首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Past fluvial biogeomorphic succession dynamics, i.e. reciprocal interactions and adjustments between vegetation growth and fluvial landform construction, were monitored and reconstructed using stereophotogrammetry. The four‐dimensional spatio‐temporal stereophotogrammetric analyses were based on the use of archival analogue and digital aerial photographs. First, we tested the relevance of the technique to produce floodplain digital terrain models (DTMs) and cover height models (CHMs) of the dynamic River Allier, France, and compared the models derived from photogrammetric procedures to field measurements for CHMs and to LiDAR data for DTMs. Automatic photogrammetric procedures tended to create inaccurate digital models with production of outliers, incomplete sectors and areas of confusion especially for analogue stereo‐pairs. Expert correction using stereoscopic viewing improved the vertical accuracy of the digital models, but the vegetation height tended to be underestimated: approximately 0.50 m for vegetation heights less than 10 m, up to 1.50 m for tree heights higher than 25 m. Second, we applied this method to a wooded point bar located on the channelized River Garonne, France. At the scale of the point bar, accurate biogeomorphic maps that show terrain and vegetation height changes in all three spatial dimensions were produced and accurate vegetation growth curves from the early stages of establishment until maturity were extracted. Assuming that a set of conditions is satisfied (e.g. spatial scale of investigation, quality of the photographs), our results show that the photogrammetric method applied in this research can be used operationally to detect and quantify present fluvial biogeomorphic dynamics (i.e. changes of topography and vegetation canopy height) within fluvial corridors of temperate rivers with satisfactory accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Despite growing interest in soil erosion on agricultural land, relatively little attention has been paid to the influence of erosion processes on the pattern of contemporary landform evolution. This in part reflects the problems associated with up-scaling the results of short-term process studies to temporal and spatial scales relevant to the study of landform evolution. This paper presents a new approach to examining the influence of erosion processes on landform evolution on agricultural land which employs: caesium-137 (137Cs) measurements to provide medium-term (c. 40 years) estimates of rates of landform change; experimental data and a topographic-based model to simulate soil redistribution by tillage; a mass-balance model of 137Cs redistribution to separate the water erosion and tillage components of the 137Cs ‘signatures’; and field observations of water erosion for validation. This approach is used to examine the relative importance of water erosion and tillage processes for contemporary landform evolution at contrasting sites near Leuven, in Belgium, and near Yanan, in Shaanxi Province, China. This application of the approach provides good agreement between the derived water erosion rates and field observations, and hitherto unobtainable insights into medium-term patterns and rates of contemporary landform evolution. At Huldenberg in Belgium, despite rill incision of slope concavities and ephemeral gully incision of the valley floor, contemporary landform evolution is dominated by infilling of slope and valley concavities (rates >0.5 mm a−1) and gradual lowering of slope angles as a result of tillage. In contrast, at Ansai (near Yanan) the slope is characterized by increase in slope angle over most of the length, recession of the steepest section at a rate >5 mm a−1 and by increasing planform curvature. At this site, contemporary landform evolution is dominated by water erosion. The constraints on the approach are examined, with particular attention being given to limitations on extrapolation of the results and to the sensitivity of the models to parameter variation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

3.
4.
This paper is concerned with the fundamental controls affecting the quality of data derived from historical aerial photographs typically used in geomorphological studies. A short review is provided of error sources introduced into the photogrammetric workflow. Data‐sets from two case‐studies provided a variety of source data and hence a good opportunity to evaluate the influence of the quality of archival material on the accuracy of coordinated points. Based on the statistical weights assigned to the measurements, precision of the data was estimated a priori, while residuals of independent checkpoints provided an a posteriori measure of data accuracy. Systematic discrepancies between the two values indicated that the routinely used stochastic model was incorrect and overoptimistic. Optimized weighting factors appeared significantly larger than previously used (and accepted) values. A test of repeat measurements explained the large uncertainties associated with the use of natural objects for ground control. This showed that the random errors not only appeared to be much larger than values accepted for appropriately controlled and targeted photogrammetric networks, but also small undetected gross errors were induced through the ‘misidentification’ of points. It is suggested that the effects of such ‘misidentifications’ should be reflected in the stochastic model through selection of more realistic weighting factors of both image and ground measurements. Using the optimized weighting factors, the accuracy of derived data can now be more truly estimated, allowing the suitability of the imagery to be judged before purchase and processing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Historical aerial photographs are an invaluable tool in shoreline mapping and change detection in coastal landscapes. We evaluate the extent to which structure-from-motion (SfM) photogrammetric methods can be applied to quantify volumetric changes along sandy beaches, using archival imagery. We demonstrate the application of SfM-derived digital surface models (DSMs) at East Beach and Lady Bay in southwest Victoria, Australia, using photographic datasets taken in 1969, 1977 and 1986, and compare them to LiDAR-derived DSMs acquired at both sites in 2007. The SfM approaches resulted in two entire and two partial suitable DSMs out of six datasets. Good-quality DSMs were spatially continuous with a good spread of ground control points (GCPs) near the beach at Lady Bay, whereas unsuitable DSMs were mostly restricted by poor distribution and number of GCPs in spatially segmented areas of East Beach, due to limited overlapping of images, possible poor quality of GCPs and also the propagation of errors in the derived point clouds. A volume of approximately 223 000 ± 72 000 m3 was deposited at Lady Bay between 1969 and 2007, despite minimal erosion observed near the breakwater. The partially suitable dataset of East Beach indicated that beach erosion of at least 39 m3 m−1 occurred immediately to the east of the seawall after 1977. We also discuss the drawbacks and strengths of SfM approaches as a benchmark of historical erosion assessments along sandy beaches. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
We describe a low-cost application of digital photogrammetry using commercially available photogrammetric software and oblique photographs taken with an off-the-shelf digital camera to create sequential digital elevation models (DEMs) of a lava dome that grew during the 2004–2008 eruption of Mount St. Helens (MSH) volcano. Renewed activity at MSH provided an opportunity to devise and test this method, because it could be validated against other observations of this well-monitored volcano. The datasets consist of oblique aerial photographs (snapshots) taken from a helicopter using a digital single-lens reflex camera. Twelve sets of overlapping digital images of the dome taken during 2004–2007 were used to produce DEMs and to calculate lava dome volumes and extrusion rates. Analyses of the digital images were carried out using photogrammetric software to produce three-dimensional coordinates of points identified in multiple photos. The evolving morphology of the dome was modeled by comparing successive DEMs. Results were validated by comparison to volume measurements derived from traditional vertical photogrammetric surveys by the US Geological Survey Cascades Volcano Observatory. Our technique was significantly less expensive and required less time than traditional vertical photogrammetric techniques; yet, it consistently yielded volume estimates within 5% of the traditional method. This technique provides an inexpensive, rapid assessment tool for tracking lava dome growth or other topographic changes at restless volcanoes.  相似文献   

7.
Water column distributions of226Ra were determined at stations in the Sea of Marmara and the Black Sea as part of the 1988 Joint U.S.—Turkish Black Sea Expedition. Black Sea surface water226Ra concentrations were a factor of three to four lower than measurements made 20 years earlier. The most likely cause is increased removal of226Ra and Ba [35] due to increased surface biological activity; a secondary effect is decreased fluvial discharge and related dimunition of inputs by desorption from fluvial suspended sediments. The amount of226Ra missing from the surface waters of the Black Sea over this period is accounted for in the high-porosity surficial “fluff” sediment layer.

Throughout the Black Sea, depth profiles of226Ra exhibited pronounced maxima of approximately 25 dpm/100 L at aboutσθ = 16.2–16.3, in the vicinity of a bacterial maximum, but slightly shallower than the total dissolved Mn and Fe maxima (σθ = 16.4–16.5) reported by Lewis and Landing [38]. While the226Ra maximum may, in part, be linked to the cycling of Mn and Fe oxyhydroxides near theO2H2S interface, its distribution appears to be more plausibly explained as a result of the microbial breakdown of particulate organic matter and the subsequent release and partial dissolution of associated barite in this region.

A simple steady-state two-☐ model has been used to obtain a semiquantitative understanding of the behavior of226Ra in the Black Sea. By incorporating reasonable estimates for the input and removal of226Ra in the Black Sea, an excellent agreement between predicted and observed (1988)226Ra concentrations was achieved. The model suggests that the dominant variables controlling the distribution of226Ra in the Black Sea are riverine input and cycling with Ba.  相似文献   


8.
This simulation study explores opportunities to reduce catchment deep drainage through better matching land use with soil and topography, including the ‘harvesting’ (evapotranspiration) of excess water running on to lower land units. A farming system simulator was coupled with a catchment hydrological framework to enable analysis of climate variability and 11 different land‐use options as they impact the catchment water balance. These land‐use options were arranged in different configurations down a sequence of three hydrologically interconnected slope units (uphill, mid‐slope and valley floor land units) in a subcatchment of Simmons Creek, southern New South Wales, Australia. With annual crops, the valley floor land units were predicted to receive 187 mm year?1 of run‐on water in addition to annual rainfall in 1 in 10 years, and in excess of 94 mm year?1 in 1 in 4 years. In this valley floor position, predicted drainage averaged approximately 110 mm year?1 under annual crops and pastures, whereas permanent tree cover or perennial lucerne was predicted to reduce drainage by up to 99%. The planting of trees or lucerne on the valley floor units could ‘harvest’ run‐on water, reducing drainage for the whole subcatchment with proportionately small reduction in land areas cropped. Upslope land units, even though often having shallower soil, will not necessarily be the most effective locations to plant perennial vegetation for the purposes of recharge reduction. Water harvesting opportunities are site specific, dependent on the amounts and frequency of flows of water to lower landscape units, the amounts and frequency of deep drainage on the different land units, the relative areas of the different land units, and interactions with land use in the different slope positions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
局部地形下入射波散射效应对场地地震响应的影响是目前众多学者所关注的问题.其影响主要由入射波频率、入射角度、地形几何形状、介质性质等几个因素所制约,所反应出来的散射效应主要体现在地表位移变化上.本文归纳了凹陷地形、凸起地形、沉积谷地以及复合地形这四类局部地形入射波散射效应对场地地震响应的影响,对目前研究成果进行了评述,并针对数学技术、工程应用、模型建立等7个方面指出了现今存在的问题和今后发展的方向.  相似文献   

10.
Geomorphological observations, geoelectrical soundings and photogrammetric measurements of surface movement on the Muragl glacier forefield were used to obtain an integrative analysis of a highly complex glacial and periglacial landform consisting of a push moraine, creeping permafrost and permafrost‐free glacial till in close proximity. Electrical resistivity tomography is considered as an important multifunctional geophysical method for research in periglacial permafrost related environments. Joint application with measurements of surface displacements offers a promising tool for investigating periglacial landforms related to ice‐rich permafrost for a more comprehensive characterization of permafrost characteristics and geomorphological interpretation of periglacial morphodynamics. The patchy permafrost distribution pattern described in this paper is determined by several factors, including the sediment characteristics, the snow cover distribution and duration, the aspect and the former glacier distribution and thermal regime. Recent and modern permafrost dynamics within the glacier forefield comprise aggradation, degradation and permafrost creep. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A rapid, computer-based method of simulating ‘geomorphologically-sensible’ three-dimensional terrain data by modelling landform morphology is presented. For some engineering applications such an approach, even in a simple form, is preferable to the synthesis of terrain data by purely stochastic methods, and additionally can be useful where real data sets are difficult to obtain. The approach adopted utilizes a computer program which models landscape evolution by establishing a stream network on a tilted surface, with accompanying fluvial downcutting and slope adjustment. This is achieved by an iterative mechanism that combines deterministic and stochastic processes with geomorphological theory. The end-product is a matrix of high-resolution altitude data that has been used as the terrain model for a vehicle simulation exercise.  相似文献   

12.
A chronology of landsliding is presented, including suggestions as to a date for initiation. Periods of activity known from historical sources are correlated with known periods of climatic deterioration. The current morphology of the landslide slopes is closely related to the geological succession and structure. These permit the landslides and their development to be differentiated on the basis of whole slope and toe morphology, and much of the whole-slope activity can be related to conditions at the toe. Examples of geomorphological maps, slope categories maps, and cross sections are presented along with an example of the ‘evolutionary’ maps which may be derived from Ordnance Survey plans and aerial photographs. These generally indicate that weakening of materials by weathering, seepage erosion at the toe, and marine erosion result in frequent mass movement events of a low magnitude. These events ultimately influence the stability of larger slipped blocks behind, which fail less frequently. It is suggested that whole-slope failures in this region have a maximum frequency of once in 120 to 150 years, and that problems of interpretation of historical accounts may mean that it is very much less frequent than this.  相似文献   

13.
In this study we evaluate the extent to which accurate topographic data can be obtained by applying Structure from Motion (SfM) photogrammetric methods to archival imagery. While SfM has proven valuable in photogrammetric applications using specially acquired imagery (e.g. from unmanned aerial vehicles), it also has the potential to improve the precision of topographic data and the ease with which can be produced from historical imagery. We evaluate the application of SfM to a relatively extreme case, one of low relative relief: a braided river–floodplain system. We compared the bundle adjustments of SfM and classical photogrammetric methods, applied to eight dates. The SfM approach resulted in data quality similar to the classical approach, although the lens parameter values (e.g. focal length) recovered in the SfM process were not necessarily the same as their calibrated equivalents. Analysis showed that image texture and image overlap/configuration were critical drivers in the tie‐point generation which impacted bundle adjustment quality. Working with archival imagery also illustrated the general need for the thorough understanding and careful application of (commercial) SfM software packages. As with classical methods, the propagation of (random) error in the estimation of lens and exterior orientation parameters using SfM methods may lead to inherent systematic error in the derived point clouds. We have shown that linear errors may be accounted for by point cloud registration based on a reference dataset, which is vital for the further application in quantitative morphological analyses when using archival imagery. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
KEVIN SHOOK  D. M. GRAY 《水文研究》1996,10(10):1283-1292
The results of a field study of the small-scale spatial structure of the depth of shallow seasonal snowcovers in prairie and arctic environments are presented. It is shown that the spatial distribution of snow depth is fractal at small scales, becoming random at scales beyond some limiting length. This is due to the autocorrelation of depth at small sampling distances. The transition of fractal to random behaviour is indexed by a ‘cutoff length’, which is defined by the intersection of the ‘fractal’ slope and horizontal tangent of a logarithmic plot of the standard deviation of depth versus sampling distance. The magnitude of the cutoff length is related to the degree of macroscopic variability of the underlying topography. An increase in length due to the effects of macroscopic topographic variability on snowcover accumulation is confirmed by de-trending field measurements. The de-trended data shown a cutoff length for wheat stubble and fallow surfaces of approximately 30 m, which is consistent with the distance determined from measurements on ‘flat’ fields. The implications of the transition of snow depth from fractal to random structure on the scales of snow sampling and modelling are presented. The cutoff length may provide a statistic for stratifying shallow snowcovers, by linking snowcover properties to the underlying topography.  相似文献   

15.
‘Old’ water contributions to snowmelt runoff in a stream can be defined as water which was stored in the catchment prior to the start of the runoff event in question. We used mass balance techniques for natural oxygen-18 and several chemical parameters (electrical conductivity, Ca and Mg) to estimate the magnitude and timing of ‘old’ water contributions to snowmelt runoff in the Apex River watershed during the 1983 field season. The Apex River catchment is located in the southern part of Baffin Island, Northwest Territories, Canada. The watershed has an area of 60 km2, it is in the zone of continuous permafrost, and the geology is dominantly Precambrian gneiss with sporadic, thin, glacial overburden. The isotopic data indicate that for the snowmelt season of 1983 (third highest peak discharge of 11 years of record), approximately 50 per cent of the peak stream discharge consisted of ‘old’ water. Our data also suggest that about 60 per cent of the entire 1983 hydrograph was ‘old’ water. The chemical parameters give old water contributions which are at least 10 per cent less than the isotopically-derived estimate, but they are consistent with the isotopic estimate during peak flow.  相似文献   

16.
The extrapolation of results from field trials to larger areas of land for purposes of regional impact assessment is an important issue in geomorphology, particularly for landform properties that show high stochastic variability in space and time, such as shallow landslide erosion. It is shown in this study, that by identifying the main driver for spatial variability in shallow landslide erosion at field scales, namely slope angle, it is possible to develop a set of generic functions for assessing the impact of landslides on selected soil properties at larger spatial scales and over longer time periods. Research was conducted within an area of pastoral soft‐rock Tertiary hill country in the North Island of New Zealand that is subject to infrequent high intensity rainfall events, producing numerous landslides, most of which are smaller than several hundred square metres in size and remove soil to shallow depths. All landslides were mapped within a 0·6 km2 area and registered to a high resolution (2 m) slope map to show that few landslides occur on slopes < 20° and 95% were on slopes > 24°. The areal density of landslides from all historical events showed an approximately linear increase with slope above 24°. Integrating landslide densities with soil recovery data demonstrates that the average value of a soil property fluctuates in a ‘saw‐tooth’ fashion through time with the overall shape of the curve controlled by the frequency of landslide inducing storm events and recovery rate of the soil property between events. Despite such fluctuations, there are gradual declines of 7·5% in average total carbon content of topsoil and 9·5% in average soil depth to bedrock, since the time of forest clearance. Results have application to large‐scale sediment budget and water quality models and to the New Zealand Soil Carbon Monitoring System (CMS). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
G. V. Wilson 《水文研究》2013,27(14):2032-2040
The internal erosion of soil pipes can induce pipe collapses that affect soil erosion processes and landform evolution. The objective of this study was to determine the spatial distribution of pipe collapses in agricultural fields of Goodwin Creek watershed. Ground survey was carried out to detect pipe collapses, and the location, size and surface elevation was measured with differential GPS. A total of 143 of the 145 pipe collapses were found in cropland, and the density was approximately 0.58 collapses per hectare. The spatial distribution of pipe collapses was not uniform as pipe collapses were concentrated in the flat alluvial plains where the land use was dominated by cropland. One of the four parcels had 90% of the pipe collapses with a density of 7.7 collapses per hectare. The mean depth, area and volume of these pipe collapses were 0.12 m, 0.34 m2 and 0.02 m3, respectively, and all these properties exhibited a skewed distribution. The drainage area–slope gradient equation, which has been widely used for erosion phenomenon prediction, did not represent pipe collapses in this study as the coefficient of determination was <0.01. This is clear evidence that subsurface flow is not represented by surface topographic characteristics. The pipe collapses were found to intercept runoff, thereby reducing the slope length factor by 6% and the drainage area by 7%. Both of these factors can reduce the sheet and rill erosion; however, the increased subsurface flow could enhance ephemeral gully erosion. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
The distribution of soil 137Cs in relation to selected soil and landform properties was studied across a 16 ha hillslope hollow in the Hunter valley, New South Wales, Australia. The hillslope was used as grazing for cattle. Caesium-137 was not significantly related to the amount of sand, silt, or clay, the bulk density, the organic matter content, the slope angle or the relative distance downslope. However, 137Cs was significantly related to the thickness of the soil A horizon. Spatial variations in 137Cs were compared with topographic units and a six-element hillslope model, but there was little correspondence. It was thought that the effects of microtopography could have masked potential interrelationships between 137Cs and broader scale landform parameters.  相似文献   

19.
美国利用IMAGE卫星的极紫外辐射(EUV)探测器对地球等离子体层进行了连续5年的遥感成像观测。由于IMAGE卫星数据是沿观测路径上的积分投影数据,并且存在地球“遮挡”、“阴影”、“数据缺失”等问题,无法直接利用传统的CT方法对等离子体层进行三维重建。本文利用地球磁场模型,基于地球等离子体层的物理性质,建立一个联系地球磁赤道面密度与投影数据的EUV成像模型,实现了从单个角度的EUV观测图像进行地球等离子层三维重构的方法。   相似文献   

20.
On the west side of the military road to Tibet in the Kunlun Shan, a major body of diamicton is moving slowly downslope from the ridge crest at 4800 m in a northerly and easterly direction. The material is derived from Middle Pleistocene till deposits and the underlying Pliocene alluvial gravels. More than 10 per cent of the material is composed of boulders longer than 2 m, 45 per cent has long axes between 0·5 and 2 m, while the matrix is a poorly sorted sandy loam. The mean annual air temperature is −7°C to −5°C and the mean annual precipitation is under 300 mm a−1. The diamicton lacks a vegetation cover, in contrast to meadow tundra on the surrounding slopes. The diamicton mantles the north slope of the ridge, but splits into at least 16 separate tongues which are moving down fluvially graded valleys. The average slope of the landform is about 19°, while the mean slope of the fronts of the tongues is 21°. With one exception, the slope of the fronts does not exceed 25°, unlike true rock glaciers. The diamicton is up to 40 m thick in valley 4. The active layer was 12 to 30 cm deep in July at 4780 m, increasing to 1·5 to 2 m at about 4650 m. Ice contents in the permafrost may reach 57 per cent but 30 per cent is more usual The larger boulders act as braking blocks on the upper slopes of the landform and are frozen into the permafrost. The lower parts of the landform move at under 3 cm a−1, whereas the fine-grained material in the active layer moves past the braking blocks on the upper slopes at up to 30 cm a −1. There is no direct evidence for flowage of the icy diamicton forming the deposit. It is therefore best referred to as a gelifluction slope deposit, and is the longest and most spectacular of such deposits described so far in the world. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号