首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The Offset Dikes of the 1.85 Ga Sudbury Igneous Complex (SIC) constitute a key topic in understanding the chemical evolution of the impact melt, its mineralization, and the interplay between melt migration and impact‐induced deformation. The origin of the melt rocks in Offset Dikes as well as mode and timing of their emplacement are still a matter of debate. Like many other offset dikes, the Worthington is composed of an early emplaced texturally rather homogeneous quartz‐diorite (QD) phase at the dike margin, and an inclusion‐ and sulfide‐rich quartz‐diorite (IQD) phase emplaced later and mostly in the centre of the dike. The chemical heterogeneity within and between QD and IQD is mainly attributed to variable assimilation of host rocks at the base of the SIC, prior to emplacement of the melt into the dike. Petrological data suggest that the parental magma of the Worthington Dike mainly developed during the pre‐liquidus temperature interval of the thermal evolution of the impact melt sheet (>1200 °C). Based on thermal models of the cooling history of the SIC, the two‐stage emplacement of the Worthington Dike occurred likely thousands to about ten thousand years after impact. Structural analysis indicates that an alignment of minerals and host rock fragments within the Worthington Dike was caused by ductile deformation under greenschist‐facies metamorphic conditions rather than flow during melt emplacement. It is concluded that the Worthington Offset Dike resulted from crater floor fracturing, possibly driven by late‐stage isostatic readjustment of crust underlying the impact structure.  相似文献   

2.
Offset dikes are found concentrically around—and extending radially outward from—the Sudbury Igneous Complex (SIC), which represents an ~3 km thick differentiated impact melt sheet. The dikes are typically composed of an inclusion‐rich, so‐called quartz diorite (IQD) in the center of the dike, and an inclusion‐poor quartz diorite (QD) along the margins of the dike. New exposures of the intersection between the concentric Hess and radial Foy offset dikes provide an excellent opportunity to understand the relationship between the radial and concentric offset dikes and their internal phases. The goal was to constrain the timing of the dike emplacements relative to the impact and formation of the SIC. Results herein suggest that (1) the timing between the emplacement of the QD and IQD melts was geologically short, (2) the Hess and Foy dikes coexisted as melts at the same time and the intersection between them represents a mixture of the two, (3) the Foy dike has a slightly more evolved chemical composition than the Hess dike, and (4) the IQD melt from the Foy dike underwent some degree of chemical fractionation after its initial emplacement.  相似文献   

3.
Abstract— Orogenic deformation, both preceding and following the impact event at Sudbury, strongly hinders a straightforward assessment of impact‐induced geological processes that generated the Sudbury impact structure. Central to understanding these processes is the state of strain of the Sudbury Igneous Complex, the solidified impact melt sheet, its underlying target rocks, overlying impact breccias and post‐impact sedimentary rocks. This review addresses (1) major structural, metamorphic and magmatic characteristics of the impact melt sheet and associated dikes, (2) attempts that have been made to constrain the primary geometry of the igneous complex, (3) modes of impact‐induced deformation as well as (4) mechanisms of pre‐ and post‐impact orogenic deformation. The latter have important consequences for estimating parameters such as magnitude of structural uplift, tilting of pre‐impact (Huronian) strata and displacement on major discontinuities which, collectively, have not yet been considered in impact models. In this regard, a mechanism for the emplacement of Offset Dikes is suggested, that accounts for the geometry of the dikes and magmatic characteristics, as well as the occurrence of sulfides in the dikes. Moreover, re‐interpretation of published paleomagnetic data suggests that orogenic folding of the solidified melt sheet commenced shortly after the impact. Uncertainties still exist as to whether the Sudbury impact structure was a peak‐ring or a multi‐ring basin and the deformation mechanisms of rock flow during transient cavity formation and crater modification.  相似文献   

4.
Abstract— The South Range Breccia Belt (SRBB) is an arcuate, 45 km long zone of Sudbury Breccia in the South Range of the 1.85 Ga Sudbury Impact Structure. The belt varies in thickness between tens of meters to hundreds of meters and is composed of a polymict assemblage of Huronian Supergroup (2.49–2.20 Ga), Nipissing Diabase (2.2 Ga), and Proterozoic granitoid breccia fragments ranging in size from a few millimeters to tens of meters. The SRBB matrix is composed of a fine‐grained (~100 μm) assemblage of biotite, quartz, and ilmenite, with trace amounts of plagioclase, zircon, titanite, epidote, pyrite, chalcopyrite, pyrrhotite, and occasionally chlorite. The SRBB hosts the Frood‐Stobie, Vermilion, and Kirkwood quartz diorite offset dykes, the former being associated with one of the largest Ni‐Cu‐PGE sulphide deposits in the world. Optical petrography and whole‐rock geochemistry concur with previous studies that have suggested that the matrix of the SRBB is derived from comminution and at least partial frictional melting of the wall rock Huronian Supergroup lithologies. Rare earth element (REE) data from all sampled lithologies associated with the SRBB exhibit crustal signatures when normalized to C1 chondrite values. Additionally, REE data from the quartz diorites, disseminated sulphides in Sudbury Breccia, and a sample of an aphanitic biotite‐hornblende tonalite dyke exhibit flat slopes when compared to the mafic and felsic norites, quartz gabbro, and granophyre units of the Sudbury Igneous Complex (SIC), which suggests that these lithologies are representative of bulk SIC melt. We suggest that the SRBB was formed by high strain‐rate (>1 m/s), gravity‐driven seismogenic slip of the inner ring of the Sudbury Impact Structure during postimpact crustal readjustment (crater modification stage). Failure of the hanging wall may have facilitated the injection of bulk SIC melt into the SRBB, along with the Ni‐Cu‐PGE sulphides of the Frood‐Stobie deposit. Postimpact Penokean (1.9–1.7 Ga) tectonism, particularly northwest‐directed shearing along the South Range Shear Zone and associated thrust faulting, could account for the present subvertical orientation of the SRBB, and the apparent lack of a connection at depth with the SIC.  相似文献   

5.
In situ U‐Pb measurements on zircons of the Ries impact crater are presented for three samples from the quarry at Polsingen. The U‐Pb data of most zircons plot along a discordia line, leading to an upper intercept of Carboniferous age (331 ± 32 Ma [2σ]). Four zircons define a concordia age of 313.2 ± 4.4 Ma (2σ). This age most probably represents the age of a granite from the basement target rocks. From granular textured zircon grains (including baddeleyite and anatase/Fe‐rich phases, first identified in the Ries crater), most probably recrystallized after impact (13 analyses, 4 grains), a concordia age of 14.89 ± 0.34 Ma (2σ) and an error weighted mean 206Pb*/238U age of Ma 14.63 ± 0.43 (2σ) is derived. Including the youngest concordant ages of five porous textured zircon grains (24 spot analyses), a concordia age of 14.75 ± 0.22 Ma (2σ) and a mean 206Pb*/238U age of 14.71 ± 0.26 Ma (2σ) can be calculated. These results are consistent with previously published 40Ar/39Ar ages of impact glasses and feldspar. Our results demonstrate that even for relatively young impact craters, reliable U‐Pb ages can be obtained using in situ zircon dating by SIMS. Frequently the texture of impact shocked zircon grains is explained by decomposition at high temperatures and recrystallization to a granular texture. This is most probably the case for the observed granular zircon grains having baddeleyite/anatase/Fe‐rich phases. We also observe non‐baddeleyite/anatase/Fe‐rich phase bearing zircons. For these domains, reset to crater age is more frequently for high U,Th contents. We tentatively explain the higher susceptibility to impact resetting of high U,Th domains by enhanced Pb loss and mobilization due to higher diffusivity within former metamict domains that were impact metamorphosed more easily into porous as well as granular textures during decomposition and recrystallization, possibly supported by Pb loss during postimpact cooling and/or hydrothermal activity.  相似文献   

6.
The offset dykes of the Sudbury Igneous Complex comprise two distinct main magmatic facies, a high-temperature inclusion-free quartz diorite (QD), and a subsequently intruded lower temperature, mineralized, and inclusion-rich quartz diorite (MIQD). The MIQD facies was emplaced after QD dykes had solidified. Key controlling factors of the two injection phases were (1) the development of a coherent roof, which confined the melt sheet; and (2) the periodic increase of melt and fluid pressure within the melt sheet. For the injection of QD melt, the melt pressure exceeded the normal stress acting on fracture surfaces. For the later refracturing of QD dykes and the injection of MIQD melt, the melt pressure increased further, exceeding the tensile strength of, and the normal stress acting on, QD dykes. We associate the melt pressure increase required for both injection episodes with degassing and devolatilization of cooling melt close to the roof. Within the hydraulically connected melt column, the related pressure increase was transmitted to the base of the melt sheet where QD and MIQD melt was extracted into dykes. Residual core to rim thermal gradients in the QD dykes produced tensile strength gradients, accounting for the typically central location of MIQD dykes within QD dykes.  相似文献   

7.
About half of the lunar meteorites in our collections are feldspathic breccias. Acquiring geochronologic information from these breccias is challenging due to their low radioactive-element contents and their often polymict nature. We used high-spatial-resolution (5 μm) NanoSIMS (nanoscale secondary ion mass spectrometry) U-Pb dating technique to date micro-zircons in the lunar feldspathic meteorites Dhofar 1528 and Dhofar 1627. Three NanoSIMS dating spots of two zircon grains from Dhofar 1528 show a discordia with an upper intercept at 4354 ± 76 Ma and a lower intercept at 332 ± 1407 Ma (2σ, MSWD = 0.01, p = 0.91). Three spots of two zircon grains in Dhofar 1627 define a discordia with an upper intercept at 3948 ± 30 Ma and a lower intercept at 691 ± 831 Ma (2σ, MSWD = 0.40, p = 0.53). Both samples likely experienced shock metamorphism caused by impacts. Based on the clastic nature, lack of recrystallization and the consistent U-Pb and Pb-Pb dates of the zircons in Dhofar 1528, the U-Pb date of 4354 Ma is interpreted as the crystallization age of its Mg-suite igneous precursor. Some of the Dhofar 1627 zircons show poikilitic texture, a crystallization from the matrix impact melt, so the U-Pb date of 3948 Ma corresponds to an impact event, likely the Imbrium basin-forming event. These data are the first radiometric ages for these two meteorites and demonstrate that in situ (high spatial resolution) U-Pb dating has potential for extracting geochronological information about igneous activities and impact events from lunar feldspathic and polymict breccias.  相似文献   

8.
Abstract— The Footwall Breccia layer in the North Range of the Sudbury impact structure is up to 150 m thick. It has been analyzed for several aspects: shock metamorphism of clasts, matrix texture, mineralogy, and geochemistry with respect to major and trace element compositions. The matrix of this heterolithic breccia contains mineral and lithic fragments, which have suffered shock pressures exceeding 10 GPa, along with clasts of breccia dikes originating from the crater basement. The matrix in a zone near the upper contact of the breccia layer is dominated by a dioritic composition with intersertal textures, whereas beneath this zone the matrix is characterized by poikilitic to granular textures and a tonalitic to granitic composition. Major and trace element analyses of adjacent slices of a thin-slab profile from the breccia show that the matrix is chemically inhomogeneous within a range of 3 mm. The breccia layer has been thermally annealed by the overlying Sudbury Igneous Complex, which is interpreted as a coherent impact melt sheet. The Rb-Sr isochron age of 1.825 ± 0.021 Ga for the matrix is a cooling age after partial melting of fine grained clastic material by the melt system. Two-pyroxene thermometry calculations give temperatures in excess of 1000 °C for this thermal overprinting. Clasts were affected by recrystallization, melting, and reactions with the surrounding matrix at that time. The crystallization of the molten matrix resulted in the observed variety of igneous textures. Results of clast population statistics for the Footwall Breccia along with both geochemical considerations and the Sr-Nd isotopic signature of the matrix indicate that the breccia constituents exclusively derived from the Levack gneiss complex, which forms the local country rock to the breccia layer in the Levack area. K-feldspar-rich domains, which tend to replace parts of matrix and felsic gneiss fragments have been formed due to metasomatic activities during the Penokean orogeny, ~ 1.7 Ga ago. The available observations suggest that the Sudbury structure represents the remnant of a multi-ring basin with an apparent diameter between 180 and 200 km and a diameter of the transient cavity of about 100 km. For a crater of the size of the Sudbury basin a maximum depth of excavation of ~21 km and a depth of shock-melted target rocks of ~27 km are obtained. In the Sudbury crater, the Footwall Breccia layer represents a part of the uplifted crater floor directly underlying the thick coherent impact melt sheet.  相似文献   

9.
Abstract— The Hess Offset is a steeply dipping dyke located 12–15 km north of the 1.85 Ga Sudbury igneous complex (SIC) within the 200–250 km diameter Sudbury impact structure. It is up to 60 m wide and strikes subconcentrically to the SIC for at least 23 km. The main phase of the dyke is granodioritic, but it conforms with what is locally referred to as Quartz Diorite: a term used for all the Offset Dykes of the Sudbury impact structure. Rare earth element data shows that the Hess Offset is genetically related to the SIC. Hess is most closely affiliated with an evolved Felsic Norite component of SIC and not bulk impact melt. This indicates that Hess was emplaced during fractionation of the impact melt sheet, rather than immediately following impact. The main Quartz Diorite phase of the dyke comprises a quartz + plagioclase + hornblende + biotite ± clinopyroxene ± orthopyroxene assemblage. Critically, the Hess Offset occupies a concentric fault system that marks the northern limit of a pseudotachylyte-rich, shatter cone-bearing annulus about the SIC. This fault system was active during the modification stage of the impact process.  相似文献   

10.
The Vargeão impact structure was formed in the Serra Geral basaltic and rhyodacitic to rhyolitic lava flows of southern Brazil, that belong to the Paraná‐Etendeka large igneous province. The Chapecó‐type rhyodacites contain small baddeleyite crystals recently dated at 134.3 (±0.8) Ma, which is regarded as the age of this acid volcanism coeval to the flood basalt eruption. Inside the impact structure, a brecciated rhyodacitic sample displays fine veinlets containing numerous lithic fragments in a former melt. This impact breccia contains newly formed zircons, either in the veins or at the contact between a vein and the volcanic matrix. The zircons are 10–50 μm in length, clear and nearly unzoned. In situ laser‐ablation dating of the zircons provides a concordant Early Aptian age of 123.0 ± 1.4 Ma that is regarded as the age of the impact event. As in situ age determination ensures the best possible selection of the analyzed mineral grains, the methodology employed in this study also represents a promising method for dating other impact structures.  相似文献   

11.
A silicious impact melt rock from polymict impact breccia of the northern part of the alkali granite core of the Araguainha impact structure, central Brazil, has been investigated. The melt rock is thought to represent a large mass of impact‐generated melt in suevite. In particular, a diverse population of zircon grains, with different impact‐induced microstructures, has been analyzed for U‐Pb isotopic systematics. Backscattered electron and cathodoluminescence images reveal heterogeneous intragrain domains with vesicular, granular, vesicular plus granular, and vesicular plus (presumably) baddeleyite textures, among others. The small likely baddeleyite inclusions are not only preferentially located along grain margins but also occur locally within grain interiors. LA‐ICP‐MS U‐Pb data from different domains yield lower intercept ages of 220, 240, and 260 Ma, a result difficult to reconcile with the previous “best age” estimate for the impact event at 254.7 ± 2.7 Ma. SIMS U‐Pb data, too, show a relatively large range of ages from 245 to 262 Ma. A subset of granular grains that yielded concordant SIMS ages were analyzed for crystallographic orientation by EBSD. Orientation mapping shows that this population consists of approximately micrometer‐sized neoblasts that preserve systematic orientation evidence for the former presence of the high‐pressure polymorph reidite. In one partially granular grain (#36), the neoblasts occur in linear arrays that likely represent former reidite lamellae. Such grains are referred to as FRIGN zircon. The best estimate for the age of the Araguainha impact event from our data set from a previously not analyzed type of impact melt rock is based on concordant SIMS data from FRIGN zircon grains. This age is 251.5 ± 2.9 Ma (2σ, MSWD = 0.45, p = 0.50, n = 4 analyses on three grains), indistinguishable from previous estimates based on zircon and monazite from other impact melt lithologies at Araguainha. Our work provides a new example of how FRIGN zircon can be combined with in situ U‐Pb geochronology to extract an accurate age for an impact event.  相似文献   

12.
Abstract— The lake Lappajärvi impact crater lies in Paleoproterozoic Svecofennian metasedimentary rocks, on the western side of the Central Finland granitoid complex (~1.9 Ga). Two conflicting ages have been reported for the meteorite impact: an age of 77.3 ± 0.4 Ma on the basis of Ar‐Ar whole‐rock data from impact melt samples and a paleomagnetic age of 195 Ma. During studies on impact crater indicator minerals at Lappajärvi, zircons with an atypical appearance were found in suevite boulders. These zircons seemed to have been affected by impact shock metamorphism and it was considered that they would be good candidates for ion microprobe U‐Pb dating, allowing a new and independent age estimate for the impact event at Lappajärvi. Four spot analyses on two black‐coated zircons plotted close to the upper intercept end of the concordia curve giving an approximate age of 1.8 Ga for the source rock. Seventeen analyses were done on three dull zircon grains showing patchy impact‐related partial recrystallization. Most of these data fell fairly well on a single discordia line with intercept ages of 73.3 ± 5.3 Ma and 1854 ± 51 Ma. However, five of the data spots near the lower intercept end fell on the younger side of the line. This was interpreted to indicate post‐impact loss of lead. Importantly, the new ion microprobe U‐Pb age of 73.3 ± 5.3 Ma is in a very good agreement with the previously reported Ar‐Ar age.  相似文献   

13.
The 1.85 Ga Sudbury impact structure is one of the largest impact structures on Earth. Igneous bodies—the so‐called “Basal Onaping Intrusion”—occur at the contact between the Sudbury Igneous Complex (SIC) and the overlying Onaping Formation and occupy ~50% of this contact zone. The Basal Onaping Intrusion is presently considered part of the Onaping Formation, which is a complex series of breccias. Here, we present petrological and geochemical data from two drill cores and field data from the North Range of the Sudbury structure, which suggests that the Basal Onaping Intrusion is not part of the Onaping Formation. Our observations indicate that the Basal Onaping Intrusion crystallized from a melt and has a groundmass comprising a skeletal intergrowth of feldspar and quartz that points to simultaneous cooling of both components. Increasing grain size and decreasing amounts of clasts with increasing depth are general features of roof rocks of coherent impact melt rocks at other impact structures and the Basal Onaping Intrusion. Planar deformation features within quartz clasts of the Basal Onaping Intrusion are indicators for shock metamorphism and, together with the melt matrix, point to the Basal Onaping Intrusion as being an impact melt rock, by definition. Importantly, the contact between Granophyre of the SIC and Basal Onaping Intrusion is transitional and we suggest that the Basal Onaping Intrusion is what remains of the roof rocks of the SIC and, thus, is a unit of the SIC and not the Onaping Formation. We suggest henceforth that this unit be referred to as the “Upper Contact Unit” of the SIC.  相似文献   

14.
Zircon in five samples of variably comminuted, melted, and hydrothermally altered orthogneiss from the Maniitsoq structure of southern West Greenland yield a weighted mean 207Pb/206Pb age of 3000.9 ± 1.9 Ma (ion probe data, n = 37). The age data constitute a rare example of pervasive and nearly complete isotopic resetting of zircon during a regional hydrothermal event. Many zircon grains are homogeneous or display weak flame‐like patterns in backscattered electron images. Other grains show complex internal textures, where homogeneous, high‐U fronts commonly cut across relict igneous‐type oscillatory zonation. Inclusions of quartz, plagioclase, mica, and other Al ± Na ± Ca ± Fe‐bearing silicates are very common. In two samples, selective replacement of zircon with baddeleyite occurs along concentric zones with relict igneous zonation, and as specks a few microns large within recrystallized, high‐U areas. We interpret the 3000.9 ± 1.9 Ma date as the minimum age of the recently proposed impact structure at Maniitsoq. The great geographical extent and intensity of the hydrothermal event suggest massive invasion of water into the currently exposed crust, implying that the age of the hydrothermal alteration would closely approximate the age of the proposed impact at Maniitsoq. At the western margin of the Taserssuaq tonalite complex, which postdates the Maniitsoq event, a 207Pb/206Pb mean age of 2994.6 ± 3.4 Ma obtained from zircon has mostly retained igneous‐type oscillatory zonation. A subsequent thermal event at approximately 2975 Ma is recorded in several samples by zircon with baddeleyite replacement textures.  相似文献   

15.
Abstract– The 1.4–1.6 km thick Onaping Formation consists of a complex series of breccias and “melt bodies” lying above the Sudbury Igneous Complex (SIC) at the Sudbury impact structure. Based on the presence of shocked lithic clasts and various “glassy” phases, the Onaping has been described as a “suevitic” breccia, with an origin, at least in part, as fallback material. Recent mapping and a redefined stratigraphy have emphasized similarities and differences in its various vitric phases, both as clast types and discrete intrusive bodies. The nature of the Onaping and that of other “suevitic” breccias overlying impact melt sheets is reviewed. The relative thickness, internal stratigraphic and lithological character, and the relative chronology of depositional units indicate multiple processes were involved over some time in the formation of the Onaping. The Sudbury structure formed in a foreland basin and water played an essential role in the evolution of the Onaping, as indicated by a major hydrothermal system generated during its formation. Taken together, observations and interpretations of the Onaping suggest a working hypothesis for the origin of the Onaping that includes not only impact but also the interaction of sea water with the impact melt, resulting in repeated explosive interactions involving proto‐SIC materials and mixing with pre‐existing lithologies. This is complicated by additional brecciation events due to the intrusion of proto‐SIC materials into the evolving and thickening Onaping. Fragmentation mechanisms changed as the system evolved and involved vesiculation in the formation of the upper two‐thirds of the Onaping.  相似文献   

16.
The 1.85 Ga Sudbury Igneous Complex (SIC) and its thermal aureole are unique on Earth with regard to unraveling the effects of a large impact melt sheet on adjacent target rocks. Notably, the formation of Footwall Breccia, lining the basal SIC, remains controversial and has been attributed to impact, cratering, and postcratering processes. Based on detailed field mapping and microstructural analysis of thermal aureole rocks, we identified three distinct zones characterized by static recrystallization, incipient melting, and crystallization textures. The temperature gradient in the thermal aureole increases toward the SIC and culminates in a zone of partial melting, which correlates spatially with the Footwall Breccia. We therefore conclude that assimilation of target rock into initially superheated impact melt and simultaneous deformation after cratering strongly contributed to breccia formation. Estimated melt fractions of the Footwall Breccia amount to 80 vol% and attest to an extreme loss in mechanical strength and, thus, high mobility of the Breccia during assimilation. Transport of highly mobile Footwall Breccia material into the overlying Sublayer Norite of the SIC and vice versa can be attributed to Raleigh–Taylor instability of both units, long‐term crater modification caused by viscous relaxation of crust underlying the Sudbury impact structure, or both.  相似文献   

17.
Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U–Pb geochronology of shocked zircon grains in a vesicular‐fluidal impact melt rock from the ≥54 km Charlevoix impact structure, Québec, Canada, suggests an Ordovician to Silurian age of 450 ± 20 Ma for the impact. This age is anchored by concordant U–Pb results of ~450 Ma for a U‐rich, cryptocrystalline zircon grain in the melt rock, interpreted as a recrystallized metamict zircon crystal; the U–Th–Pb system of the metamict grain was seemingly chronometrically reset by the Charlevoix impact, but withstood later tectonometamorphic events. The new zircon age for Charlevoix is in agreement with a stratigraphically constrained Late Ordovician maximum age of ~453 Ma and corroborates earlier suggestions that the impact occurred most likely in the Ordovician, and not ~100 Myr later, as indicated by previous K/Ar and 40Ar/39Ar geochronologic results. The latter may reflect postimpact thermal overprint of impactites during the Salinian (Late Silurian to Early Devonian) and/or Acadian (Late Devonian) orogenies. U–Pb geochronology of zircon crystals in anorthosite exposed in the central uplift of the impact structure yielded a Grenvillian crystallization age of 1062 ± 11 Ma. The preferred Ordovician age for the Charlevoix impact structure, which is partially overthrusted by the Appalachian front, suggests the impact occurred during a phase of Taconian tectonism and an episode of enhanced asteroid bombardment of the Earth. Our results, moreover, demonstrate that (recrystallized) metamict zircon grains may be of particular interest in impact geochronology.  相似文献   

18.
Abstract– Single crystal (U‐Th)/He dating was applied to 24 apatite and 23 zircon grains from the Wetumpka impact structure, Alabama, USA. This small approximately 5–7.6 km impact crater was formed in a shallow marine environment, with no known preserved impact melt, thus offering a challenge to common geochronological techniques. A mean (U‐Th)/He apatite and zircon age of 84.4 ± 1.4 Ma (2σ) was obtained, which is within error of the previously estimated Late Cretaceous impact age of approximately 83.5 Ma. In addition, helium diffusion modeling of apatite and zircon grains during fireball/contact, shock metamorphism, and hydrothermal events was undertaken, to show the influence of these individual thermal processes on resetting (U‐Th)/He ages in the Wetumpka samples. This study has shown that the (U‐Th)/He geochronological technique has real potential for dating impact structures, especially smaller and eroded impact structures that lack impact melt lithologies.  相似文献   

19.
Abstract— Systematic examination of dating results from various craters indicates that about 90% of the rocks affected by an impact preserve their pre-shock ages because shock and post-shock conditions are not sufficient to disturb isotopic dating systems. In the other 10% of target lithologies, various geochronometers show significant shock-induced effects. Major problems in dating impactites are caused by their non-equlibrated character. They often display complex textures, where differently shocked and unshocked phases interfinger on the sub-mm scale. Due to this, dating on whole rock samples or insufficiently pure mineral fractions often yielded ambiguous results that set broad age limits but are not sufficient to answer reliably questions such as a possible periodicity in cratering on Earth, or correlation of impact events with mass extinctions. Dating results from shock recovery experiments indicate that post-shock annealing plays the most important role in resetting isotopic clocks. Therefore, the major criterion for sample selection in and around craters is the post-shock thermal regime. Based on their different thermal evolution, the following geological impact formations can be distinguished: (1) the coherent impact melt layer, (2) allochthonous breccia deposits, (3) the crater basement, and (4) distant ejecta deposits. Samples of the coherent impact melt layer are the most suitable candidates for dating. Excellent ages of high precision can be obtained by internal Rb-Sr, and Sm-Nd isochrons, U-Pb analyses on newly crystallized accessory minerals, and K-Ar (39Ar-40Ar) dating of clast-free melt rocks. Fission track counting on glassy material has yielded correct ages, and paleomagnetic measurements have been successfully applied to post-Triassic craters. In the ideal case of a fast-cooling impact melt layer, all these different techniques should give identical ages. Allochthonous breccias contain shocked, unshocked, and/or glassy components in various proportions; and, hence, each of these ejecta deposits has its own individual thermal history, making sample evaluation difficult Glassy melt particles in suevitic breccias are well suited for fission track and Ar-Ar dating. Weakly shocked material may yield reliable Ar-Ar and fission track ages, if formation temperatures were high, and cooling rates moderate. In contrast, highly shocked but rapidly cooled lithologies show only disturbed and not reset isotopic systems. For ejecta deposits and the crater wall of young craters, dating with cosmogenic nuclides is a new and powerful technique. Crater basement lithologies have a high potential in impact dating, although it has not been exploited so far. A prerequisite for resetting of isotopic clocks in these lithologies is the presence of an overlaying impact melt layer, which causes thermal metamorphism. Fission track and K-Ar techniques are most promising, because both systems are easily reset at low temperatures. Good candidates for impact dating are long-term annealed rocks, even if shock metamorphic overprint is very weak. In addition, Ar-Ar dating dating of pseudotachylites appears promising. In large impact structures, where high temperatures persist for long times, polymict “footwall” breccias beneath the melt sheet are also appropriate for dating, using the isochron approach and U-Pb on accessory minerals. Distant ejecta material have undergone very fast cooling, and the ejecta deposits have ambient formation temperatures. Among this material, tektites and impact melt glass are ideal objects for Ar-Ar and fission track impact dating. Dating on other material from distant ejecta deposits, such as U-Pb analyses on zircons, offers new possibilities. Efforts to correlate distant ejecta with distinct craters critically depend on proper error assignment to a specific age. This aspect is illustrated on the K/T boundary example.  相似文献   

20.
Ejecta from the Connors Creek site in Michigan (500 km from the Sudbury Igneous Complex [SIC]), the Pine River site in western Ontario (650 km from the SIC), and the Coleraine site in Minnesota (980 km from the SIC) were petrographically and geochemically analyzed. Connors Creek was found to have approximately 2 m of ejecta, including shocked quartz, melt droplets, and accretionary lapilli; Pine River has similar deposits about 1 m in thickness, although with smaller lapilli; Coleraine contains only impact spherules in a 20 cm‐thick layer (impact spherules being similar to microkrystites or microtektites). The ejecta transition from chaotic deposits of massively bedded impactoclastic material with locally derived detritus at Connors Creek to a deposit with apparently very little detrital material that is primarily composed of melt droplets at Pine River to a deposit that is almost entirely composed of melt spherules at Coleraine. The major and trace element compositions of the ejecta confirm the previously observed similarity of the ejecta deposits to the Onaping Formation in the SIC. Platinum‐group element (PGE) concentrations from each of the sites were also measured, revealing significantly elevated PGE contents in the spherule samples compared with background values. PGE abundances in samples from the Pine River site can be reproduced by addition of approximately 0.2 wt% CI chondrite to the background composition of the underlying sediments in the core. PGE interelement ratios indicate that the Sudbury impact event was probably caused by a chondritic impactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号