首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Waste water from ammunition production sites and aqueous samples (ground and surface water) on or near former military sites on which explosives were produced or filled, e.g. into shells, may be contaminated by the original explosives—mainly nitrotoluenes (such as dinitrotoluenes, trinitrotoluene (TNT)) and nitramines (such as hexogen (RDX), octogen (HMX), and tetryl) or hexyl, but also by byproducts and compounds formed by biodegradation of the explosives such as aminonitrotoluenes, chlorinated nitrobenzenes and nitrophenols. These compounds can be extracted from aqueous samples by liquid/liquid extraction (using dichloromethane or toluene) or by solid phase extraction using C-18 adsorbents with high recoveries (usually ≥85%) provided they contain only one amino group. Nitrotoluenes, chlorinated nitrobenzenes and aminonitrotoluenes (nitrotoluidines) may be determined by gas chromatography (GC) using selective detectors such as an electron capture detector (ECD), a nitrogen-phosphorus detector (NPD) or a chemiluminescence detector (thermal energy analyzer, TEA). The use of combined gas chromatography/mass spectrometry (GC/MS) under electron impact conditions is even more specific. Detection limits comparable to an ECD or NPD, however, are only achieved if the mass spectrometer is operated under selected ion monitoring (SIM). Nitrophenols are derivatized after extraction by heptafluorobutyric anhydride or by acetic anhydride where the latter method can be directly applied to the aqueous sample. The nitramine explosives, such as RDX, HMX, and tetryl, hexyl, the nitrate esters, such as nitropenta (PETN) and nitroguanidine as well as picric acid cannot, or only with difficulty, be analyzed by gas chromatography. They may be determined by high performance liquid chromatography (HPLC) with UV-detection. The HPLC analysis can be extended to include also nitrotoluenes and nitroaminotoluenes.  相似文献   

2.
Polar metabolites resulting from petroleum biodegradation are measured in groundwater samples as TPHd unless a silica gel cleanup (SGC) is used on the sample extract to isolate hydrocarbons. Even though the metabolites can be the vast majority of the dissolved organics present in groundwater, SGC has been inconsistently applied because of regulatory concern about the nature and toxicity of the metabolites. A two‐step approach was used to identify polar compounds that were measured as TPHd in groundwater extracts at five sites with biodegrading fuel sources. First, gas chromatography with mass spectrometry (GC‐MS) was used to identify and quantify 57 individual target polar metabolites. Only one of these compounds—dodecanoic acid, which has low potential human toxicity—was detected. Second, nontargeted analysis was used to identify as many polar metabolites as possible using both GC‐MS and GC×GC‐MS. The nontargeted analysis revealed that the mixture of polar metabolites identified in groundwater source areas at these five sites is composed of approximately equal average percentages of organic acids, alcohols and ketones, with few phenols and aldehydes. The mixture identified in downgradient areas at these five sites is dominated by acids, with fewer alcohols, far fewer ketones, and very few aldehydes and phenols. A ranking system consistent with systems used by USEPA and the United Nations was developed for evaluating the potential chronic oral toxicity to humans of the different classes of identified polar metabolites. The vast majority of the identified polar metabolites have a “Low” toxicity profile, and the mixture of identified polar metabolites present in groundwater extracts at these five sites is unlikely to present a significant risk to human health.  相似文献   

3.
Humic substances (HS) were isolated from two contaminated groundwater samples (B22 and B53) from a site of a former gas facility. The isolation yielded almost only the fulvic acid fractions (FA). For characterization spectroscopic (UV, fluorescence) and chromatographic techniques (hydrophobic interaction chromatography – HIC as well as size-exclusion chromatography – SEC) were applied. The sample designated B22 FA was collected from the contamination plume whereas the sample B53 FA was collected downstream. Distinct differences were exhibited by these samples. The UV and fluorescence spectra as well as the HIC and SEC chromatograms of the B53 FA sample resemble those of the FA fraction obtained from natural water (groundwater, bog). The HIC and SEC chromatograms reveal the presence of organic compounds in B22 FA which can be derived from coal tar contaminants or their metabolites. Some of the compounds can be extracted from the FA fraction with non-polar organic solvents indicating adsorptive forces between the contaminants and the FA fraction.  相似文献   

4.
During December, 1985, Dover sole (Microstomus pacificus) were collected at water depths of 500 and 1000 m and sablefish (Anoplopoma fimbria) were collected at a water depth of 1000 m in the vicinity of former low-level radioactive and chemical munition disposal sites located near the Farallon Islands, California. Liver tissues were analysed for chlorinated hydrocarbons by gas chromatography with electron capture detection (GC/ECD). Chlorinated hydrocarbons (DDTs and PCBs) were detected in all fish. Concentrations of total DDTs and PCBs in livers of Dover sole and sablefish were as high as, or higher than, those recently reported for the same species collected in heavily contaminated coastal waters of Southern California. The presence of DDTs (up to 9 μg g−1, wet wt) and PCBs (up to 7 μg g−1, wet wt) in fish livers may indicate extensive contamination of the coastal waters or bottom sediments in the vicinity of the Farallon Islands. Even though the definitive sources of the chlorinated hydrocarbons detected in the Dover sole and sablefish are not known, the relative proximity of the former chemical munition disposal sites indicates that these areas may be a potential source of one or both of these contaminants.  相似文献   

5.
Samples around a coal gangue dump of the Gequan Coal Mine were collected in April 2009. GC (gas chromatography) and GC/MS (gas chromatography/mass spectrometry) were employed to analyze the composition of organic matter in the samples. ICP-MS (inductively coupled plasma mass spectrometry) was used to determine the concentrations of heavy metals. The contents of organic extracts are within the range of 140-750 mg/kg. Alkand aro-ratios are relatively high. Compared to those of the background sample (GQ13 ), the contents of saturated hydrocarbon compounds in all the samples are relatively high. The contents of polycyclic aromatic hydrocarbons (PAHs) are relatively high with the distance getting closer to the coal gangue dump. These indicate that organic matter in the samples is from coal particles of the coal gangue dump. The distributions of heavy metals are very similar: the contents decrease with distance from the dump, which indicates that the harmful heavy metals from the coal gangue dump have polluted as thick as at least 500 m.  相似文献   

6.
GC/MS Nontarget Analysis to Examine an Organic Groundwater Contamination. Part I: Sampling – Analysis – Identification GC/MS nontarget analysis is a combination of an extraction sequence and a GC/MS analysis without standards. The extraction sequence should enrich a wide range of organic substances with different chemical and physical properties. The GC/MS analysis without standards evaluates the total chromatogram whereas the possibilities of compound identification are limited. This kind of view is suited very well if the task of examinations are unknown organic contaminations and the conventional target analysis has to be expanded to a large number of compounds with the uncertainty of detecting the main contaminants. The extraction sequence is similar to the EPA 625 analysis of base/neutral and acid extractable organic compounds. Basis are liquid extraction and solid-phase extraction at different pH values. This extraction procedure covers approximately 30 % of total organic carbon of these groundwater samples from a contaminated area near a low temperature carbonization plant. Relevant groups of organic compounds analyzed in the contaminated groundwater or in the reference sample are substituted aromatics, phenols, benzoamines (anilines), and derivates of benzothiophene. Differences in the trace substance mixtures between the contaminated samples and the reference sample are demonstrated by applying modern graphical methods.  相似文献   

7.
In situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming groundwater contaminants into harmless by‐products. Owing to oxidant persistence, groundwater samples collected at hazardous waste sites may contain both the contaminant(s) and the oxidant in a “binary mixture.” Binary mixtures composed of sodium persulfate (2.5 g/L; 10.5 mM) and volatile organic compounds (VOCs) (benzene, toluene, m‐xylene, perchloroethylene, trichloroethylene) were analyzed to assess the impact on the quality of the sample. A significant decline (49 to 100%) in VOC concentrations was measured in binary mixtures using gas chromatography (GC) purge and trap, and GC mass spectroscopy headspace methods. Preservation of the binary mixture samples was achieved through the addition of ascorbic acid (99 to 100% VOC average recovery). High concentrations of ascorbic acid (42 to 420 mM) did not interfere in the measurement of the VOCs and did not negatively impact the analytical instruments. High concentrations of ascorbic acid favored the reaction between persulfate and ascorbic acid while limiting the reaction between persulfate and VOCs. If an oxidant is detected and the binary sample is not appropriately preserved, the quality of the sample is likely to be compromised.  相似文献   

8.
An innovative micro‐extraction of aqueous samples coupled with gas chromatography/mass spectrometry in selected ion‐monitoring mode (GC/MS‐SIM) was developed to selectively analyze for 1,4‐dioxane with low part‐per‐billion detection sensitivity. Recoveries of 1,4‐dioxane ranged from 93% to 117% for both spiked laboratory reagent water and natural groundwater matrices, the later having elevated organic carbon content (8.34 ± 0.31 mg/L as total organic carbon). We observed that freezing the aqueous sample along with the extraction solvent enhanced the extraction efficiency, minimized physical interferences, and improved sensitivity resulting in a limit of detection for 1,4‐dioxane to approximately 1.6 μg/L. This method substantially reduces the labor, time, reagents and cost, and uses instruments that are commonly found in analytical laboratories. This method requires a relatively small sample volume (200 μL), and can be considered a green analytical method as it minimizes the use of toxic solvents and the associated laboratory wastes.  相似文献   

9.
The use of in‐field analysis of vapor‐phase samples to provide real‐time volatile organic compound (VOC) concentrations in groundwater has the potential to streamline monitoring by simplifying the sample collection and analysis process. A field validation program was completed to (1) evaluate methods for collection of vapor samples from monitoring wells and (2) evaluate the accuracy and precision of field‐portable instruments for the analysis of vapor‐phase samples. The field program evaluated three vapor‐phase sample collection methods: (1) headspace samples from two locations within the well, (2) passive vapor diffusion (PVD) samplers placed at the screened interval of the well, and (3) field vapor headspace analysis of groundwater samples. Two types of instruments were tested: a field‐portable gas chromatograph (GC) and a photoionization detector (PID). Field GC analysis of PVD samples showed no bias and good correlation to laboratory analysis of groundwater collected by low‐flow sampling (slope = 0.96, R2 = 0.85) and laboratory analysis of passive water diffusion bag samples from the well screen (slope = 1.03; R2 = 0.96). Field GC analysis of well headspace samples, either from the upper portion of the well or at the water‐vapor interface, resulted in higher variability and much poorer correlation (consistently biased low) relative to laboratory analysis of groundwater samples collected by low‐flow sample or passive diffusion bags (PDBs) (slope = 0.69 to 0.76; R2 = 0.60 to 0.64). These results indicate that field analysis of vapor‐phase samples can be used to obtain accurate measurements of VOC concentrations in groundwater. However, vapor samples collected from the well headspace were not in equilibrium with water collected from the well screen. Instead, PVD samplers placed in the screened interval represent the most promising approach for field‐based measurement of groundwater concentrations using vapor monitoring techniques and will be the focus of further field testing.  相似文献   

10.
Leachate, ground-, and surface water from former ammunition sites and areas which are known to be contaminated by nitroaromatic compounds in Lower Saxony (Germany) were investigated in order to identify and quantify acidic nitroaromatic compounds (e.g., nitrobenzoic acids, aminonitrobenzoic acids, nitrophenols, and nitrocresols). Acidic and neutral nitroaromatic compounds were enriched by solid-phase extraction (SPE) on a polystyrenedivinylbenzene copolymer and routinely screened for acidic compounds by means of HPLC/photodiode array detection (HPLC/PDA). Qualitative and quantitative results obtained in this way were corroborated by proton nuclear magnetic resonance spectroscopy (1H-NMR). Validation data for the quantification procedure using this technique are given. The results show that all samples contaminated with 2,4,6-trinitrotoluene (TNT) and related compounds are also contaminated by acidic nitroaromatic compounds (e.g., 2,4-dinitrobenzoic acid, 3,5-dinitrophenol, and especially with 2-amino-4,6-dinitrobenzoic acid) in the μg/L range. This current work shows that 1 H-NMR allows the quantitative determination of protoncarrying analytes in mixtures after solid-phase extraction down to the upper ng/L range after addition of an internal standard to the SPE extract. This is even possible when reference compounds are not commercially available.  相似文献   

11.
Capillary column gas chromatography (GC) is extremely useful in investigations of subsurface contamination by petroleum hydrocarbons. Fluid samples collected from observation wells are evaluated by GC methods to detect and analyze petroleum hydrocarbons in dissolved and liquid phases. The presence, types and concentrations of many petroleum-derived hydrocarbons dissolved in ground water can be determined. GC analysis can also be used to determine the composition of liquid hydrocarbon products, including gasoline, distillates and heavier oils. The degree of degradation of sampled liquid hydrocarbon product can be estimated from GC information, and this information can be helpful in estimating the length of time the product has been in the subsurface. Determination of the hydrocarbon source and migration path can be made from GC analysis of fluid samples collected at two or more locations.
This paper is intended to demonstrate interpretative techniques that can be used by hydrogeologists to facilitate the detection, identification and mitigation of subsurface hydrocarbons.  相似文献   

12.
Aromatic amines are important metabolites of nitroaromatic explosives, hence monitoring of aromatic amines’ content at former ammunition plants is necessary. Twenty years ago, a threshold limit value of 0.1 μg/L for the sum of diazotizable aromatic amines in water distributed from the waterworks at the former ammunition plant in Stadtallendorf/Hesse was established. This value is still measured with a spectrometric sum parameter, in which diazotization and a subsequent azo coupling of the analytes are utilized. The sum parameter is well suited for the long‐term monitoring of filter installations, and it allows very quick measurements and a non‐target screening of aniline contents, both of which are important in research. Nevertheless, as several problems are associated with this parameter, we developed analytical methods suitable for the determination of the most important single compounds contributing to the overall sum. Initial results of these methods show that amphoteric anilines are of considerable importance in ammunition waste but have been neglected up to now in official monitoring schemes. The summation of single compound contents in ammunition wastewater generally gives 3 to 6 times higher values than the spectrometrically determined sum, which is mainly due to the choice of the reference substance 4‐nitroaniline in the sum parameter.  相似文献   

13.
A solid‐phase extraction (SPE)‐gas chromatography (GC)‐mass spectrometry (MS) analytical method was developed for the simultaneous analysis of natural free estrogens and their conjugates in wastewater samples. Natural free estrogens and their conjugates in wastewater were successfully separated by the oasis hydrophilic‐lipophilic balance solid phase extraction (Oasis HLB SPE) method, and the conjugates were initially enzyme hydrolyzed by β‐glucuronidase or arylsulfatase from Helix pomatia prior to derivatization. N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA) plus 1% tert‐butyldimetheylchlorosilane (TBDMCS) was chosen as the derivatization reagent, and the most appropriate conditions of derivatization were determined to be at 95°C for 90 min. The recovery ratios of nine target chemicals were determined by spiking them in 1 L of ultra‐purified water or the influent of a wastewater treatment plant (WWTP). The recovery ratios of six out of nine for the analytes ranged from 73.3–114.9% with relative standard deviations (RSD) from 1.6–19.9%. The established method was successfully applied to environmental wastewater samples which were collected from one municipal wastewater treatment plant (WWTP) in Osaka, Japan, for the determination of natural free estrogens and their conjugates. In the influent sample, E1, E2, E1‐3S, E3‐3S, and E1‐3G were detected at concentrations of 16.6, 9.6, 8.2, 21.9, and 3.2 ng L–1, respectively. However, only E1 was detected at a high concentration of 44 ng L–1 in the effluent sample, suggesting that it is the dominant natural free estrogen in the effluent.  相似文献   

14.
Many organic compounds or their precursorsfound in meteorites originated in the interstellar or circumstellarmedium and were later incorporated intoplanetesimals during the formation of thesolar system. There they either survivedintact or underwent further processing tosynthesize secondary products on themeteorite parent body.The most distinct feature of CI and CM carbonaceouschondrites, two typesof stony meteorites, is their high carbon content(up to 3% of weight), either in theform of carbonates or of organic compounds. The bulkof the organic carbon consistsof an insoluble macromolecular material with a complexstructure. Also present is asoluble organic fraction, which has been analyzedby several separation and analyticalprocedures. Low detection limits can be achievedby derivatization of the organicmolecules with reagents that allow for analysisby gas chromatography/massspectroscopy and high performance liquidchromatography. The CM meteoriteMurchison has been found to contain more than70 extraterrestrial amino acids andseveral other classes of compounds includingcarboxylic acids, hydroxy carboxylicacids, sulphonic and phosphonic acids, aliphatic,aromatic and polar hydrocarbons,fullerenes, heterocycles as well as carbonylcompounds, alcohols, amines and amides.The organic matter was found to be enriched indeuterium, and distinct organiccompounds show isotopic enrichments of carbon andnitrogen relative to terrestrialmatter.  相似文献   

15.
Soil gas samples from intact soil cores were collected on adsorbents at a field site, then thermally desorbed and analyzed by laboratory gas chromatography (GC). Vertical concentration profiles of predominant vapor phase petroleum hydrocarbons under ambient conditions were obtained for the zone directly above the capillary fringe. Water and residual phase weathered aviation gasoline were present in this region of the profile.
The sampling, trapping, and GC methodology was effective in most respects. Reproducibility, trapping, and desorption efficiency were generally satisfactory, and different sorbent tubes gave similar results. A minor shortcoming of the method occurred with the most volatile compound, 2,3-dimcthylbutane, which was poorly retained during several weeks of storage lime and was also poorly desorbed.
Vapor phase concentrations of predominant hydrocarbon compounds all increased with depth at one sampling location. At a more highly contaminated location, concentrations of highly volatile compounds increased with depth while concentrations of less volatile compounds remained constant or decreased, possibly indicating distillation effects. Scatier in the data was attributed to heterogeneities in water and residual phase distribution.  相似文献   

16.
Different types of data can be collected to evaluate whether or not vapor intrusion is a concern at sites impacted with volatile organic compound (VOC) contamination in the subsurface. Typically, groundwater, soil gas, or indoor air samples are collected to determine VOC concentrations in the different media. Sample results are evaluated using a “multiple lines of evidence” approach to interpret whether vapor intrusion is occurring. Data interpretation is often not straightforward because of many complicating factors, particularly in the evaluation of indoor air. More often than not, indoor air sample results are affected by indoor or other background sources making interpretation of concentration‐based data difficult using conventional sampling approaches. In this study, we explored the practicality of compound‐specific isotope analysis (CSIA) as an additional type of evidence to distinguish between indoor sources and subsurface sources (i.e., vapor intrusion). We developed a guide for decision‐making to facilitate data interpretation and applied the guidelines at four different test buildings. To evaluate the effectiveness of the CSIA method for vapor intrusion applications, we compared the interpretation from CSIA to interpretations based on data from two different investigation approaches: conventional sampling and on‐site GC/MS analysis. Interpretations using CSIA were found to be generally consistent with the other approaches. In one case, CSIA provided the strongest line of evidence that vapor intrusion was not occurring and that a VOC source located inside the building was the source of VOCs in indoor air.  相似文献   

17.
J.W. Roy  M.C. Ryan 《Ground water》2010,48(6):869-877
Measurement of dissolved gases in groundwater is becoming increasingly common and important. Many of these measurements involve monitoring or sampling within wells or from water pumped from wells. We used total dissolved gas pressure (TDGP) sensors placed in the screened section of various wells (4 to 72 m deep) to assess the dissolved gas conditions for open wells compared to the conditions when sealed (i.e., isolated from the atmosphere) with a hydraulic packer (one well) or when pumped. When the packer was installed (non-pumping conditions), TDGP rose from <1.7 to >3.1 atm (<172 to >314 kPa), with declines noted when the packer was removed or deflated. While pumping, TDGP measured in many of the wells rose to substantially higher levels, up to 4.0 atm (408 kPa) in one case. Thus, when groundwater is gas charged, the background aquifer TDGP, and likewise the dissolved gas concentrations, may be substantially higher than initially measured in open wells, indicating significant in-well degassing. This raises concerns about past and current methods of measuring the dissolved gases in groundwater. Additional procedures that may be required to obtain representative measurements from wells include (1) installing in-well hydraulic packers to seal the well, or (2) pumping to bring in fresh groundwater. However, observed transient decreased TDGPs during pumping, believed to result from gas bubble formation induced by drawdown in the well below a critical pressure (relative to TDGP), may disrupt the measurements made during or after pumping. Thus, monitoring TDGP while pumping gas-charged wells is recommended.  相似文献   

18.
Occurrence of Industrial Chemicals (HPS, BPS, and SPS) in Surface Water The paper gives the results of water examinations for different phenylsulfonamides. Random samples taken every month between May 1999 and August 2000 from surface water out of the river Rhine (kilometer 838), the river Ruhr (Mülheim Styrum) and the river Emscher (Oberhausen center) were tested for the corrosion inhibiting agent 6‐[methyl(phenylsulfonyl)amino]‐hexanoic acid (HPS) as well as its metabolites 4‐[methyl‐(phenylsulfonyl)amino]‐butanoic acid (BPS) and sarkosin‐N‐(phenylsulfonyl) (SPS). Furthermore, the sewage plant effluents of two municipal wastewater treatment plants from the rural area were also included in the monitoring program. The analytical method includes solid‐phase extraction (SPE), a derivatization step as well as gas chromatography mass spectrometry (GC‐MS). SPS is regularly found in all investigated surface waters, but only occasionally in the effluents of the two rural sewage plants. The median values for SPS amount to 0.09 μg/L in the river Rhine, 0.60 μg/L in the river Ruhr, and 0.70 μg/L in the river Emscher. BPS can only be found in the river Ruhr (median value: 0.08 μg/L) and in the river Emscher (median value: 0.41 μg/L). HPS was regularly found in a surface water for the first time. This substance can be detected in the Emscher through the whole measurement period. The median value for HPS amounts to 1.78 μg/L. Aditionally, the validation characteristics of an alternative analytical method including solid‐phase microextraction (SPME) is worked out. The fully automated process includes an on‐fiber methylation step and the GC‐MS. The repeatability standard deviation of the process amounts to RSD < 12%. Detection limits between 0.07 and 0.70 μg/L are achieved.  相似文献   

19.
Carbon isotopic compositions of individual n-alkanols and sterols in modern sediments from the Nansha Islands sea area are measured after derivatization to trimethylsilyl ethers by the new isotopic analytical technique of GC/C/IRMS. The effects of the three added silyl carbon atoms in every alcohol molecule on these compound isotopic compositions and the characteristics of their carbon isotopic compositions are studied. Then their biological sources are discussed using their carbon isotopic compositions. Project supported by the National Natural Science Foundation of China and Project of the Multidisciplinary Oceanographic Expedition of Chinese Academy of Sciences to Nansha Islands.  相似文献   

20.
The concentrations of three classes of persistent organic compounds (POPs) in the sewage sludge from 12 Beijing wastewater treatment plants (WWTPs) were investigated and their ecological risks were assessed. The concentrations of 15 polycyclic aromatic hydrocarbons (PAHs), 27 polychlorinated biphenyl congeners (PCBs) and 15 organochlorine pesticides (OCPs) in sewage sludge were measured using gas chromatography–tandem mass spectrometry (GC–MS/MS) technique. Total PAHs concentrations ranged from 445.1 to 3,586.4 ng g?1 dry weight (dw), and the sum of the phenanthrene (Phe), anthracene (Ant), naphthalene (Nap), fluoranthene and chrysene accounted for 69.3–97.0 % of the total PAHs. The most abundant compounds present were 2-ring and 3-ring Ant, Phe and Nap, indicating a possible petrogenic source. Total PCBs concentrations were ranged between 3.2 and 21.8 ng g?1 dw. Total OCPs concentrations ranged from 38.0 to 143.3 ng g?1 dw, and the sum of total DDT, HCB and HCHs accounted for 69.6–97.7 % of the total OCPs. The levels of PAHs, PCBs and OCPs in this study were comparable to or lower than those reported in relatively WWTPs from other regions. In addition, they were also shown to have various distribution patterns, possibly due to their different wastewater sources. The 12 WWTPs may be classified into 4 groups because of their different sources of waste water based on cluster analysis. The ecological risk assessment shows that the concentrations of Ant or Fla at two sites, p,p′-DDE and ∑DDT at 83 % of the 12 sites may cause adverse ecological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号