首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfate‐reduction data from various anaerobic reactor configurations, e. g., upflow anaerobic sludge blanket reactor (UASBR), completely stirred tank reactor (CSTR), and batch reactor (BR) with synthetic wastewaters, having glucose and acetate as the substrates and different levels of sulfate, were evaluated to determine the level of sulfate‐reducing activity by sulfate‐reducing bacteria coupled to organic matter removal. Anaerobic reactors were observed for the degree of competition between sulfate‐reducing sulfidogens and methane producing bacteria during the degradation of glucose and acetate. Low sulfate‐reducing activity was obtained with a maximum of 20% of organic matter degradation with glucose‐fed upflow anaerobic sludge bed reactors (UASBRs), while a minimum of 2% was observed with acetate‐fed batch reactors. The highest sulfate removal performance (72–89%) was obtained from glucose fed‐UASB reactors, with the best results observed with increasing COD/SO4 ratios. UASB reactors produced the highest level of sulfidogenic activity, with the highest sulfate removal and without a performance loss. Hence, this was shown to be the optimum reactor configuration. Dissolved sulfide produced as a result of sulfate reduction reached 325 mg/L and 390 mg/L in CST and UASB reactors, respectively, and these levels were tolerated. The sulfate removal rate was higher at lower COD/SO4 ratios, but the degree of sulfate removal improved with increasing COD/SO4 ratios.  相似文献   

2.
At present the development together with an intensification of anaerobic processes calls for methods of observation and control. It is very important to know intermediate metabolites of anaerobic microorganisms and the activity of methanogenic ones. Presented analytical methods are GLC analyses of lower fatty acids, alcohols, aldehydes and ketones and components of biogas. The chromatography using steam as a mobile phase is also mentioned. The method of determining the fluorescent coenzyme F420 was tested and modified. This coenzyme is specific for methanogenic microorganisms and is closely linked with their activity. The determination of the total activity of the hydrogenase system of anaerobic microorganisms by means of the rate of the consumption and evolution of molecular hydrogen was also presented. The applicability and effectivenes of these methods were verified on natural samples. All the methods mentioned above give satisfactory results with available equipment, materials and techniques.  相似文献   

3.
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water‐quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub‐oxic to sulfate‐reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe2+/H2S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co‐precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub‐oxic conditions of the recharge phase, but iron sulfide (which co‐precipitates arsenic) is stable during the sulfate‐reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate‐reducing aquifer.  相似文献   

4.
Attenuation of Heavy Metals and Sulfate by Aluminium Precipitates in Acid Mine Drainage During the mixing of acid mine waters with nearly neutral tributaries, often precipitates are formed which are high in iron or aluminium. These precipitates cover the river bed for many kilometres. Near the town of Lehesten (Thuringian slate mining area), leachates of slate quarries and waste rock dumps contain high amounts of aluminium, sulfate, copper, nickel, zinc, manganese, and H+ ions as a result of the oxidation of incorporated pyrite. These leachates enter the brooks Loquitz, Kleine Sormitz, and Rehbach leading to the phenomenon named above. The contribution of the forming aluminium‐rich precipitates on the attenuation of sulfate and heavy metals by sorption or coprecipitation was studied by analysing the composition of water and sediment samples as well as samples of suspended matter. Sulfate is often considered as conservative tracer in acid mine drainage. However, sulfate does not behave conservatively in this system what might be explained by the adsorption of sulfate to the aluminium precipitates. Instead, conservative behaviour was found for calcium, potassium, chloride, zinc, manganese, and nickel. A formation of jurbanite can be excluded because of the low sulfate contents. The sulfate content of the sediment depends on the pH. At low pH values (4.8) the S/Al ratio corresponds to the theoretical ratio in basaluminite and decreases with rising pH. Sulfate is weakly bound to the solid phase and can easily be replaced by OH ions. A formation of basaluminite is possible at low pH values with a fluent transition to aluminium hydroxide. Therefore the precipitates are assumed to consist predominantly of aluminium hydroxide with sulfate being adsorbed to the surface.  相似文献   

5.
Although the anaerobic biodegradation of methyl tert‐butyl ether (MTBE) and tert‐butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA‐stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate‐reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio‐Sep® beads amended with 13C5‐MTBE, 13C1‐MTBE (only methoxy carbon labeled), or 13C4‐TBA. 13C‐DNA and 12C‐DNA extracted from the Bio‐Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert‐butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C‐labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE‐ and TBA‐degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate‐reducing bacteria and iron‐reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert‐butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross‐feeding on 13C‐labeled metabolites such as acetate.  相似文献   

6.
Distinguishing Iron-Reducing from Sulfate-Reducing Conditions   总被引:2,自引:0,他引:2  
Ground water systems dominated by iron‐ or sulfate‐reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS?, and S= species and denoted here as “H2S”). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron‐ and the sulfate‐reducing microorganisms that catalyze the production of Fe2+ and H2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2~0.2 to 0.8 nM). Conversely, if the Fe2+/H2S ratio was less than 0.30, consistent sulfate‐reducing (H2~1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron‐ and sulfate‐reducing zones or concomitant iron and sulfate reduction under nonelectron donor–limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems.  相似文献   

7.
Investigation on the Pollution Potential of Waterworks Sludges Several contaminated sludges from water treatment plants with known or estimated concentrations of trace elements were investigated for their leaching characteristics and long-term stability using standard and advanced test procedures. Potentially hazardous elements in the sludge are zinc, nickel, and arsenic with concentrations of up to 1.2 g/kg dry matter (mass). Preliminary sorption tests with synthetic sludge components like iron hydroxide, manganese oxide, silicate clay minerals, and chitine powder as a model organic component showed that Cu is associated with the organic phase wheras arsenic is predominantly bound to the iron oxide minerals. The recently suggested pHstat test procedure was used to assess the leaching characteristics of metals at typical pH values. This procedure was compared with the DEV-S4 test, the current standard test in Germany, consisting of a simple lixiviation of the solids with water, without pH control. The pHstat test yields results which are much better to interprete than those obtained by the DEV-S4 procedure. The iron and manganese sludges are well buffered against changes in pH and redox potential so that low pH values and/or reducing conditions can hardly occur. Thus, in deposited material a sudden leaching of heavy metals is unlikely and due to the presence of iron and manganese oxides the pentavalent arsenic is protected against conversion into the highly mobile trivalent form at neutral to low pH. Co-deposition with reducing organic matter and alkaline stabilisation material or waste (like fly ash) could influence the binding properties and should be strictly avoided.  相似文献   

8.
氧化还原条件对红枫湖沉积物磷释放影响的微尺度分析   总被引:7,自引:0,他引:7  
选取贵州红枫湖为研究对象,在实验室条件下模拟了自然、好氧和厌氧条件下沉积物内源磷的释放过程,联合应用微电极技术和沉积物磷形态分析对沉积物—水界面开展了微尺度观测与研究.结果表明,厌氧条件下红枫湖沉积物总磷含量显著降低,且主要是NaOH提取态磷(NaOH-P)和残渣态磷(rest-P)含量降低所致,厌氧条件下沉积物孔隙水中磷酸盐浓度明显升高,而好氧条件下沉积物孔隙水磷酸盐浓度显著降低,反映厌氧条件显著促进了红枫湖沉积物磷释放.厌氧条件下沉积物内部溶解氧浓度下降、硫还原活动增强可能是导致NaOH-P释放的主要原因.O_2浓度的降低加速了沉积物还原作用并产生大量H2S,进而与二价铁离子形成硫化亚铁沉淀,最终导致NaOH-P(Fe-P)释放到孔隙水中.好氧条件向厌氧条件的转换可通过改变沉积物内部pH值分布和微生物活动促使rest-P释放:厌氧条件下,厌氧微生物不仅可以消耗硫酸根产生H_2S,导致pH值降低,还可消耗有机质,将有机磷转变为无机磷.上述研究结果表明,沉积物—水界面氧化还原环境可影响沉积物氧渗透深度、pH值分布、微生物活动、硫循环以及有机质降解过程,进而控制沉积物磷的形态转化与释放.联合应用微电极技术和沉积物磷形态分析对湖泊沉积物—水界面开展微尺度观测研究是揭示沉积物内源磷释放机制与控制因素的有效途径.  相似文献   

9.
Precipitation of Aluminium and Phosphate Affected by Acidification Acidified waters often show elevated concentrations of Al (with up to 6 mg L–1 being not unusual). A pH increase resulting e.g. from mixing with non‐acidified water or from biological activities may be linked with Al precipitation. Up to now, this phenomenon was described for acid mine drainages. This investigation focuses on a whitish precipitate naturally formed in a brook of an atmospherically acidified catchment in the Ore Mountains, Germany. Based on infrared spectra the precipitate was identified as an Al‐hydroxosulfate with crystal water. A simulation of natural conditions in the laboratory showed that Al precipitated only if sulfate or phosphate ions were added to the solution. In the case of sulfate being added, the infrared spectrum of the precipitate was similar to the natural precipitate. 27Al NMR spectroscopy revealed tetrahedrally coordinated Al in some precipitates which evidences the participation of the tridecameric [Al13O4(OH)24(H2O)12]7+ cation beside other polymeric Al cations. Precipitation experiments subjected to the given conditions showed that the phosphate elimination from solution with Al was much higher than with Fe. With Al and Fe added together, the P elimination rate was likewise high, and phosphate was bound onto Al in the precipitate. This was demonstrated by SEM‐EDX spectroscopy. Based on these results we present a possible reaction mechanism. The precipitation of Al together with P allows a significant retention of both elements in sediments because in contrast to Fe, Al immobilizes phosphate even under anoxic conditions.  相似文献   

10.
By way of introduction the general fundamentals and kinetic setups of the competitive and non-competitive as well as substrate inhibition of cultures of microorganisms are stated. Investigated on a laboratory scale is the degradation of liquid pig slurry in a 600-1 stirring fermenter with discontinuous addition (pO2≧=30 = saturation) of methanol as external substrate by a yeast mixed culture of Metschnikowia and Pichia membranifaceans to utilize the steam-volatile fatty acids (12 g/l) and of Acetobacter methanolicus to utilize methanol. A stable fermentation with stable residual concentrations of 235 mg/l fatty acids, 142 mg/l mH4-N an 100 … 300 mg/l methanol for aperiod of 2400 h can be achieved.  相似文献   

11.
Before the 1991–1992 activity, a large andesite lava dome belonging to the penultimate Pinatubo eruptive period (Buag ∼ 500 BP) formed the volcano summit. Buag porphyritic andesite contains abundant amphibole-bearing microgranular enclaves of basaltic–andesite composition. Buag enclaves have lower K2O and incompatible trace element (LREE, U, Th) contents than mafic pulses injected in the Pinatubo reservoir during the 1991–1992 eruptive cycle. This study shows that Buag andesite formed by mingling of a hot, water-poor and reduced mafic magma with cold, hydrous and oxidized dacite. Depending on their size, enclaves experienced variable re-equilibration during mixing/mingling. Re-equilibration resulted in hydration, oxidation and transfer of mobile elements (LILE, Cu) from the dacite to the mafic melts and prompted massive amphibole crystallization. In Buag enclaves, S-bearing phases (sulfides, apatite) and melt inclusions in amphibole and plagioclase record the evolution of sulfur partition among melt, crystal and fluid phases during magma cooling and oxidation. At high temperature, sulfur is partitioned between andesitic melt and sulfides (Ni-pyrrhotite). Magma cooling, oxidation and hydration resulted in exsolution of a S–Cl–H2O vapor phase at the S-solubility minimum near the sulfide–sulfate redox boundary. Primary magmatic sulfide (pyrrhotite) and xenocrystic sulfide grains (pyrite), recycled together with olivines and pyroxenes from old mafic intrusives, were replaced by Cu-rich phases (chalcopyrite, cubanite) and, partially, by Ba–Sr sulfate. Sulfides degassed and transformed into residual spongy magnetite in response to fS2 drop during final magma ascent and decompression. Our research suggests that a complete evaluation of the sulfur budget at Pinatubo must take into account the en route S assimilation from the country rocks. Moreover, this study shows that the efficiency of sulfur transfer between mafic recharges and injected magmas is controlled by the extent and rate of mingling, hydrous flushing and melt oxidation. Vigorous mixing/mingling and transformation of the magmatic recharge into a spray of small enclaves is required in order to efficiently strip their primary S-content that otherwise remains locked in the sulfides. Hydrous flushing increases the magma oxidation state of the recharges and modifies their primary volatile concentrations that cannot be recovered by the study of late-formed mineral phases and melt inclusions. Conversely, S stored in both late-formed Cu-rich sulfides and interstitial rhyolitic melt represents the pre-eruptive sulfur budget immediately available for release from mafic enclaves during their decompression.  相似文献   

12.
Long‐term Assessment for the Leachate Release of Heavy Metals from Municipal Solid Waste Incineration Bottom Ash Monofills Municipal solid waste incineration (MSWI) bottom ash was investigated by chemical, mineralogical, and microbiological methods as well as leaching‐ and laboratory lysimeter tests. Compared to geological material bottom ash shows a high content of soluble salts, organic carbon, and heavy metals. The heavy metals are mainly bound in alloys and glas. Addition of oxic and acetic solutions quickly oxigenize the metal‐phases and alloys. Only fixation in newly formed phases like carbonates or hydroxides prevents heavy metal release till pH 7 in case of pH‐reduce. In the long‐term the acid buffer is reduced by the environmental acid input in combination with the release of buffering phases (mostly calcite). Internal acid producing processes like decay of organic matter or oxidation of sulfides are not important for the pH‐decrease. Cu, Ni, and Zn are first released between pH 7 and 6 (mainly Zn) and a second time at pH values below 5 (mainly Cu). Pb is significantly released at pH values below 5, Cr only at pH < 4. Mainly metals, alloys, and the rims of glas are destroyed by leaching. Phases like metal hydroxides (mainly Fe‐phases) or amorphous, water bearing Fe‐Al‐Si‐oxides are finally formed. Long‐term leaching by acetic fluids increases the total availability of heavy metals (except Cr) with increasing time. Kinetic effects including changing of metal binding forms seem to be responsible for this development. Within deposit conditions of limited gas exchange (closed system) the pH of the carbonate buffering zone can drop below pH 7 in case of very strong acid input and quickly cause an enhanced metal release. But in reality such a strong acid input is not to be expected. Calcite will buffer between pH 8 and 7 for a long time. Depending on the environmental conditions (water balance, acidity of rain) and landfill design (compaction, permeability, cover, thickness) it can take hundreds till thousands of years until metal release will start. The long‐term metal release of matter with an acid buffer like carbonates can be approximately determined only by short‐term tests with powder (e.g. pHstatic tests at pH 4).  相似文献   

13.
The input of organic substances(e.g.,rice straw)in rice field soils usually stimulates the production and emission of the greenhouse gas methane(CH4).However,the amount of CH4 derived from the applied rice straw,as well as the response of bacterial and archaeal communities during the methanogenic phase,are poorly understood for different rice field soils.In this study,samples of five different rice soils were amended with 13^C-labeled rice straw(RS)under methanogenic conditions.Immediately after RS addition,the RS-derived CH4 production rates were higher in soils(Uruguay,Fuyang)that possessed a stronger inherent CH4 production potential compared with other soils with lower inherent potentials(Changsha,the Philippines,Vercelli).However,soils with higher inherent potential did not necessarily produce higher amounts of CH4 from the RS applied,or vice versa.Quantitative PCR showed copy numbers of both bacteria and methanogens increased in straw-amended soils.High-throughput sequencing of 16 S rRNA genes showed distinct bacterial communities among the unamended soil samples,which also changed differently in response to RS addition.Nevertheless,RS addition generally resulted in all the rice field soils in a relative increase of primary fermenters belonging to Anaerolineaceae and Ruminococcaceae.Meanwhile,RS addition also generally resulted in a relative increase of Methanosarcinaceae and/or Methanocellaceae.Our results suggest that after RS addition the total amounts of RSderived CH4 are distinct in different rice field soils under methanogenic conditions.Meanwhile,there are potential core bacterial populations that are often involved in primary fermentation of RS under methanogenic conditions.  相似文献   

14.
Reduction of the Concentration of Bacteria and Coliphages along the Flowing Stretch of a Treated Sewage Channel The efficiency of surface waters to eliminate E. coli, fecal streptococci, Salmonella spp., and coliphages was evaluated in a small river which receives treated wastewater and which is rich in submerged macrophytes. The study took place between April and December, 1994. Total colony count, BOD5, O2 concentration and water temperature were determined in the river as well. As the river does not receive additional water downwards along its 17.2 km course, dilution effects could be ruled out as the cause for the elimination of the microorganisms. The reduction is assumed to happen rather due to sedimentation, grazing, and adsorption to the submerged waterplants. Immediately after discharge of the wastewater, the river water contained about 105 cfu/100 mL E. coli and 104 cfu/100 mL fecal streptococci, about 1000 pfu/100 mL coliphages, and, as a rule, was positive for salmonella in 10 mL. The reduction of E. coli, fecal streptococci, salmonella, clostridia, and coliphages at the end of the course was 1 to 2 orders of magnitude. This reduction took place mainly within the first 4.7 km, a part in which, due to low flowing velocities, suspended solids settle down efficiently. Besides, at the end of this part the submerged waterplants are especially abundant. The reduction of suspended solids correlated positively with that of BOD5, bacteria, and coliphages. The reduction of microorganisms was not sufficient to fulfill the requirements of the European Community guidelines for bathing waters and for surface waters used as drinking water source. The regenerating capacity of surface waters is not sufficient to eliminate pathogens from convenionally treated wastewater. Therefore, tertiary treatment is necessary to keep receiving waters reasonably free from pathogens.  相似文献   

15.
Understanding basic controls on aquifer microbiology is essential to managing water resources and predicting impacts of future environmental change. Previous theoretical and laboratory studies indicate that pH can influence interactions between microorganisms that reduce ferric iron and sulfate. In this study, we test the environmental relevance of this relationship by examining broad‐scale geochemical data from anoxic zones of aquifers. We isolated data from the U.S. Geological Survey National Water Information System for 19 principal aquifer systems. We then removed samples with chemical compositions inconsistent with iron‐ and sulfate‐reducing environments and evaluated the relationships between pH and other geochemical parameters using Spearman's rho rank correlation tests. Overall, iron concentration and the iron‐sulfide concentration ratio of groundwater share a statistically significant negative correlation with pH (P < 0.0001). These relationships indicate that the significance of iron reduction relative to sulfate reduction tends to increase with decreasing pH. Moreover, thermodynamic calculations show that, as the pH of groundwater decreases, iron reduction becomes increasingly favorable relative to sulfate reduction. Hence, the relative significance of each microbial reaction may vary in response to thermodynamic controls on microbial activity. Our findings demonstrate that trends in groundwater geochemistry across different regional aquifer systems are consistent with pH as a control on interactions between microbial iron and sulfate reduction. Environmental changes that perturb groundwater pH can affect water quality by altering the balance between these microbial reactions.  相似文献   

16.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition.  相似文献   

17.
Study of the Biological Degradation of Polycyclic Aromatic Hydrocarbons in a Laboratory-scale Plant A one-stage laboratory-scale wastewater treatment plant composed of a bubble column reactor with sedimentor and sludge recycle is fed with an oil/water emulsion from a contaminated site. The oil phase is highly contaminated with polycyclic aromatic hydrocarbons (PAH). The samples are taken regularly at defined points of the treatment plant (influent, reactor, return sludge, effluent). The analysis of PAH is performed by HPLC. We can show that all analysed PAH including the poorly degradable carcinogenic substances such as benzo[a]pyrene are biologically transformed. Additional measurements of the toxic and mutagenic potential of the wastewater show that in the laboratory-scale plant full removal of the carcinogenic potential is not achieved. This is due to the fact that during the biological transformation of higher condensated PAH mutagenic dead-end metabolites are produced.  相似文献   

18.
Glucose‐fed high‐rate UASB reactors were tested at three COD/SO4 ratios and hydraulic retention times to promote sulfate reducing activity and observe the effects on reactor performance. Different COD/SO4 ratios (20, 10, and 5) resulted in changes in organic matter removal, methane production, alkalinity, dissolved sulfide and biomass concentrations and profile. The COD removal dropped from 95 to 80–84 % at the lowest COD/SO4 ratio. Sulfate was removed at 79 to 89 % at the highest ratio and dropped to 72 to 74 % with increasing sulfate loading. Alkalinity was produced at higher levels with increasing sulfate loading. Specific methane production dropped with decreasing hydraulic retention times. Sulfate‐reducing activity used a maximum of 11.7 % of organic matter at the highest sulfate loading level, producing a slight shift to sulfate‐reducing activity in the substrate competition between sulfate‐reducing bacteria and methanogens. Increased sulfate loading at COD/SO4 ratios of 10 and 5 caused deterioration of the concentration profile of the sludge, resulting in biomass washout and decreased volatile fraction of biosolids in the reactors.  相似文献   

19.
This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO2 leakage problem as well as to field data from a CO2 production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO2 is leaking upward responds to the mass flow rate of CO2-water mixture.  相似文献   

20.
Spatial (10 different locations) and temporal (2 years) changes in characteristics of the Marmara Sea Sediments were monitored to determine interactions between the chemical and microbial diversity. The sediments were rich in terms of hydrocarbon, nitrate, Ni and microbial cell content. Denitrifying, sulfate reducing, fermentative and methanogenic organisms were co-abundant in 15 cm below the sea floor. The local variations in the sediments’ characteristics were more distinctive than the temporal ones. The sulfate and nitrate contents were the main drivers of the changes in the microbial community compositions. N and P were limited for microbial growth in the sediments, and their levels determined the total cell abundance and activity. Seasonal shifts in temperatures of the shallow sediments were also reflected in the active cell abundances. It was concluded that the Marmara Sea is a promising ecosystem for the further investigation of the ecologically important microbial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号