrasonic signals recorded in association with the eruptions have maximum pressures ranging from 13–111 Pa. Eruption durations are estimated to range from 55–350 s. Neither of these parameters, however, correlates with eruption plume height. The pressure record, however, can be used to estimate the velocity and flux of material erupting from the vent, assuming that the sound is generated as a dipole source. Eruptive flux, in turn, is used to estimate plume height, assuming that the plume rises as a buoyant thermal. Plume heights estimated in this way correlate well with observations. Events that exhibit strongly impulsive waveforms are underestimated by the model, suggesting that flow may have been supersonic.  相似文献   

15.
16.
Stelling  P.  Beget  J.  Nye  C.  Gardner  J.  Devine  J.  George  R. 《Bulletin of Volcanology》2002,64(8):548-561
Bulletin of Volcanology - Shishaldin Volcano erupted repeatedly during April and May 1999, with major eruptive events on 19 April and 23 April. Tephra deposits &;gt;20&;nbsp;cm thick were...  相似文献   

17.
 The Puu Oo eruption has been remarkable in the historical record of Kilauea Volcano for its duration (over 13 years), volume (>1 km3) and compositional variation (5.7–10 wt.% MgO). During the summer of 1986, the main vent for lava production moved 3 km down the east rift zone and the eruption style changed from episodic geyser-like fountaining at Puu Oo to virtually continuous, relatively quiescent effusion at the Kupaianaha vent. This paper examines this next chapter in the Puu Oo eruption, episodes 48 and 49, and presents new ICP-MS trace element and Pb-, Sr-, and Nd-isotope data for the entire eruption (1983–1994). Nearly aphyric to weakly olivine-phyric lavas were erupted during episodes 48 and 49. The variation in MgO content of Kupaianaha lavas erupted before 1990 correlates with changes in tilt at the summit of Kilauea, both of which probably were controlled by variations in Kilauea's magma supply rate. These lavas contain euhedral olivines which generally are in equilibrium with whole-rock compositions, although some of the more mafic lavas which erupted during 1990, a period of frequent pauses in the eruption, accumulated 2–4 vol.% olivine. The highest forsterite content of olivines (∼85%) in Kupaianaha lavas indicates that the parental magmas for these lavas had MgO contents of ∼10 wt.%, which equals the highest observed value for lavas during this eruption. The composition of the Puu Oo lavas has progressively changed during the eruption. Since early 1985 (episode 30), when mixing between an evolved rift zone magma and a more mafic summit reservoir-derived magma ended, the normalized (to 10 wt.% MgO) abundances of highly incompatible elements and CaO have systematically decreased with time, whereas ratios of these trace elements and Pb, Sr, and Nd isotopes, and the abundances of Y and Yb, have remained relatively unchanged. These results indicate that the Hawaiian plume source for Puu Oo magmas must be relatively homogeneous on a scale of 10–20 km3 (assuming 5–10% partial melting), and that localized melting within the plume has apparently progressively depleted its incompatible elements and clinopyroxene component as the eruption continued. The rate of variation of highly incompatible elements in Puu Oo lavas is much greater than that observed for Kilauea historical summit lavas (e.g., Ba/Y 0.09 a–1 vs ∼0.03 a–1). This rapid change indicates that Puu Oo magmas did not mix thoroughly with magma in the summit reservoir. Thus, except for variable amounts of olivine fractionation, the geochemical variation in these lavas is predominantly controlled by mantle processes. Received: 8 March 1996 / Accepted: 30 April 1996  相似文献   

18.
The 1986 eruption of B fissure at Izu-Oshima Volcano, Japan, produced, among other products, one andesite and two basaltic andesite lava flows. Locally the three flows resemble vent-effused holocrystalline blocky or aa lava; however, remnant clast outlines can be identified at most localities, indicating that the flows were spatter fed or clastogenic. The basaltic andesite flows are interpreted to have formed by two main processes: (a) reconstitution of fountain-generated spatter around vent areas by syn-depositional agglutination and coalescence, followed by extensional non-particulate flow, and (b) syn-eruptive collapse of a rapidly built spatter and scoria cone by rotational slip and extensional sliding. These processes produced two morphologically distinct lobes in both flows by: (a) earlier non-particulate flow of agglutinate and coalesced spatter, which formed a thin lobe of rubbly aa lava (ca. 5 m thick) with characteristic open extension cracks revealing a homogeneous, holocrystalline interior, and (b) later scoria-cone collapse, which created a larger lobe of irregular thickness (<20 m) made of large detached blocks of scoria cone interpreted to have been rafted along on a flow of coalesced spatter. The source regions of these lava flows are characterized by horseshoe-shaped scarps (<30 m high), with meso-blocks (ca. 30 m in diameter) of bedded scoria at the base. One lava flow has a secondary lateral collapse zone with lower (ca. 7 m) scarps. Backward-tilted meso-blocks are interpreted to be the product of rotational slip, and forward-tilted blocks the result of simple toppling. Squeeze-ups of coalesced spatter along the leading edge of the meso-blocks indicate that coalescence occurred in the basal part of the scoria cone. This low-viscosity, coalesced spatter acted as a lubricating layer along which basal failure of the scoria cone occurred. Rotational sliding gave way to extensional translational sliding as the slide mass spread out onto the present caldera floor. Squeeze-ups concentrated at the distal margin indicate that the extensional regime changed to one of compression, probably as a result of cooling of the flow front. Sliding material piled up behind the slowing flow front, and coalesced spatter was squeezed up from the interior of the flow through fractures and between rafted blocks. The andesite flow, although morphologically similar to the other two flows, has a slightly different chemical composition which corresponds to the earliest stage of the eruption. It is a much smaller lava flow emitted from the base of the scoria cone 2 days after the eruption had ceased. This lava is interpreted to have been formed by post-depositional coalescence of spatter under the influence of the in-situ cooling rate and load pressure of the deposit. Extrusion occurred through the lower part of the scoria cone, and subsequent non-particulate flow of coalesced material produced a blocky and aa lava flow. The mechanisms of formation of the lava flows described may be more common during explosive eruptions of mafic magma than previously envisaged. Received: 30 May 1997 / Accepted: 19 May 1998  相似文献   

19.
20.
A 3D magnetic inversion method using a conjugate gradient method (CG method) was developed for constructing 3D magnetization models of a volcanic edifice and applied to aeromagnetic anomalies of Izu-Oshima Volcano surveyed in 1986 and in 1997. The calculated results of the 1986 data show that the volcanic edifice of Izu-Oshima Volcano has a mean magnetization intensity ranging from 10.4 to 12.1 A/m. The derived 3D magnetic structure shows low magnetization zones beneath the west-northwest of the western caldera rim, beneath the west-southwest of Mt. Mihara and beneath Mt. Shiroishi. These features may be related with demagnetizations, reflecting a high thermal state due to magma activities in the 1986 eruption. The comparison between 3D magnetization models in 1986 and in 1997, indicates meaningful changes beneath the C-craters erupted in 1986, suggesting a recovery process of demagnetizations and a considerable decrease of magnetization intensities in the foot of Mt. Futago, indicative of demagnetizations. A derived magnetization model including Izu-Oshima Volcano and its surrounding sea areas clarifies the submerged volcanic edifices around Izu-Oshima Island, and suggests that the old volcanic edifices of Fudeshima, Gyojyanoiwaya, and Okata Volcanoes have been affected by eastward migrations due to massive intrusions of a dike-like structure inferred at the base of Izu-Oshima Volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号