首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of oxygen supply rate and the presence or absence of nutrients on the kinetics of phenol degradation and oxygen consumption by a mixed microbial population were tested in a model system. The values for the maximum specific rate of phenol degradation (qSmax), the saturation constant (KS), and the inhibition concentration (SCR) were determined for unlimited growth (KLa = 340 h?1, growth medium) with 1.7 mmol g?1 h?1, 65 mg L?1, and 190 mg L?1. Under limitation conditions, alterations occur depending on the type of limitation. Nutrient limitations lead to values of 0.8 mmol g?1 h?1, 45 mg L?1, and 160 mg L?1, and oxygen limitations lead to 1.2 mmol g?1 h?1. 30 mg L?1, and 120 mg L?1, respectively. The results suggest that with excess oxygen, the rate of phenol degradation was higher and the inhibition effect of phenol was suppressed to some extent. Under the same high oxygen supply rate, the presence of nutrients in the model water significantly supported the phenol degradation rate.  相似文献   

2.
The degradation behaviour of a phenolic waste-water from coking containing easily utilizable carbon sources (volatile fatty acids), substances with toxic effects (phenols and phenolic compounds), and non-biodegradable organic substances (humic-like substances) by an adapted activated sludge is investigated depending on dissolved oxygen concentration (DO) and temperature. In addition, the degradation of an acetate model water with the same population was investigated. The investigations were carried out in a special respiration fermenter system by recording oxygen consumption in DO-static experiments. The oxygen consumption curves were subjected to linear regression analysis, and the maximum oxygen consumption rates were used for further calculations. Evaluation of the degradation kinetics was carried out with non-linear regression analysis via commercial software utilizing the Marquardt-Levenberg algorithm and which tested various kinetic models to obtain the best curve fit. It is shown that the dependence of growth on DO in acetate model water is well represented by Monod kinetics but by contrast can only be described in phenolic wastewater with acceptable goodness by Hill kinetics, modified by a maintenance term. The kinetic constants calculated for the mesophilic range (37 °C) are for the model water as follows: maximum specific growth rate = 0.218 h?1, half saturation constant with respect to oxygen = 0.297 g L?1, and for the waste-water: maximum specific growth rate = 0.387 h?1, half saturation constant with respect to oxygen = 0.013 gL?1 and maintenance coefficient for oxygen = 0.107 g g?1 h?1. For the thermophilic range (55 °C), a higher growth rate but a significant lower yield coefficient are to be observed. The kinetic constants calculated are: maximum specific growth rate = 0.8 h?1, half saturation constant with respect to oxygen = 0.14 gL?1 and maintenance coefficient for oxygen = 0.3 g g?1 h?1. Therefore, it can be concluded that the toxic effect of the biodegradable phenols causes a maintenance metabolism which leads to higher oxygen demand. The diminution of the limiting DO and the increased maintenance metabolism confirm the assumption that a higher maintenance metabolism leads to increased sensitivity with respect to the cosubstrate oxygen. It can be concluded that the experimental and mathematical methods used permit the maintenance metabolism with respect to oxygen caused by toxic substrates and milieu influences to be accurately determined.  相似文献   

3.
Fish were kept in non-toxic water or at 0.5, 0.25 and 0.125 of the LC50,96h of the ten-side or insecticide for 24 h and fed with toxified and non-toxified feed. Toxified feed in normal water resulted in a maximum feed intake, while normal feed in toxified water resulted in a minimum one. In each case, the feed intake was lower compared with the control, and the feed intake was inversely proportional to the toxicant concentration. In a simple respirometer the oxygen consumption in mg · kg?1 · h?1 was tested for 1, 2, 4, 6, 8, 10, 12, 24, 36, 48, 60, 72, 84 and 96 h of exposure to 1.5, 1.0 and 0.5 of the LC50,96h of both substances. It was a flow device which was closed only for measurement for one hour. 1.5 LC50 Aldrin causes a continuous reduction of respiration until death. The same effect occurred with Cl. batrachus for 1.5 LC50 of the tenside, whereas with C. mrigala death was caused by a pronounced increase of respiration. In all other cases, after a phase of sensitization for 4 … 8 h respiration increased considerably to more than 300% of the control, which was followed after 12 … 24 h by acclimatization to normal respiration values.  相似文献   

4.
The sorption of Co(II) from aqueous solutions on granulated titanium dioxide was investigated in dependence on pH-value (pH = 6 … 10) and solution concentration (cL = 10?7 … 10?2 mol/kg) at 83 °C. The precipitation in the solution occurred at high pH-values and solution concentrations was determined by control experiments without the adsorber. The adsorption isotherms are S-shaped. This can be interpreted as transition from chemisorption at the basic material to surface precipitation.  相似文献   

5.
Biological Treatment of a BTEX-contaminated Groundwater in a Fixed-bed Reactor Conditions for the on-site operation of a fixed-bed bioreactor for remediation of contaminated groundwater were simulated and optimized in the laboratory. Two carrier materials, polypropylene rings and porous clay beads were compared. Laboratory experiments revealed that the originally planned aeration rate of 100 m3 h–1 for the on-site-reactor (working volume 10.6 m3) had to be reduced to less than 0.7 m3 h–1 to avoid complete stripping of BTEX-compounds and to allow biofilm formation on the carrier material. The high ground water flow rate of 5 m3 per square meter of reactor surface area and hour did not prevent biofilm formation. With a bubble-free aeration system in the fixed-bed reactor with clay beads that contained an active biofilm on the surface, 97% of benzene and 99% of the total BTEX-compounds were eliminated by respiration within one hour residence time. In the reactor with polypropylene rings, only 94% of the benzene and 83% of the total BTEX-compounds were degraded under similar conditions. Thus, for BTEX-elimination clay beads performed better in the fixed-bed reactor than the polypropylene rings.  相似文献   

6.
In the dimict lake Arend (5.1 km2, 146 hm3, 49.5 m zmax), nitrogen is production-limiting with concentrations below the detection limit during the production period. Phytoplankton achieves biomasses of up to 18 mg/l fresh matter, essential contributions being made by Aphanizomenon with 2 mg/l and Anabaena with up to 10 mg/l. Nitrogen fixation was measured by the ethine reduction technique (acetylene reduction) during periods of the occurrence of heterocystforming Cyanophyceae and achieved peak values up to 6.59 μg N2 · h?1 · l?1 or 14.87 m?2 · h?1 g N2 · m?2 · h?1. The rates of fixation show a safe correlation with the biomass of heterocyst-containing Cyanophyceae (r = 0.88), their development beginning at values below the N : P-ratio of 2.66.  相似文献   

7.
The lake without any outlet (11 ha, 55000 m3, zmax 2,25 m) has a weak thermal stratification with maximum surface temperatures of 32.5 °C. The annual variation of temperature and depth of visibility is unimodal, with the maxima or minima in August. Phytoplankton consists mainly of Cyanophyceae. The primary production determined by the light-dark bottle technique (oxygen method) varies in the annual variation between 0.3… 0.5 g m?2 d?1 C (winter) and 3.4… 4.6 g m?2 d?1 C (summer); as the annual means of 1975 and 1976 there were found 1.9 and 2.4 g m?2 d?1 C, resp., gross production at a utilization of 0.42… 2.85% of the radiation energy. The chemism is a well-buffered hydrogen-carbonate water (pH 8.1… 9.0) with 74… 90 mg/1 Na and 20.5… 31.5 mg/1 K and with a good nutrient supply (20… 40 μg/1 PO4—P and 100… 240 μg/1 NO3—N) at the same time.  相似文献   

8.
Pseudomonas putida MHF 7109 has been isolated and identified from cow dung microbial consortium for biodegradation of selected petroleum hydrocarbon compounds – benzene, toluene, and o‐xylene (BTX). Each compound was applied separately at concentrations of 50, 100, 250, and 500 mg L?1 in minimal salt medium to evaluate degradation activity of the identified microbial strain. The results indicated that the strain used has high potential to degrade BTX at a concentration of 50 mg L?1 within a period of 48, 96, and 168 h, respectively; whereas the concentration of 100 mg L?1 of benzene and toluene was found to be completely degraded within 120 and 168 h, respectively. Sixty‐two percent of o‐xylene were degraded within 168 h at the 100 mg L?1 concentration level. The maximum degradation rates for BTX were 1.35, 1.04, and 0.51 mg L?1 h?1, respectively. At higher concentrations (250 and 500 mg L?1) BTX inhibited the activity of microorganisms. The mass spectrometry analysis identified the intermediates as catechol, 2‐hydroxymuconic semialdehyde, 3‐methylcatechol, cis‐2‐hydroxypenta‐2,4‐dienoate, 2‐methylbenzyl alcohol, and 1,2‐dihydroxy‐6‐methylcyclohexa‐3,5‐dienecarboxylate, for BTX, respectively. P. putida MHF 7109 has been found to have high potential for biodegradation of volatile petroleum hydrocarbons.  相似文献   

9.
The Actinomycetes strain of the genus Rhodococcus having been isolated from the river Saale is able to use phenol as the sole carbon source up to concentrations of 2 g/l and metabolizes phenol via the β-ketoadipic acid path (ortho-cleavage). The synthesis of the inducable enzyme system can be inhibited by chloramphenicol. In detailed experiments in discontinuous and continuous cultures the growth rate and the yield coefficient attain their maxima of 0.256 h?1 and 0.62, resp., at phenol concentrations of 0.5 … 0.8 g/l. At higher substrate concentrations there occurs a substrate inhibition. In the range between 20 and 40°C growth and phenol utilization are highly dependent on temperature.  相似文献   

10.
Soil denitrification in reservoir shoreline wetlands is an important process for removing excess inorganic nitrogen from upland runoff and controlling eutrophication in aquatic ecosystems. As yet, little is known about the influence of vegetation characteristics on the soil denitrification potential in reservoir shoreline wetlands, although vegetation can affect both denitrifying bacteria and soil properties. In this study, we measured the spatial variability of denitrification enzyme activity (DEA) using acetylene block method in shoreline wetlands of the Danjiangkou Reservoir, a water source of the South‐to‐North Water Transfer Project in China. Results indicated that DEA ranged from 0.001 to 2.449 µg N (N2O) g?1 h?1, with a mean of 0.384 µg N (N2O) g?1 h?1. DEA varied significantly among five representative plant communities and the highest DEA (0.248–2.449 µg N (N2O) g?1 h?1) was observed in the Polygonum hydropiper community. Plant biomass and vegetation cover were significantly and positively related to DEA and together explained 44.2% of the total variance. These results suggest that vegetation characteristics should also be considered in assessing soil denitrification capacity and restoring shoreline wetlands for nitrogen pollution removal in the Danjiangkou Reservoir after dam heightening.  相似文献   

11.
Ten reaction vessels containing 1 m3 were used as the experimental arrangement. They were filled with coarse sand or fine gravel and installed 60 cm below the floor. The pore volume (water saturation) was 227… 260 l. Anaerobic conditions were established by the addition of 6 g glucose at storage. The reactors were given tap water with 50 and 200 mg/l NO from KNO3 in such a way that a volumetric rate of flow of 0.2, 0.4 and 0.8 l/d was created. The volumetric rates of flow corresponded to the natural recharge of groundwater, the recharge of groundwater under the conditions of irrigation and the conditions of an intensive wastewater ground treatment. In the effluent from the reaction vessels the nitrate concentration was determined every month. It was stationary from the 7th to the 55th month after the beginning of the experiment. The experiments are evaluated by means of a model which takes into account the diffusion, convection and kinetics of the nitrate degradation according to Michaelis-Menten. A simple method for solving homogeneous non-linear differential equations of the second order is proposed. The experimental and model results show a good agreement and prove the very slow nitrate degradation in the groundwater with kM = 210 mg/l, vmax = 1.5 mg/l · d or k1 = 0.005 d?1.  相似文献   

12.
Abstract

We have contrived a model E(αω) α μ?1ω?p+1(ω 2?ω i 2)?+ for the distribution of internal wave energy in horizontal wavenumber, frequency-space, with wavenumber α extending to some upper limit μ(ω) α ω r-1 (ω 2?ω i 2)½, and frequency ω extending from the inertial frequency ω i to the local Väisälä frequency n(y). The spectrum is portrayed as an equivalent continuum to which the modal structure (if it exists) is not vital. We assume horizontal isotropy, E(α, ω) = 2παE1, α2, ω), with α1, α2 designating components of α. Certain moments of E1, α2, ω) can be derived from observations. (i) Moored (or freely floating) devices measuring horizontal current u(t), vertical displacement η(t),…, yield the frequency spectra F (u,η,…)(ω) = ∫∫ (U 2, Z 2,…)E1, ∞2, ω) dα12, where U, Z,… are the appropriate wave functions. (ii) Similarly towed measurements give the wavenumber spectrum F (…)(α1) = ∫∫… dα2 dω. (iii) Moored measurements horizontally separated by X yield the coherence spectrum R(X, ω) which is related to the horizontal cosine transform ∫∫ E(α1, α2 ω) cos α1 Xdα11. (iv) Moored measurements vertically separated by Y yield R(Y, ω) and (v) towed measurements vertically separated yield R(Y, α1), and these are related to similar vertical Fourier transforms. Away from inertial frequencies, our model E(α, ω) α ω ?p-r for α ≦ μ ω ω r, yields F(ω) ∞ ω ?p, F1) ∞ α1 ?q, with q = (p + r ? 1)/r. The observed moored and towed spectra suggest p and q between 5/3 and 2, yielding r between 2/3 and 3/2, inconsistent with a value of r = 2 derived from Webster's measurements of moored vertical coherence. We ascribe Webster's result to the oceanic fine-structure. Our choice (p, q, r) = (2, 2, 1) is then not inconsistent with existing evidence. The spectrum is E(∞, ω) ∞ ω ?1(ω 2?ω i 2 ?1, and the α-bandwith μ ∞ (ω 2?ω i 2)+ is equivalent to about 20 modes. Finally, we consider the frequency-of-encounter spectra F([sgrave]) at any towing speed S, approaching F(ω) as SS o, and F1) for α1 = [sgrave]/S as SS o, where S o = 0(1 km/h) is the relevant Doppler velocity scale.  相似文献   

13.
In batch experiments with exposure for 24 to 96 h Macrobrachium naso and M. dayanum were exposed to solutions of the sodium salt of 2,4-dichlorophenoxy acetic acid. The LC50,96h are 2.397 g/l for Macrobrachium naso and 2.275 g/l for M. dayanum. No mortality was observed in solutions of 2.1 and 1.85 g/l. The differences in toxicity are not dependent on the size of the organisms, but they are species-specific.  相似文献   

14.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A demonstration plant for biological heterotrophic water treatment of nitrate polluted groundwater has been operated in Coswig near Dresden since 1989. In this NEBIO tube reactor process the denitrification is achieved in a downstream fluidized bed with continuous regeneration of sintered polystyrene particles as inert carrier material. A nutrient consisting of ethanol and phosphate is dosed in the reactor influent. In the subsequent treatment stages the denitrified water is aerated, filtered through a multilayer and GAC filter, and is finally disinfected with chlorine gas. The influence of changing raw water quality (oxygen content, pH value) on the process performance was examined. Increasing oxygen concentration lowers the nitrate reduction potential and rises the consumptive ratio ΔC/ΔNO3. The technology shows a high removal performance of 270 g NO3 m?3 h?1 in the range of pH 6.2 to pH 7.3 which is typical for natural groundwaters. The degradation of nitrate is increasingly inhibited for pH values beyond 7.6. Nitrite production occurs significantly in high pH ranges. The results lead to further insight in the stoichiometry of heterotrophic denitrification. By expressing the stoichiometric equations for nitrate and oxygen respiration as functions of oxygen and pH value it could be shown that the influent water quality has strong effects on the consumption of ethanol. A kinetic model was developed to predict the reactor performance under changing raw water conditions. A two stage kinetic model was designed, regarding two main effects: biochemical degradation of oxygen, nitrate and ethanol and distribution of active biomass due to hydraulic properties of the tube reactor. This model may be helpful for reactor design for sites of various ground water qualities.  相似文献   

17.
Nitrous oxide emissions from urban wastewater were measured in a combined sewer in Bayreuth, Germany. The closed-chamber method was used to evaluate N2O emissions. Nitrous oxide was analysed by gas chromatography with electron capture detector. Longitudinal and daily variations of N2O fluxes were determined. N2O emissions ranged from 0.11…3.8 mg m?2 h?1 depending on the level of wastewater in the sewer. Data indicate that N2O is mainly formed in the biofilm by nitrification and/or denitrification. In laboratory experiments, samples with wastewater and wastewater/biofilm mixture were incubated with and without NaCl. After two hours of incubation, N2O release was in a range of 42…429 ng N2O per millilitre wastewater or wastewater/biofilm. Incubated samples without NaCl addition showed no significant difference between wastewater and wastewater/biofilm mixture. If salt (NaCl) was added before incubation, samples with wastewater/biofilm mixture emitted 4.8 times more N2O than wastewater samples. It is assumed that high concentrations of NaCl inhibit further microbial reduction of N2O to N2. Based on the field data, a first estimate for N2O emission from sewers is 3.5 g N2O per year and person.  相似文献   

18.
Degradation of Nitroaromatic Xenobiotics by Ozonization and Subsequent Biological Treatment Ozonization for 2,4-dinitrotoluene (DNT) and 4-nitroaniline (NA) was conducted in completely mixed reactors by semi-batch tests. At pH 7, both direct and radical reactions contribute to the oxidation of the nitroaromatic compounds. In the dominantly mass transfer-limited reaction, a specific ozone absorption of A* = 3.0…3.5 g g?1 was measured for a ?98% elimination of the target compounds. About 80…90% of the input ozone were absorbed, and 10…20% left the system unreacted. At pH 7, the degree of DOC reduction increased linearly with the specific ozone absorption to final values of 35% (NA) and 44% (DNT), respectively. A subsequent biological treatment of the oxidation products by non-acclimated bacteria increased the degree of mineralization to 75%. Compared to ozonization alone, 35 and 50% of ozone were thus saved by the sequential chemical-biological process. Batch tests with a real wastewater from the alkaline hydrolysis of a mixture of 2,4,6-trinitrotoluene (TNT) and 1,3-dinitrobenzene (DNB) confirmed the approach. No reduction in the required ozone dosage was achieved in a completely mixed continuous system of ozonization followed by biodegradation even when compared to batch ozonization alone. Therefore, the reduction of longitudinal mixing in continuous ozonization systems is regarded to be of fundamental importance.  相似文献   

19.
The LC50 for 12… 96 h of a distillery waste water were determined for Lebistes reticulatus, Lymnaea luteola, Lymnaea acuminata and Viviparus bengalensis in the batch experiment with daily exchange of the medium. The sensitivity of the species increases in the given sequence with values of the LC50,96 h of 10.77 to 3.72 % proportion of wastewater in the medium. Compared with this, with values of the LC50,48 h of 14.06… 15.71 % after 48 h of exposure there is no significant difference in sensitivity, whereas after exposure for 12 and 24 h the sensitivity grows in the following order: V. bengalensis, L. acuminata, L. luteola, Lebistes reticulatus. Toxicity is obviously primarily determined by the sulphides; with increasing time of exposure also the suspended matter and other factors act toxically.  相似文献   

20.
Runoff and sediment lost due to water erosion were recorded for 36 (1 m2) plots with varying types of vegetative cover located on sloping gypsiferous fields in the South of Madrid. 75% of the events had maximum 30‐minute intensity (I30) less than 10 mm h?1 in the period studied (1994–2005). As for the vegetative cover, maximum correlation between runoff and soil loss was found in the least protected plots (0–40% cover) during the most intense rainfall events; however, a significant positive correlation was also observed in plots with greater coverage (40–60%). If coverage exceeded 60%, rainfall erosivity declined. The average amount of sediment produced in high‐intensity events was significantly greater (approximately 7 g m?2 per I30 event >10 mm h?1) than that produced in the rest of the moderate‐intensity events (approximately 3 g m?2 per I30 event <10 mm h?1), but due to the high rate of occurrence of the latter throughout the year sediment loss during the period studied totaled 128 g m?2. By comparison, only 40 g m?2 was produced by the I30 events greater than 10 mm h?1. Even though the amount of soil lost is relatively insignificant from a quantitative standpoint, the organic matter content lost in the sediment (six times more than in the soil) is a permanent loss that threatens the development of the surface of the soil in this area when the vegetative cover is less than 40%. The soil here experiences a chronic loss of 0·02 mm annually as a consequence of frequent, moderate events, in addition to any loss produced by extraordinary events, which, though less frequent, are much more erosive. If moderate events are ignored, an important part of soil loss will be lost in the long run. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号