首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Models of the solar nebula are constructed to investigate the hypothesis that surviving planetary objects began to form as the nebula cooled from an early, hot epoch. The imprint of such an epoch might be retained in the spatial distribution of planetary material, the systematic deviations of its elemental composition from that of the Sun, chemical indicators of primordial oxidation state, and variations in oxygen and other isotopic compositions. Our method of investigation is to calculate the time‐dependent, two‐dimensional temperature distributions within model nebulas of prescribed dynamical evolution, and to deduce the consequences of the calculated thermal histories for coagulated solid material. The models are defined by parameters which characterize nebular initial states (mass and angular momentum), mass accretion histories, and coagulation rates and efficiencies. It is demonstrated that coagulation during the cooling of the nebula from a hot state is expected to produce systematic heterogeneities which affect the chemical and isotopic compositions of planetary material. The radial thermal gradient at the midplane results in delayed coagulation of the more volatile elements. Vertical thermal gradients isolate the most refractory material and concentrate evaporated heavy elements in the gas phase. It is concluded that these effects could be responsible for the distribution of terrestrial planetary masses, the systematic depletion patterns of the moderately volatile elements in chondritic meteorites and the Earth, the range of oxygen isotopic compositions exhibited by calcium‐aluminum‐rich inclusions (CAIs) and other refractory inclusions, and some geochemical evidence for a moderately enhanced oxidation state. However, nebular fractionations on a global scale are unlikely to account for the more oxidizing conditions inferred for some CAIs and chondritic silicates, which require dust enhancements greater than a few hundred. This conclusion, along with the well‐established evidence from studies of chondrules and CAIs for thermal excursions of short duration, make it likely that local environments, unrelated to nebular thermal evolution, were also important.  相似文献   

2.
Abstract— In this paper, we explore the possibility that the moderately volatile element depletions observed in chondritic meteorites are the result of planetesimals accreting in a solar nebula that cooled from an initially hot state (temperatures > 1350 K out to ?2–4 AU). A model is developed to track the chemical inventory of planetesimals that accrete in a viscously evolving protoplanetary disk, accounting for the redistribution of solids and vapor by advection, diffusion, and gas drag. It is found that depletion trends similar to those observed in the chondritic meteorites can be reproduced for a small range of model parameters. However, the necessary range of parameters is inconsistent with observations of disks around young stars and other constraints on meteorite parent body formation. Thus, counter to previous work, it is concluded that the global scale evolution of the solar nebula is not the cause for the observed depletion trends. Instead, it appears that localized processing must be considered.  相似文献   

3.
Abstract— The CBb chondrites are rare, primitive, metal‐rich meteorites that contain several features, including zoned metal, that have previously been interpreted as evidence for origins in the solar nebula. We have measured concentrations of Ni, Cu, Ga, Ru, Pd, Ir, and Au within both zoned and unzoned metal grains in the CBb chondrites Hammadah al Hamra (HaH) 237 and Queen Alexandra Range (QUE) 94627 using laser ablation inductively coupled plasma mass spectrometry. The refractory elements Ni, Ru, and Ir are enriched in the grain cores, relative to the rims, in the zoned metal. All refractory elements are uniform across the unzoned metal grains, at concentrations that are highly variable between grains. The volatile elements Cu, Ga, and Au are usually depleted relative to chondritic abundances and are most often uniform within the grains but are sometimes slightly elevated at the outermost rim. The Pd abundances are nearly uniform, at close to chondritic abundances, in all of the metal grains. A condensation origin is inferred for both types of metal. The data support a model in which the zoned metal formed at high temperatures, in a relatively rapidly cooling nebular gas, and the unzoned metal formed at lower temperatures and at a lower cooling rate. The CBb metal appears to have formed by a process very similar to that of the CH chondrites, but the CBb meteorite components experienced even less thermal alteration following their formation and are among the most primitive materials known to have formed in the solar nebula.  相似文献   

4.
Abstract— I have determined the composition via instrumental neutron activation analysis of a bulk pristine sample of the Tagish Lake carbonaceous chondrite fall, along with bulk samples of the CI chondrite Orgueil and of several CM chondrites. Tagish Lake has a mean of refractory lithophile element/Cr ratios like those of CM chondrites, and distinctly higher than the CI chondrite mean. Tagish Lake exhibits abundances of the moderately volatile lithophile elements Na and K that are slightly higher than those of mean CM chondrites. Refractory through moderately volatile siderophile element abundances in Tagish Lake are like those of CM chondrites. Tagish Lake is distinct from CM chondrites in abundances of the most volatile elements. Mean CI‐normalized Se/Co, Zn/Co and Cs/Co for Tagish Lake are 0.68 ± 0.01, 0.71 ± 0.07 and 0.76 ± 0.02, while for all available CM chondrite determinations, these ratios lie between 0.31 and 0.61, between 0.32 and 0.58, and between 0.39 and 0.74, respectively. Considering petrography, and oxygen isotopic and elemental compositions, Tagish Lake is an ungrouped member of the carbonaceous chondrite clan. The overall abundance pattern is similar to those of CM chondrites, indicating that Tagish Lake and CMs experienced very similar nebular fractionations. Bells is a CM chondrite with unusual petrologic characteristics. Bells has a mean CI‐normalized refractory lithophile element/Cr ratio of 0.96, lower than for any other CM chondrite, but shows CI‐normalized moderately volatile lithophile element/Cr ratios within the ranges of other CM chondrites, except for Na which is low. Iridium, Co, Ni and Fe abundances are like those of CM chondrites, but the moderately volatile siderophile elements, Au, As and Sb, have abundances below the ranges for CM chondrites. Abundances of the moderately volatile elements Se and Zn of Bells are within the CM ranges. Bells is best classified as an anomalous CM chondrite.  相似文献   

5.
Abstract— We have developed a nebular condensation model and a computational routine that potentially can account for the unequilibrated mineral assemblages in chondritic meteorites. The model assumes that as condensation proceeds, a specified fraction (called the isolation degree, ξ) of the existing condensate is steadily withdrawn from reactive contact with the residual gas, presumably as a result of the growth and aggregation of condensed mineral grains. The isolated condensates may remain in the condensing system as coarse inert objects; whereas, the mineral grains that are still in reactive contact with residual nebular gases are in the form of fine dust. This paper describes the condensation with partial isolation (CWPI) model of condensation and uses it to study condensation in a nebula of solar composition at a total pressure of 10?5 bar. The systematic isolation of condensates from residual nebular gases has profound effects on the condensation sequence. At ξ values <0.2%, the condensation sequence is essentially independent of the isolation degree and identical to the classic condensation sequence. At ξ values >2.5%, the condensation sequence is also independent of the isolation degree and closely resembles the “inhomogeneous accretion model” or “chemical disequilibrium model” of condensation. In the intermediate range of ξ values, the character of the condensation sequence is very sensitive to the degree of chemical fractionation caused by condensate isolation. The mineralogy of chondritic meteorites is not consistent with condensation sequences having ξ > 2.5; this is an upper limit on the ξ values that is characteristic of condensation in the solar nebula. The mineralogy and chemistry of carbonaceous and enstatite chondrites can be explained by accretion of isolated condensates formed at ξ values of ≤0.1% and 0.7–1.5%, respectively, providing that segregation of the inert coarse objects and fine reactive dust occurred in the nebula. Segregation of these two categories of condensate may have been responsible for the observed volatility-based chemical fractionations among chondritic meteorites.  相似文献   

6.
Abstract— Siderophile elements have been used to constrain projectile compositions in terrestrial and lunar impact melt rocks. To obtain a better knowledge of compositional differences between potential chondritic projectile types, meteorite analyses of the elements Ru, Rh, Pd, Os, Ir, Pt, Cr, Co, Ni, and Au were gathered into a database. The presented compilation comprises 806 analyses of 278 chondrites including new ICP‐MS analyses of Allende and two ordinary chondrites. Each data set was evaluated by comparing element ratios of meteorites from the same chondrite group. Characteristic element abundances and ratios were determined for each group. Features observed in the element abundance patterns can be linked directly to the presence of certain components, such as the abundance of refractory elements Os, Ir, and Ru correlating with the occurrence of refractory inclusions in CV, CO, CK, and CM chondrites. The refined characteristic element ratios appear to be representative not only for meteorites, but also for related asteroidal bodies. Chondrite element ratios were compared to previously published values from impact melt rocks of the Popigai and Morokweng impact structures confirming that an identification of the specific type of projectile (L and LL chondrite, respectively) is possible. The assessment for Morokweng is supported by the recent discovery of an LL chondrite fragment in the impact melt rocks. Ultimately, the database provides valuable information for understanding processes in the solar nebula as they are recorded in chondrites. A new type of complementarity between element patterns of CK and EH chondrites is suggested to be the result of condensation, redox, and transportation processes in the solar nebula.  相似文献   

7.
Observed differences in the abundance ratios of moderately volatile elements found in ordinary chondrites relative to CI chondrites may have resulted from a continuous loss of nebular gas from the ordinary-chondrite formation region during condensation. If this occurred, the nebular volatility of these elements should be inversely correlated with their abundance ratios. Such a nebular gas loss can occur as a result of momentum exchange between solids and gases, as a result of interactions between the nebular gas and solar photons or particles at the surface of the nebula, or as a result of the settling of previously condensed solids to the median plane of the nebula.  相似文献   

8.
We used chemical equilibrium calculations to model thermal metamorphism of ordinary chondritic material as a function of temperature, pressure, and trace element abundance and use our results to discuss volatile mobilization during thermal metamorphism of ordinary chondrite parent bodies. We compiled trace element abundances in H-, L-, and LL-chondrites for the elements Ag, As, Au, Bi, Br, Cd, Cs, Cu, Ga, Ge, I, In, Pb, Rb, Sb, Se, Sn, Te, Tl, and Zn, and identified abundance trends as a function of petrographic type within each class. We calculated volatility sequences for the trace elements in ordinary chondritic material, which differ significantly from the solar nebula volatility sequence. Our results are consistent with open-system thermal metamorphism. Abundance patterns of Ag and Zn remain difficult to explain.  相似文献   

9.
A total of 56 non-porphyritic pyroxene and pyroxene/olivine micro-objects from different unequilibrated ordinary chondrites were selected for detailed studies to test the existing formation models. Our studies imply that the non-porphyritic objects represent quickly quenched liquids with each object reflecting a very complex and unique evolutionary history. Bulk major element analyses, obtained with EMPA and ASEM, as well as bulk lithophile trace element analyses, determined by LA-ICP-MS, resulted in unfractionated (solar-like) ratios of CaO/Al2O3, Yb/Ce as well as Sc/Yb in many of the studied objects and mostly unfractionated refractory lithophile trace element (RLTE) abundance patterns. These features support an origin by direct condensation from a gas of solar nebula composition. Full equilibrium condensation calculations show that it is theoretically possible that pyroxene-dominated non-porphyritic chondrules with flat REE patterns could have been formed as droplet liquid condensates directly from a nebular gas strongly depleted in olivine. Thus, it is possible to have enstatite as the stable liquidus phase in a 800 × Cl dust-enriched nebular gas at a ptot of 10−3 atm, if about 72% of the original Mg is removed (as forsterite?) from the system. Condensation of liquids from vapor (primary liquid condensation) could be considered as a possible formation process of the pyroxene-dominated non-porphyritic objects. This process can produce a large spectrum of chemical compositions, which always have unfractionated RLTE abundances. Late stage and subsolidus metasomatic events appear to have furthered the compositional diversity of chondrules and related objects by addition of moderately volatile and volatile elements to these objects by exchange reactions with the chondritic reservoir (e.g., V, Cr, Mn, FeO as well as K and Na). The strong fractionation displayed by the volatile lithophile elements could be indicative of a variable efficiency of metasomatic processes occurring during and/or after chondrule formation. Histories of individual objects differ in detail from each other and clearly indicate individual formation and subsequent processing.  相似文献   

10.
Abundances of Na, Al, Sc, Cr, Mn, Fe, Co and Cu have been measured by instrumental neutron activation analyses of 103 chondrites and 17 achondrites. In many cases, analyses were made of replicate samples from the same meteorite. Various sources of error in the method, including sampling errors, are discussed in detail. Examination of the patterns of coherence of the elements we have determined suggests that we can perceive effects of fractionation during condensation from the solar nebula of matter parental to chondrites. Such effects seem to be exhibited both in the abundances of lithophilic elements, perhaps being related to varied temperatures of accretion and in the abundances of those elements which would be affected by metal-silicate fractionation in the solar nebula. Atomic abundances relative to Si vary little in carbonaceous chondrites, suggesting that efficient mixing processes operated on these meteorites prior to or during their formation. We suggest that at present, no single class of carbonaceous chondrites is clearly more primitive than another. Carbonaceous and unequilibrated ordinary chondrites may represent aggregates of material accreted from the solar nebula at relatively low temperatures, as many recent discussions of these meteorites would suggest. Our data support a model of equilibration and minor mobilization of non-volatile elements within small domains of chondrites after accretion. Such a model would be consistent with the petrologic types of Van Schmus and Wood (1967). Achondrites do not exhibit simple regularities in lithophilic elemental abundances as do chondrites. Models for the origins of achondrites surely must include effects of magmatic fractionation, but we do not at present have enough information to assess the plausibility of such models.  相似文献   

11.
Abstract— Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029*A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Snrich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend towards non-chondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.  相似文献   

12.
Abstract– Tucson is an enigmatic ataxitic iron meteorite, an assemblage of reduced silicates embedded in Fe‐Ni metal with dissolved Si and Cr. Both, silicates and metal, contain a record of formation at high temperature (~1800 K) and fast cooling. The latter resulted in the preservation of abundant glasses, Al‐rich pyroxenes, brezinaite, and fine‐grained metal. Our chemical and petrographic studies of all phases (minerals and glasses) indicate that they have a nebular rather than an igneous origin and give support to a chondritic connection as suggested by Prinz et al. (1987) . All silicate phases in Tucson apparently grew from a liquid that had refractory trace elements at approximately 6–20 × CI abundances with nonfractionated (solar) pattern, except for Sc, which was depleted (~1 × CI). Metal seems to have precipitated before and throughout silicate aggregate formation, allowing preservation of all evolutionary steps of the silicates by separating them from the environment. In contrast to most chondrites, Tucson documents coprecipitation of metal and silicates from the solar nebula gas and precipitation of metal before silicates—in accordance with theoretical condensation calculations for high‐pressure solar nebula gas. We suggest that Tucson is the most metal‐rich and volatile‐element‐poor member of the CR chondrite clan.  相似文献   

13.
Alan E. Rubin 《Icarus》2011,213(2):547-558
Chondrite groups can be distinguished on the basis of their abundances of refractory lithophile elements (RLE). These abundances are, in part, functions of the mass fraction of Ca-Al-rich inclusions (CAIs) within the chondrites. Carbonaceous chondrites contain the most CAIs and the highest RLE abundances; they also contain modally abundant fine-grained matrix material that consists largely of modified nebular dust. The amount of dust varied throughout the solar nebula: enstatite and ordinary chondrites formed in low-dust regions in the inner part of the nebula, R chondrites formed in higher-dust zones at somewhat greater heliocentric distances, and carbonaceous chondrites formed in even dustier regions farther from the Sun. The amount of ambient dust peaked in the region where CV and CK chondrites accreted; these chondrites have abundant matrix, the highest modal abundances of CAIs, and the highest bulk RLE contents. Substantial amounts of nebular dust occurred in highly porous multi-millimeter-to-centimeter-size dustballs that were on the order of 100 times more massive than CAIs. Radial drift processes in the nebula affected these dustballs to approximately the same extent as the CAIs; both types of objects were aerodynamically concentrated in the same nebular regions. These regions maintained approximately the same relative amounts of dust through the periods of chondrule formation and chondrite accretion.  相似文献   

14.
Abstract— The trace element distributions in the matrix of primitive chondrites were examined using four least‐contaminated matrix specimens from the polished sections of the Allende (CV) meteorite. Analysis of rare earth element (REE), Ba, Sr, Rb, and K abundances by isotope dilution mass spectrometry revealed that the elemental abundances of lithophile elements except for alkali metals (K, Rb) in the specimens of the Allende matrix studied here are nearly CI (carbonaceous Orgueil) chondritic (~1 × CI). Compared to refractory elements, all the matrix samples exhibited systematic depletion of the moderately volatile elements K and Rb (0.1–0.5 × CI). We suggest that the matrix precursor material did not carry significant amounts of alkali metals or that the alkalis were removed from the matrix precursor material during the parent body process and/or before matrix formation and accretion. The matrix specimens displayed slightly fractionated REE abundance patterns with positive Ce anomalies (CI‐normalized La/Yb ratio = 1.32–1.65; Ce/Ce* = 1.16–1.28; Eu/Eu* = 0.98–1.10). The REE features of the Allende matrix do not indicate a direct relationship with chondrules or calcium‐aluminum‐rich inclusions (CAIs), which in turn suggests that the matrix was not formed from materials produced by the breakage and disaggregation of the chondrules or CAIs. Therefore, we infer that the Allende matrix retains the REE features acquired during the condensation process in the nebula gas.  相似文献   

15.
Abstract— A widely held view of nebular evolution is that during the ~0.5 Ma while interstellar material was collapsing onto the disk, the latter grew in mass to the point of gravitational instability. It responded to this by losing axial symmetry, growing spiral arms that had the capacity to tidally redistribute disk mass (inward) and angular momentum (outward) and prevent further increase in the disk/protosun mass ratio. The spiral arms (density waves) rotated differently than the substance of the nebula, and in some parts of the disk, nebular material may have encountered the arms at supersonic velocities. The disk gas, and solid particles entrained in it, would have been heated to some degree when they passed through shock fronts at the leading edges of the spiral arms. The present paper proposes this was the energetic nebular setting or environment that has long been sought, in which the material now in the planets and chondritic meteorites was thermally processed.  相似文献   

16.
Abstract— The bulk compositions of the terrestrial planets are assessed. Venus and Earth probably have similar bulk compositions, but Mars is enriched in volatile elements. The inner planets are all depleted in volatile elements, as shown by K/U ratios, relative to most meteorites and the CI primordial values. Terrestrial upper mantle Mg/Si ratios are high compared with CI data. If they are representative of the bulk Earth, then the Earth accreted from a segregated suite of planetesimals that had non-chondritic major element abundances. The CI meteorite abundances, despite aqueous alteration, match the solar data and provide the best estimate for the composition of the solar nebula, including the iron abundance. The widespread depletion of volatile elements in the inner solar nebula is most likely caused by heating related to early violent solar activity (e.g., T Tauri and FU Orionis stages) which, for example, drove water out to a “snow line” in the vicinity of Jupiter. The variation in composition among the meteorites and the apparent lack of mixing among the groups indicates accretion from narrow feeding zones. There appears to have been little mixing between meteorite and planetary formation zones, as shown by the oxygen isotope variations, lack of mixing of meteorite groups, and differences in K/U ratios. In summary, it appears that the final accretion of planets did not result in widespread homogenization, and that mixing zones were not more than about 0.3 A.U. wide. Although the composition of the Moon is unique, and its origin due to an essentially random event, its presence reinforces the planetesimal hypothesis and the importance of stochastic processes during planetary accretion in the inner solar system.  相似文献   

17.
We have studied the feldspathic lunar meteorite Dhofar 1428 chemically and petrologically to better understand the evolution of the lunar surface. Dhofar 1428 is a feldspathic regolith breccia derived from the lunar highland. Bulk chemical and mineral compositions of Dhofar 1428 are similar to those of other feldspathic lunar meteorites. We found a few clasts of evolved lithologies, such as K‐rich plagioclases and quartz monzogabbro. Dhofar 1428 contains approximately 1 wt% of chondritic materials like CM chondrite on the basis of abundances of platinum group elements (Ru, Rh, Pd, Os, Ir, and Pt).  相似文献   

18.
Abstract— The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:43 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3–6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa~39) with about 70 vol%. Feldspar (~14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilmenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, arid Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in δ17O (5.52 ‰) and δ18O (5.07 ‰). Previously, a small number of chondritic meteorites with strong similarities to Rumuruti were described. They were called Carlisle Lakes-type chondrites and they comprise: Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, PCA91002, and PCA91241, as well as clasts in the Weatherford chondrite. All these meteorites are finds from hot and cold deserts having experienced various degrees of weathering. With Rumuruti, the first meteorite fall has been recognized that preserves the primary mineralogical and chemical characteristics of a new group of meteorites. Comparing all chondrites, the characteristic features can be summarized as follows: (a) basically chondritic chemistry with ordinary chondrite element patterns of refractory and moderately volatile lithophiles but higher abundances of S, Se, and Zn; (b) high degree of oxidation (37–41 mol% Fa in olivine, only traces of Fe, Ni-metals, occurrence of chalcopyrite); (c) exceptionally high Δ17O values of about 2.7 for bulk samples; (d) high modal abundance of olivine (~70 vol%); (e) Ti-Fe3+?rich chromite (~5.5 wt% TiO2); (f) occurrence of various noble metal-rich particles; (g) abundant chondritic breccias consisting of equilibrated clasts and unequilibrated lithologies. With Rumuruti, nine meteorite samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutiites) after the first and only fall among these meteorites. These meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite parent body.  相似文献   

19.
Abstract— Numerous models have been proposed to explain the formation of chondrules, but none can be reconciled with the highly diverse properties of these objects. Here the formation of chondrules by the surface melting and ablation of small planetesimals in nebula shock waves is investigated using a numerical model. It is shown that bodies between ~1 mm and 500 m in diameter would have produced molten droplets by ablation during gas drag in nebula shocks stronger than ~2.0 Mach. The properties of chondrules produced by ablation are estimated by comparison with meteorite fusion crusts and through consideration of the environment within the bow shock envelope of ablating planetesimals. It is suggested that most ablation chondrules will have broadly chondritic compositions with depletions in siderophile and chalcophile elements and relatively high volatile contents and textures that are mainly porphyritic. The formation of chondrules by ablation of planetesimals in shock waves was probably most important at a late stage in nebula history and occurred at the same time as chondrules formed by the melting of dust particles. The high abundance of dust particles relative to larger bodies at all stages of accretion implies that only a proportion of chondrules may have been formed by ablation and that genetic groups of chondrules with very different origins may coexist in meteorites.  相似文献   

20.
Abstract– The Dawn spacecraft carries a gamma‐ray and neutron detector (GRaND), which will measure and map the abundances of selected elements on the surface of asteroid 4 Vesta. We compare the variability of moderately volatile/refractory incompatible element ratios (K/Th and K/Ti) in howardite, eucrite, and diogenite (HED) meteorites with those in other achondrite suites that represent asteroidal crusts, because these ratios may be accurately measured by GRaND and likely reflect initial chemical compositions of the HED parent body. The K/Th and K/Ti variations can differentiate HED meteorites from angrites and some unique eucrite‐like lithologies. The results suggest that K, Th, and Ti abundances determined from GRaND data could not only confirm that Vesta is the parent body of HED meteorites but might also allow recognition of as‐yet unsampled compositional terranes on Vesta. Besides the K‐Th‐Ti systematics study, we propose a new three‐component mixing model for interpretation of GRaND spectra, required because the spatial resolution of GRaND is coarser than the spectral (compositional) heterogeneity of Vesta’s surface. The mixing model uses abundances of K, Ti, Fe, and Mg that will be analyzed more accurately than other prospective GRaND‐analyzed elements. We examine propagated errors due to GRaND analytical uncertainties and intrinsic errors that stem from an assumption introduced into the mixing model. The error investigation suggests that the mixing model can adequately estimate not only the diogenite/eucrite mixing ratio but also the abundances of most major and minor elements within the GRaND propagated errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号