首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Abstract— A number of martian meteorite samples contain secondary alteration minerals such as Ca‐Mg‐Fe carbonates, Fe oxides, and clay minerals. These mineral assemblages hint at hydrothermal processes occurring in the martian crust, but the alteration conditions are poorly constrained. This study presents the results of experiments that examined the alteration of a high‐Fe basalt by CO2‐saturated aqueous fluids at 23 and 75 °C and by mixed H2O‐CO2 vapors at 200 and 400 °C and water‐rock ratios of 1:1 and 1:10. Results indicate that observable alteration of the basalt takes place after runs of only seven days. This alteration includes mobilization of silica into phases such as opal‐CT and quartz, as well as the formation of carbonates, oxides, and at some conditions, zeolites and hydrous silicates. The degree of alteration increases with run temperature and, in high‐temperature vapor experiments, with increasing water content of the vapor. The degree of alteration and the mineralogy observed in the martian meteorites suggests that none of these samples were exposed to aqueous fluids for long periods of time. Nakhla and Lafayette probably interacted with water for relatively brief periods of time; if so, silica may have been leached from the parent rocks by the altering fluids. Allan Hills 84001 shows possible evidence for very limited interaction with an aqueous fluid, but the overall slight degree of alteration described for this meteorite strongly suggests that it never interacted extensively or at high temperature with any water‐bearing fluid. Elephant Moraine A79001 may not have been altered by aqueous fluids at all. The results of this study best support models wherein the meteorite parent rocks were wetted intermittently or for brief periods of time rather than models that invoke long‐term reaction with large volumes of water. Our experiments studied alteration of a high‐Fe basalt by dilute, CO2‐saturated, aqueous solutions at 23 and 75 °C and by mixed H2O‐CO2 vapors at 200 and 400 °C. The results suggest that alteration of the parent rock takes place even after very short reaction times of seven days. All experiments produced carbonate minerals, including calcite, and in some cases, magnesite, siderite, and ankerite. A free silica phase, either opal, quartz, or hydrated silica, formed in most experiments. More altered experiments also contained minerals such as zeolites and hydrous phyllosilicates. Clay minerals were not observed to form in any experiments. In aqueous fluids, higher temperature corresponded with a higher degree of alteration, whereas changing fluid composition had no observable effect. In high‐temperature vapors, the degree of alteration was controlled by temperature and the proportion of H2O to CO2, with water‐rock ratio also playing a role in transport of silica. Application of these results to martian meteorites that contain secondary alteration minerals suggests that none of the martian rocks underwent extensive interaction with aqueous fluids. Nakhla and Lafayette contain clay minerals, which suggests that they interacted with water to some extent, possibly at elevated temperatures. Although ALH84001 shows possible evidence of very limited interaction with aqueous fluids, EETA79001 does not. These results support models for the alteration of these meteorites that do not invoke long‐term interaction with water or reaction with large volumes of water. Except for some models for alteration of ALH84001, this conclusion agrees with most of the literature on alteration of martian meteorites.  相似文献   

2.
Abstract— Fifty‐four fragments of ordinary chondrites from 50 finds representing all searched areas in central Oman and all weathering stages were selected to compare the physical, chemical, and mineralogical effect of terrestrial weathering with 14C terrestrial ages. 14C ages range from 2.0 to >49 kyr with a median value of 17.9 kyr. The peak of the age range, which is between 10–20 kyr, falls in an arid climate period. A comparison of the chemical composition of Omani chondrites with literature data for unweathered H and L chondrites demonstrates a strong enrichment in Sr and Ba, and depletion in S during weathering. Water contents in H chondrites increase with terrestrial age, whereas L chondrites show a rapid initial increase followed by nearly constant water content. Correlating Sr, Ba, and H2O with age indicates two absorption trends: i) an initial alteration within the first 20 kyr dominated by H2O uptake, mainly reflecting Fe‐Ni metal alteration, and ii) a second Ba‐and Sr‐dominated stage correlated with slower and less systematic weathering of troilite that starts after H2O reaches ?2 wt%. Sulfur released from troilite partly combines with Ba and Sr to form sulfate minerals. Other parameters correlated with 14C age are degree of weathering, color of powdered meteorites, and the Ni/Fe ratio. Chemical analyses of 145 soils show a high degree of homogeneity over the entire interior Oman Desert, indicating large‐scale mixing by wind. Soil samples collected from beneath meteorite finds typically are enriched in Ni and Co, confirming mobilization from the meteorites. High Cr and Ni concentrations in reference soil samples, which decrease from NE to SW, are due to detrital material from ultramafic rocks of the Oman Mountains.  相似文献   

3.
Abstract— Spherical carbonate globules of similar composition, size, and radial Ca‐, Mg‐, and Fe‐zonation to those in martian meteorite Allan Hills (ALH) 84001 were precipitated from Mg‐rich, supersaturated solutions of Ca‐Mg‐Fe‐CO2‐H2O at 150 °C. The supersaturated solutions (pH ? 6–7) were prepared at room temperature and contained in TeflonTM‐lined stainless steel vessels, which were sealed and heated to 150 °C for 24 h. Experiments were also conducted at 25 °C and no globules comparable to those of ALH 84001 were precipitated. Instead, amorphous Fe‐rich carbonates were formed after 24 h and Mg‐Fe calcites formed after 96 h. These experiments suggest a possible low‐temperature inorganic origin for the carbonates in martian meteorite ALH 84001.  相似文献   

4.
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water‐soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11‐month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42?, HCO3?, Na+, and Cl?, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl? (from soil), SO42? (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl?. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na‐rich phase or loss of an efflorescent Na‐salt. The total concentrations of water‐soluble ions in bulk OCs ranges from 600 to 9000 μg g?1 (median 2500 μg g?1) as compared to 187–14140 μg g?1 in soils (median 1148 μg g?1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water‐soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca‐sulfate contamination.  相似文献   

5.
Seven trace elements (Ag, Co, Cs, Ga, In, Te, Tl) are either completely retained or are lost to the same extent in Abee samples heated at 700 °C for one week at 10?5-10?3 atm Ne or in 10?5 atm H2. Bi and Se are lost significantly more easily and Zn is better retained in samples heated in Ne than in H2. Zn retention varies inversely with ambient Ne pressure. Mobile element transport seems unaffected by physical interactions in the gas phase but may reflect solid-state surface effects. During week-long heating at low pressures (initially ~ 10?5 atm H2) S is mobilized only at 1000 °C while C contents decrease progressively from 600–1000 °C. Apparent activation energies for C are 60 kcal/mole below 700 °C and 16 kcal/mole above this temperature suggesting diffusive loss from different hosts and/or processes over different temperature intervals. In E4–6 chondrites C and S contents largely reflect nebular fractionation and condensation processes.  相似文献   

6.
Abstract— Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4–41. The magnetite produced was identified by x-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion-controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10 000 ppmv H2S (Lauretta et al., 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.  相似文献   

7.
Terrestrial weathering of hot desert achondrite meteorite finds and heterogeneous phase distributions in meteorites can complicate interpretation of petrological and geochemical information regarding parent‐body processes. For example, understanding the effects of weathering is important for establishing chalcophile and siderophile element distributions within sulfide and metal phases in meteorites. Heterogeneous mineral phase distribution in relatively coarsely grained meteorites can also lead to uncertainties relating to compositional representativeness. Here, we investigate the weathering and high‐density (e.g., sulfide, spinel, Fe‐oxide) phase distribution in sections of ultramafic achondrite meteorite Northwest Africa (NWA) 4872. NWA 4872 is an olivine‐rich brachinite (Fo63.6 ± 0.5) with subsidiary pyroxene (Fs9.7 ± 0.1Wo46.3 ± 0.2), Cr‐spinel (Cr# = 70.3 ± 1.1), and weathered sulfide and metal. Raman mapping confirms that weathering has redistributed sulfur from primary troilite, resulting in the formation of Fe‐oxide (‐hydroxide) and marcasite (FeS2). From Raman mapping, NWA 4872 is composed of olivine (89%), Ca‐rich pyroxene (0.4%), and Cr‐spinel (1.1%), with approximately 7% oxidized metal and sulfide and 2.3% marcasite‐dominated sulfide. Microcomputed tomography (micro‐CT) observations reveal high‐density regions, demonstrating heterogeneities in mineral distribution. Precision cutting of the largest high‐density region revealed a single 2 mm Cr‐spinel grain. Despite the weathering in NWA 4872, rare earth element (REE) abundances of pyroxene determined by laser‐ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) indicate negligible modification of these elements in this mineral phase. The REE abundances of mineral grains in NWA 4872 are consistent with formation of the meteorite as the residuum of the partial melting process that occurred on its parent body. LA‐ICP‐MS analyses of sulfide and alteration products demonstrate the mobility of Re and/or Os; however, highly siderophile element (HSE) abundance patterns remain faithful recorders of processes acting on the brachinite parent body(ies). Detailed study of weathering and phase distribution offers a powerful tool for assessing the effects of low‐temperature alteration and for identifying robust evidence for parent‐body processes.  相似文献   

8.
Abstract— Isotopic analysis of nesquehonite recovered from the surface of the LEW 85320 H5 ordinary chondrite shows that the δ13C and δ18O values of the two generations of bicarbonate (Antarctic and Texas) are different: δ13C = +7.9‰ and +4.2‰; δ18O = +17.9‰ and + 12.1‰ respectively. Carbon isotopic compositions are consistent with equilibrium formation from atmospheric carbon dioxide at ?2 ± 4 °C (Antarctic) and +16 ± 4 °C (Texas). Oxygen isotopic data imply that the water required for nesquehonite precipitation was derived from atmospheric water vapour or glacial meltwater which had locally exchanged with silicates, either in the meteorite or in underlying bedrock. Although carbonates with similar δ13C values have been identified in the SNC meteorites EETA 79001 and Nakhla, petrographic and temperature constraints argue against their simply being terrestrial weathering products.  相似文献   

9.
Two bulk Winchcombe along with six other CM2 meteorite samples were subjected to quantitative evolved gas analysis. The observed release patterns for almost all volatile species demonstrate close similarity for all the samples and especially between those for Winchcombe. This can be considered as a fingerprint for this petrological type of meteorites. We identified several gases including H2, H2O, O2, CO, CO2, and SO2 released in different temperature ranges. The sources and mechanisms of their release were also established. Some of the gases, H2, CO, and CO2, are released as a result of oxidation of macromolecular organic material from oxygen derived from oxygen-bearing minerals (a part of CO2 is also released as a result of decomposition of carbonates). The others, O2 and H2O, are associated with the phase transformation/decomposition of phyllosilicates and (oxy)hydrates, while a high-temperature release of SO2 is associated mostly with the decomposition of sulfides and in few cases also with sulfates. A low-temperature release of SO2 is due to evaporation and oxidation of elemental sulfur from the meteoritic matrix and organic material. The total concentrations of H (mostly represented by H2O), C, and S, calculated according to calibration of the quadrupole mass spectrometer with reference gases and decomposition of solid samples (CaSO4·2H2O and NaHCO3) are in reasonable agreement with those determined by independent methods. Variations in the ratio of the carbon amounts released as CO2 and CO ( /CCO) between the samples could be an indicator of their terrestrial weathering.  相似文献   

10.
Abstract We report on a series of 27 14C terrestrial ages of meteorites from four states in the central and southwestern USA. These results were compared to the earlier work of Boeckl (1972). Our results showed that the weathering rate for destruction of meteorites is lower than suggested by Boeckl (1972). We estimated a “half-life” for removal of meteorites of about 10 to 15 ka, similar to that derived for Roosevelt County meteorites. We also studied the weathering of these meteorites compared to terrestrial age. Only a weak correlation was observed, and for these meteorites the degree of weathering can only be taken as a weak indicator of terrestrial residence time. We also measured the δ 13C and 14C and amount of weathering-product carbonates which show some interesting variations with the length of time the meteorites have been exposed to weathering.  相似文献   

11.
Abstract— Transmission electron microscopy was used to examine pyroxene microstructure in the Northwest Africa (NWA) 856 martian meteorite to construct its cooling and shock histories. All pyroxenes contain strained coherent pigeonite/augite exsolution lamellae on (001). The average width and periodicity of lamellae are 80 and 400 nm, respectively, indicating a cooling rate below 0.1 °C/hr for the parent rock. Pigeonite and augite are topotactic, with strained coherent interfaces parallel to (001). The closure temperature for Ca‐Fe, Mg interdiffusion, estimated from the composition at the augite pigeonite interface, is about 700 °C. Tweed texture in augite reveals that a spinodal decomposition occurred. Locally, tweed evolved toward secondary pigeonite exsolutions on (001). Due to the decreasing diffusion rate with decreasing temperature, “M‐shaped” concentration profiles developed in augite lamellae. Pigeonite contains antiphase boundaries resulting from the C2/c to P21/c space group transition that occurred during cooling. The reconstructive phase transition from P21/c clinopyroxene to orthopyroxene did not occur. The deformation (shock) history of the meteorites is revealed by the presence of dislocations and mechanical twins. Dislocations are found in glide configuration, with the [001](100) glide system preferentially activated. They exhibit strong interaction with the strained augite/pigeonite interfaces and did not propagate over large distances. Twins are found to be almost all parallel to (100) and show moderate interaction with the augite/pigeonite interfaces. These twins are responsible for the plastic deformation of the pyroxene grains. Comparison with microstructure of shocked clinopyroxene (experimentally or naturally shocked) suggests that NWA 856 pyroxenes are not strongly shocked.  相似文献   

12.
Abstract— Noble gas data from Martian meteorites have provided key constraints about their origin and evolution, and their parent body. These meteorites have witnessed varying shock metamorphic overprinting (at least 5 to 14 GPa for the nakhlites and up to 45–55 GPa (e.g., the lherzolitic shergottite Allan Hills [ALH] A77005), solar heating, cosmic‐ray exposure, and weathering both on Mars and Earth. Influences on the helium budgets of Martian meteorites were evaluated by using a new data set and literature data. Concentrations of 3He, 4He, U, and Th are measured and shock pressures for same sample aliquots of 13 Martian meteorites were determined to asses a possible relationship between shock pressure and helium concentration. Partitioning of 4He into cosmogenic and radiogenic components was performed using the lowest 4He/3He ratio we measured on mineral separates (4He/3He = 4.1, pyroxene of ALHA77005). Our study revealed significant losses of radiogenic 4He. Systematics of cosmogenic 3He and neon led to the conclusion that solar radiation heating during transfer from Mars to Earth and terrestrial weathering can be ruled out as major causes of the observed losses of radiogenic helium in bulk meteorites. For bulk rock we observed a correlation of shock pressure and radiogenic 4He loss, ranging between ?20% for Chassigny and other moderately shocked Martian meteorites up to total loss for meteorites shocked above 40 GPa. A steep increase of loss occurs around 30 GPa, the pressure at which plagioclase transforms to maskelynite. This correlation suggests significant 4He loss induced by shock metamorphism. Noble gas loss in rocks is seen as diffusion due to (1) the temperature increase during shock loading (shock temperature) and (2) the remaining waste heat after adiabatic unloading (post shock temperature). Modeling of 4He diffusion in the main U, Th carrier phase apatite showed that post‐shock temperatures of ?300 °C are necessary to explain observed losses. This temperature corresponds to the post‐shock temperature calculated for bulk rocks shocked at about 40 GPa. From our investigation, data survey, and modeling, we conclude that the shock event during launch of the meteorites is the principal cause for 4He loss.  相似文献   

13.
Knudsen cell-quadrupole mass spectrometry has been used to quantitatively determine the composition of the vapor phase produced by heating samples of the Holbrook chondrite to 1300 °C. Maximum observed vapor pressures (atm) of metals are 10?5.3 ± 0.3 Na, 10?5.8 ± 0.3 K, 10?5.3 ± 0.3 Fe, and 10?6.6 ± 0.3 Ni at 1200 °C. S2 (with minor SO2), H2O, and CO2 were also observed in the high-temperature gas phase. Release of intrinsically derived volatiles produced abundant vesicles in the heated sample residues. Some possible implications for chondrite evolution are briefly discussed  相似文献   

14.
We present for the first time a detailed report on the discovery of a new meteorite collection region in the Lut Desert, eastern–southeastern Iran, describing its geological, morphological, and climatic setting. Our search campaigns, alongside with the activity of meteorite hunters, yielded >200 meteorite finds. Here, we report on their classification, spatial distribution, and terrestrial weathering. All the collected meteorites are ordinary chondrites (OCs). The most abundant by far are the highly weathered paired H5 distributed in the northwest of Kalut area (central Lut, Kerman dense collection area). The second are well‐preserved paired L5 also found in Kalut region. A detailed study of the geochemistry and mineralogy of selected meteorites reveals significant effects of terrestrial weathering. Fe,Ni metal (hereafter simply metal) and troilite are transformed into Fe oxyhydroxides. A rather unusual type of troilite weathering to pyrite/marcasite is observed in most of the Lut Desert meteorites. Magnetic measurements and X‐ray diffractometry confirm the occurrence of terrestrial weathering products, with the dominance of maghemite, goethite, and hematite. Mobile elements, such as Li, Sr, Mo, Ba, Tl, Th, and U, are enriched with respect to fresh falls. Meanwhile, a decrease in the V, Cr, Co, Rb (and possibly Fe) due to terrestrial weathering is detectable. The total carbon and CaCO3 is higher than in samples from other hot deserts. The weathering effects observed in the Lut Desert OCs can be used as distinctive indicators to distinguish them from meteorites from other regions of the Earth. Measurements of terrestrial age (14C) show a range of 10–30 ka, which is in the range of ages reported for meteorites from other hot deserts except the Atacama Desert (Chile). Considering the high potential of the Lut Desert in meteorite preservation, systematic works should lead to the discovery of more samples giving access to interesting material for future studies.  相似文献   

15.
Some terrestrial areas have climatic and geomorphologic features that favor the preservation, and therefore, accumulation of meteorites. The Atacama Desert in Chile is among the most important of such areas, known as DCA. This desert is the driest on Earth, one of the most arid, uninhabitable localities with semiarid, arid, and hyper‐arid conditions. The meteorites studied here were collected from within the DCA of San Juan and Pampa de Mejillones, located, respectively, in the Central Depression and the Coastal Range of the Atacama Desert. 57Fe Mössbauer spectroscopy was used for quantitative analysis of the degree of weathering of the meteorites, through the determination of the proportions of the various Fe‐bearing phases and in particular the amount of oxidized iron in terrestrial alteration products. The abundance of ferric ions in weathered chondrites can be related to specific precursor compositions and to the level of terrestrial weathering. The aim of the study was the identification, quantification, and differentiation of the weathering products in the ordinary chondrites found in the San Juan and the Pampa de Mejillones areas of the Atacama Desert. The 57Fe Mössbauer spectroscopy study was complemented by synchrotron radiation X‐ray diffraction and magnetic susceptibility measurements. The results allow a clear differentiation of the rate of weathering in meteorite samples collected from the San Juan versus the Pampa de Mejillones areas of the Atacama Desert.  相似文献   

16.
The crystal structures of orthopyroxene (En86.3Fs8.6Wo5.1, space group Pbca) and pigeonite (En81.7Fs8.8Wo9.5, space group P21/c) from the Almahata Sitta ureilite (fragment#051) have been refined to R1 indices of 3.10% and 2.53%, respectively, using single-crystal X-ray diffraction data. The unit formulas were calculated from electron microprobe analysis, and the occupancies at the M1 and M2 sites were refined for both pyroxenes from the single-crystal diffraction data. The results indicate a rather disordered intracrystalline Fe2+-Mg cation distribution over the M1 and M2 sites, with a closure temperature of 726(±55)°C for orthopyroxene and 704(±110)°C for pigeonite, suggesting fast cooling of these pyroxenes. The Mössbauer spectrum of the Fe-Ni metal particles of Almahata Sitta ureilite (fragment#051) is dominated by two overlapping magnetic sextets that are assigned to Fe atoms in Si-bearing kamacite, and arise from two different nearest-neighbor configurations of Fe* (=Fe+Ni) and Si atoms in the bcc structure of kamacite; (8F*, 0Si) and (7Fe*, 1Si). In addition, the spectrum shows weak absorption peaks that are attributed to the presence of small amounts of cohenite [(Fe,Ni)3C], schreibersite [(Fe,Ni)3P], and an Fe-oxide/hydroxide phase. The fast cooling of pyroxene to the closure temperature (after equilibration at ~1200°C) and the incorporation of Si in kamacite can be interpreted as due to a shock event that took place on the meteorite parent body, consistent with the proposed formation history of ureilites parent body where a fast cooling has occurred at a later stage of its formation.  相似文献   

17.
Abstract— The LEW 88774 ureilite is extraordinarily rich in Ca, Al, and Cr, and mineralogically quite different from other ureilites in that it consists mainly of exsolved pyroxene, olivine, Cr-rich spinel, and C. The presence of coarse exsolved pyroxene in LEW 88774 is unique because pyroxene in most other ureilites is not exsolved. The pyroxene has bulk Wo contents of 15–20 mol% and has coarse exsolution lamellae of augite and low-Ca pyroxene, 50 μm in width. The compositions of the exsolved augite (Ca33.7Mg52.8Fe13.5) and host low-Ca pyroxene (Ca4.4Mg75Fe20.6) show that these exsolution lamellae were equilibrated at 1280 °C. A computer simulation of the cooling rate, obtained by solving the diffusion equation for reproducing the diffusion profile of CaO across the lamellae, suggests that the pyroxene was cooled at 0.01 °C/year until the temperature reached 1160 °C. This cooling rate corresponds to a depth of at least 1 km in the parent body, assuming it was covered by a rock-like material. Therefore, LEW 88774 was held at this high temperature for 1.2 × 104years. The proposed cooling history is consistent with that of other ureilites with coarsegrained unexsolved pigeonites. Lewis Cliff 88774 includes abundant Cr-rich spinel in comparison with other ureilites. The range of FeO content of spinels in LEW 88774 is from 1.3 wt% to 21 wt% [Fe/(Fe + Mg) = 0.04–0.6]. The Cr-rich and Fe-poor spinel in LEW 88774 has less Fe (FeO, 1.3 wt%) than spinels in other achondrites. We classify this spinel as an Fe, Al-bearing picrochromite. Most ureilites are depleted in Ca and Al, but this meteorite has high-Ca and Al concentrations. In this respect, as well as mineral assemblage and the presence of coarse exsolution lamellae in pyroxene, LEW 88774 is a unique ureilite. Most differentiated meteorites are poor in volatile elements such as Zn, but the LEW 88774 spinels contain abundant Zn (up to 0.6 wt%). We note that such a high Zn concentration in spinel has been observed in the carbonaceous chondrites and recrystallized chondrites. This unusual ureilite has more primitive characteristics than most other ureilites.  相似文献   

18.
Abstract— We examined an improved system for extraction of carbon from meteorites, using a vacuum‐tight RF melting method. Meteorite samples mixed with an iron combustion accelerator, including a specific amount of carbon (0.052%), were combusted in a RF furnace (LECO HF‐10). 14CO2 extracted from the meteorite was diluted with a known amount of nearly 14C‐free CO2, evolved from the iron accelerator on combustion. The 14C activities of the recently fallen Holbrook (L6) and Mt. Tazerzait (L5) meteorites were measured by this method. The mean value was 56.5 ± 3.0 dpm/kg, which is similar to the values reported for recently fallen L6 chondrites. Furthermore, terrestrial ages were measured for four Antarctic meteorites: 1.8 ± 0.5 kyr for Yamato (Y‐) 75097 (L6), 1.8 ± 0.5 kyr for Y‐75108 (L6), and 0.1 ± 0.1 kyr for Y‐74192 (H5). For Y‐74190 (L6), an apparent age of 0.8 ± 0.5 kyr was calculated. After consideration of the shielding effect by using 22Ne/21Ne values, we obtained about 1.8 kyr for the terrestrial age of this chondrite. The five samples Y‐74190, Y‐75097, and Y‐75108, together with Y‐75102 (L6) and Y‐75271 (L6), have been reported to be paired and fragments of an L‐chondrite shower (Honda 1981; Takaoka 1987). The result of this work and literature data for the latter two samples confirmed that they are paired. More discussion and experimental work are needed for other recently fallen meteorites, both for L and H chondrites, and a correction for the shielding effect should be done to determine a more reliable terrestrial age.  相似文献   

19.
Abstract– The oxygen fugacities recorded in the nakhlites Nakhla, Yamato‐000593 (Y‐000593), Lafayette, and NWA998 were studied by applying the Fe,Ti‐oxide oxybarometer. Oxygen fugacities obtained cluster closely around the FMQ (Fayalite–Magnetite–Quartz) buffer (NWA998 = FMQ ? 0.8; Y‐000593 = FMQ ? 0.7; Nakhla = FMQ; Lafayette = FMQ + 0.1). The corresponding equilibration temperatures are 810 °C for Nakhla and Y‐000593, 780 °C for Lafayette and 710 °C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for Martian basalts, i.e., shergottites whose oxygen fugacities vary from FMQ ? 1 to FMQ ? 4. It has been known for some time that nakhlites are different from other Martian meteorites in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)‐enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other Martian meteorites. It is likely that the differences in fO2 between nakhlites and other Martian meteorites were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle ( Brandon et al. 2000 ) must have been kept isolated throughout Martian history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of nakhlites in the same cumulate pile or lava layer at different burial depths from 0.5 to 30 m below the Martian surface in agreement with Mikouchi et al. (2003) and is further confirmed by similar crystallization ages of about 1.3 Ga ago (e.g., Misawa et al. 2003 ).  相似文献   

20.
Abstract— The Sahara Desert is a region of high diurnal temperature variation and sporadic rainfall that has recently yielded over 450 meteorites. Eighteen of these Saharan samples are carbonaceous chondrites, of which we have analysed 17 for C content and isotopic composition. Ten of the 18 are paired CR chondrites, of which four have also had N and H contents and compositions determined. A primitive ordinary chondrite (L/LL3.2) found in the region has also been analysed for C, N and H contents and isotopic composition. Saharan samples contain between 21% and 45% of the light elements of their non-Saharan counterparts. Paired Saharan samples show a greater heterogeneity in both C content and isotopic composition than multiple analyses of non-Saharan samples. The cause of the observed isotopic and abundance effects is due to the hot desert weathering processes experienced by these samples. Peak temperatures of meteorites on the desert floor may be in excess of 100 °C, leading to low-temperature hydrous pyrolysis and oxidation reactions, liberating volatile organics and CO2. This may also cause the remaining material to become partially solubilised and ultimately lost during rainfall. The low δD of the CR and ordinary chondrites can be attributed to the destruction and loss of organic material through dehydrogenation and exchange reactions on the desert surface. The increased 13C abundance suggests that the less tightly bound C from the macromolecular organic material is isotopically lighter than the remaining C. Carbon contents and isotopic compositions are also affected by the addition of terrestrial calcitic evaporite deposits, up to 10,000 ppm carbonate has been measured, with a δ13C of between 0 and ?10%0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号