首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We determined terrestrial ages of ordinary chondrites from the Lewis Cliff stranding area, East Antarctica, on the basis of the concentrations of cosmogenic 10Be (t½; = 1.51 Ma), 26Al (t½; = 0.705 Ma), and 36Cl (t½; = 0.301 Ma). After an initial 26Al γ-ray survey of 91 meteorites suggested that many have terrestrial ages >0.1 Ma, we selected 62 meteorites for 10Be and 26Al measurements by accelerator mass spectrometry (AMS) and measured 36Cl in twelve of those. Low terrestrial ages (<0.1 Ma) were found for ~60% of the meteorites, whereas all others have ages between 0.1 and 0.5 Ma, except for one exceptional age of >2 Ma (Welten et al., 1997). Our major conclusions are: (1) The Lewis Cliff H-chondrites show similar ages to those from the Allan Hills icefields, but the L-chondrites are about a factor of 2 younger than those from Allan Hills, which indicates that Lewis Cliff is a younger stranding area. (2) The terrestrial age distributions at different parts of the Lewis Cliff stranding area generally agree with simple meteorite concentration models, although differences in weathering rate may also play a role. (3) We confirm that meteorites with natural thermoluminescence (TL) levels >80 krad are associated with low terrestrial ages (Benoit et al., 1992) but conclude that natural TL levels <80 krad can not be used to calculate the terrestrial age of a meteorite. Natural TL levels do seem useful to estimate relative terrestrial ages of large groups of meteorites and to determine differences in the surface exposure age of paired meteorite fragments. (4) Of the 62 meteorites measured with AMS, 31 were assigned to 11 different pairing groups, mainly on the basis of their cosmogenic nuclide record. The meteorites are estimated to represent between 42 and 52 distinct falls.  相似文献   

2.
Abstract Research on meteorite finds, especially those from the Antarctic and from desert regions in Australia, Africa, and America, has become increasingly important, notably in studies of possible changes in the nature of the meteorite flux in the past. One important piece of information needed in the study of such meteorites is their terrestrial age which can be determined using a variety of methods, including 14C, 36Cl, and 81Kr. Natural thermoluminescence (TL) levels in meteorites can also be used as an indicator of terrestrial age. In this paper, we compare 14C-determined terrestrial ages with natural TL levels in finds from the Prairie States (central United States), a group of finds from Roosevelt County (New Mexico, USA), and a group from the Sahara Desert. We find that, in general, the natural TL data are compatible with the 14C-derived terrestrial ages using a 20 °C TL decay curve for the Prairie States and Roosevelt County and a 30 °C decay curve for the Saharan meteorites. We also present TL data for a group of meteorites from the Sahara desert which has not been studied using cosmogenic radionuclides. Within these data there are distinct terrestrial age clusters which probably reflect changes in meteorite preservation efficiency over ~ 15, 000 years in the region.  相似文献   

3.
Abstract– We have examined the relationship between natural thermoluminescence (TL) and 26Al in 120 Antarctic meteorites in order to explore the orbital history and terrestrial ages of these meteorites. Our results confirm the observations of Hasan et al. (1987) which were based on 23 meteorites. For most meteorites there was a positive correlation between natural TL and 26Al, reflecting their similarity in decay rate under Antarctic conditions and thus in terrestrial age. For a small group with low TL and high 26Al a small perihelion was proposed. Within this group, natural TL decreases with terrestrial age as determined by 36Cl measurements, although the rate of TL decay is faster (half‐life approximately 10 ka) and the ages that can be determined are smaller (<200 ka) than for most meteorites. The faster decay rate and lower natural TL levels are a reflection of recent exposure to higher radiation doses and higher temperatures, since this history would populate less stable TL traps with smaller electron densities. We sort the 120 meteorites by perihelion and terrestrial age. The normal perihelion group range up to approximately 1000 ka and the small perihelion group range up to approximately 200 ka. An intermediate perihelion group tends to have short terrestrial ages (20–60 ka). There is acceptable agreement between most (34 out of 43) of our present terrestrial age estimates and those determined by isotopic means, the exceptions reflecting complex irradiation histories, long burial times in the Antarctic, or other issues.  相似文献   

4.
Abstract— We measured the concentrations of noble gases in 32 ordinary chondrites from the Dar al Gani (DaG) region, Libya, as well as concentrations of the cosmogenic radionuclides 14C, 10Be, 26Al, 36Cl, and 41Ca in 18 of these samples. Although the trapped noble gases in five DaG samples show ratios typical of solar or planetary gases, in all other DaG samples, they are dominated by atmospheric contamination, which increases with the degree of weathering. Cosmic ray exposure (CRE) ages of DaG chondrites range from ?1 Myr to 53 Myr. The CRE age distribution of 10 DaG L chondrites shows a cluster around 40 Myr due to four members of a large L6 chondrite shower. The CRE age distribution of 19 DaG H chondrites shows only three ages coinciding with the main H chondrite peak at ?7 Myr, while seven ages are <5 Myr. Two of these H chondrites with short CRE ages (DaG 904 and 908) show evidence of a complex exposure history. Five of the H chondrites show evidence of high shielding conditions, including low 22Ne/21Ne ratios and large contributions of neutron‐capture 36Cl and 41Ca. These samples represent fragments of two or more large pre‐atmospheric objects, which supports the hypothesis that the high H/L chondrite ratio at DaG is due to one or more large unrecognized showers. The 14C concentrations correspond to terrestrial ages <35 kyr, similar to terrestrial ages of chondrites from other regions in the Sahara but younger than two DaG achondrites. Despite the loss of cosmogenic 36Cl and 41Ca during oxidation of metal and troilite, concentrations of 36Cl and 41Ca in the silicates are also consistent with 14C ages <35 kyr. The only exception is DaG 343 (H4), which has a 41Ca terrestrial age of 150 ± 40 kyr. This old age shows that not only iron meteorites and achondrites but also chondrites can survive the hot desert environment for more than 50 kyr. A possible explanation is that older meteorites were covered by soils during wetter periods and were recently exhumed by removal of these soils due to deflation during more arid periods, such as the current one, which started ?3000 years ago. Finally, based on the 26Al/21Ne and 10Be/21Ne systematics in 16 DaG meteorites, we derived more reliable estimates of the 10Be/21Ne production rate ratio, which seems more sensitive to shielding than was predicted by the semi‐empirical model of Graf et al. (1990) but less sensitive than was predicted by the purely physical model of Leya et al. (2000).  相似文献   

5.
Abstract— Miono et al. (1990) and Miono and Nakanishi (1994) have proposed that the build‐up of natural thermoluminescence (TL) in a drained layer directly below the meteorite fusion crust can be used to determine terrestrial ages of meteorites in the 40 to 200 ka range. We have measured the natural TL of the drained layer of 15 meteorites. The data indicate that this technique could be used to determine terrestrial ages of meteorites with ages <200 ka, after which TL equilibrium is reached. Comparison of TL build‐up with terrestrial ages for a suite of Antarctic meteorites suggests that the meteorites have been exposed to temperatures of 0 to 5 °C. The close correspondence between natural TL levels and surface exposure TL growth curves suggest that Allan Hills meteorites with ages <200 ka have spent a significant portion of their terrestrial history exposed on the ice surface, rather than being buried in the ice sheet. The technique is, however, sensitive to thermal history; and, for Antarctic meteorites with terrestrial ages <200 ka, natural TL of the drained zone largely reflects exposure on the ice surface.  相似文献   

6.
Abstract— The Noblesville meteorite is a genomict, regolith breccia (H6 clasts in H4 matrix). Mössbauer analysis confirms that Noblesville is unusually fresh, not surprising in view of its recovery immediately after its fall. It resembles “normal” H4–6 chondrites in its chemical composition and induced thermoluminescence (TL) levels. Thus, at least in its contents of volatile trace elements, Noblesville differs from other H chondrite, class A regolith breccias. Noblesville's small pre-atmospheric mass and fall near Solar maximum and/or its peculiar orbit (with perihelion <0.8 AU as shown by natural TL intensity) may partly explain its levels of cosmogenic radionuclides. Its cosmic ray exposure age of ~ 44 Ma, is long, is equalled or exceeded by <3% of all H chondrites, and also differs from the 33 ± 3 Ma mean exposure age peak of other H chondrite regolith breccias. One whole-rock aliquot has a high, but not unmatched, 129Xe/132Xe of 1.88. While Noblesville is now among the chondritic regolithic breccias richest in solar gases, elemental ratios indicate some loss, especially of He, perhaps b; impacts in the regolith that heated individual grains. While general shock-loading levels in Noblesville did not exceed 4 GPa, individual clasts record shock levels of 5–10 GPa, doubtless acquired prior to lithification of the whole-rock meteoroid.  相似文献   

7.
Abstract— We present concentration and isotopic composition of He, Ne, and Ar in ten chondrites from the Nullarbor region in Western Australia as well as the concentrations of 84Ke, 129Xe, and 132Xe. From the measured cosmogenic 14C concentrations (Jull et al. 1995), shielding‐corrected production rates of 14C are deduced using cosmogenic 22Ne/21Ne ratios. For shielding conditions characterized by 22Ne/21Ne >1.10, this correction becomes significant and results in shorter terrestrial ages. The exposure ages of the ten Nullarbor chondrites are in the range of values usually observed in ordinary chondrites. Some of the meteorites have lost radiogenic gases as well as cosmogenic 3He. Most of the analyzed specimens show additional trapped Ar, Kr, and Xe of terrestrial origin. The incorporation of these gases into weathering products is common in chondrites from hot deserts.  相似文献   

8.
Abstract— Natural and induced thermoluminescence (TL) data are reported for 12 meteorites recovered from the Allan Hills region of Antarctica by the European field party during the 1988/89 field season. The samples include one with extremely high natural TL, ALH88035, suggestive of exposure to unusually high radiation doses (i.e., low degrees of shielding), and one, ALH88034, whose low natural TL suggests reheating within the last 105 years. The remainder have natural TL values suggestive of terrestrial ages similar to those of other meteorites from Allan Hills. ALH88015 (L6) has induced TL data suggestive of intense shock. TL sensitivities of these meteorites are generally lower than observed falls of their petrologic types, as is also observed for Antarctic meteorites in general. Acid-washing experiments indicate that this is solely the result of terrestrial weathering rather than a nonterrestrial Antarctic—non-Antarctic difference. However, other TL parameters, such as natural TL and induced peak temperature-width, are unchanged by acid washing and are sensitive indicators of a meteorite's metamorphic and recent radiation history.  相似文献   

9.
Abstract— We report concentrations of cosmogenic 10Be, 26Al, 36Cl, and 41Ca in the metal phase of 26 ordinary chondrites from Frontier Mountain (FRO), Antarctica, as well as cosmogenic 14C in eight and noble gases in four bulk samples. Thirteen out of 14 selected H chondrites belong to two previously identified pairing groups, FRO 90001 and FRO 90174, with terrestrial ages of ?40 and ?100 kyr, respectively. The FRO 90174 shower is a heterogeneous H3–6 chondrite breccia that probably includes more than 300 individual fragments, explaining the high H/L chondrite ratio (3.8) at Frontier Mountain. The geographic distribution of 19 fragments of this shower constrains ice fluctuations over the past 50–100 kyr to less than ?40 m, supporting the stability of the meteorite trap over the last glacial cycle. The second H‐chondrite pairing group, FRO 90001, is much smaller and its geographic distribution is mainly controlled by wind‐transport. Most L‐chondrites are younger than 50 kyr, except for the FRO 93009/01172 pair, which has a terrestrial age of ?500 kyr. These two old L chondrites represent the only surviving members of a large shower with a similar preatmospheric radius (?80 cm) as the FRO 90174 shower. The find locations of these two paired L‐chondrite fragments on opposite sides of Frontier Mountain confirm the general glaciological model in which the two ice flows passing both ends of the mountain are derived from the same source area on the plateau. The 50 FRO meteorites analyzed so far represent 21 different falls. The terrestrial ages range from 6 kyr to 500 kyr, supporting the earlier proposed concentration mechanism.  相似文献   

10.
Abstract– The collection of approximately 3300 meteorites from the Queen Alexandra Range (QUE) area, Antarctica, is dominated by more than 2000 chondrites classified as either L5 or LL5. Based on concentrations of the cosmogenic radionuclides 10Be, 26Al, 36Cl, and 41Ca in the metal and stone fraction of 16 QUE L5 or LL5 chondrites, we conclude that 13 meteorites belong to a single meteorite shower, QUE 90201, with a large preatmospheric size and a terrestrial age of 125 kyr. Members of this shower have properties typical of L (e.g., pyroxene composition) and LL chondrites (e.g., metal abundance and composition), as well as properties intermediate between the L and LL groups (e.g., olivine composition), and is thus best described as an L/LL5 chondrite. Based on comparison with model calculations, the measured radionuclide concentrations in the metal and stone fractions of QUE 90201 indicate irradiation in an object with a preatmospheric radius of approximately 150 cm, representing one of the largest chondrites known so far. Based on the abundance of small L5 and LL5 chondrites at QUE and their distinct mass distribution, we conclude that the QUE 90201 shower includes up to 2000 fragments with a total recovered mass of 60–70 kg, <1% of the preatmospheric mass of approximately 50,000 kg. The mass distribution of the QUE 90201 shower suggests that the meteoroid experienced catastrophic atmospheric fragmentation(s), either because it was a fragile object or it had a high entry velocity.  相似文献   

11.
Abstract— We measured concentrations and isotopic ratios of noble gases in enstatite (E) chondrites Allan Hills (ALH) 85119 and MacAlpine Hills (MAC) 88136. These two meteorites contain solar and cosmogenic noble gases. Based on the solar and cosmogenic noble gas compositions, we calculated heliocentric distances, parent body exposure ages, and space exposure ages of the two meteorites. The parent body exposure ages are longer than 6.7 Ma for ALH 85119 and longer than 8.7 Ma for MAC 88136. The space exposure ages are shorter than 2.2 Ma for ALH 85119 and shorter than 3.9 Ma for MAC 88136. The estimated heliocentric distances are more than 1.1 AU for ALH 85119 and 1.3 AU for MAC 88136. Derived heliocentric distances indicate the locations of parent bodies in the past when constituents of the meteorites were exposed to the Sun. From the mineralogy and chemistry of E chondrites, it is believed that E chondrites formed in regions within 1.4 AU from the Sun. The heliocentric distances of the two E chondrite parent bodies are not different from the formation regions of E chondrites. This may imply that heliocentric distances of E chondrites have been relatively constant from their formation stage to the stage of exposure to the solar wind.  相似文献   

12.
Neon produced by solar cosmic rays in ordinary chondrites   总被引:1,自引:0,他引:1       下载免费PDF全文
Solar‐cosmic‐ray‐produced Ne (SCR‐Ne), in the form of low cosmogenic 21Ne/22Ne ratios (21Ne/22Necos <0.8), is more likely to be found in rare meteorite classes, like Martian meteorites, than in ordinary chondrites. This may be the result of a sampling bias: SCR‐Ne is better preserved in meteorites with small preatmospheric radii and these specimens are often only studied if they belong to unusual or rare classes. We measured He and Ne isotopic concentrations and nuclear tracks in 25 small unpaired ordinary chondrites from Oman. Most chondrites have been intensively heated during atmospheric entry as evidenced by the disturbed track records, the low 3He/21Ne ratios, the low 4He concentrations, and the high peak release temperatures. Concentration depth profiles indicate significant degassing; however, the Ne isotopes are mainly undisturbed. Remarkably, six chondrites have low 21Ne/22Necos in the range 0.711–0.805. Using a new physical model for the calculation of SCR production rates, we show that four of the chondrites contain up to ~20% of SCR‐Ne; they are analyzed in terms of preatmospheric sizes, cosmic ray exposure ages, mass ablation losses, and orbits. We conclude that SCR‐Ne is preserved, regardless of the meteorite class, in specimens with small preatmospheric radii. Sampling bias explains the predominance of SCR‐Ne in rare meteorites, although we cannot exclude that SCR‐Ne is more common in Martian meteorites than it is in small ordinary chondrites.  相似文献   

13.
We describe the geological, geomorphological, and paleoclimatic setting of the Sahara of North Africa in particular, focused on the main meteorite dense collection areas (DCA; Morocco, Algeria, Tunisia, and Libya). We report on the outcome of several meteorite recovery field expeditions in Morocco and Tunisia since 2008, by car and by foot, that applied systematic search methods. The number of meteorites collected is 41 ordinary chondrites and one brachinite. The statistics of unpaired ordinary chondrites indicates that H chondrites are more abundant (21) than L chondrites (12), while LL chondrites are rare (2). Our meteorite density estimates for Tunisia and Morocco are in the order of magnitude of 1 met km?2. An estimate of the total maximum number of meteorites that could be recovered from the Sahara is 780,000 meteorites. We selected 23 meteorites from Aridal, Bou Kra, Bir Zar, and Tieret DCAs for 14C dating. The results show a wide range of terrestrial ages from 0.4 to more than 40 kyr with a majority of meteorites showing ages between 0.4 and 20 kyr. The weathering degree of these meteorites is ranges from minor (W1) to strong (W4). The highest weathering grades result from repeated oscillations between high and low humidity in the Sahara. However, there appears to be no correlation between weathering grade and terrestrial age of meteorites.  相似文献   

14.
Abstract— We have measured the natural and induced thermoluminescence (TL) of seven lunar meteorites in order to examine their crystallization, irradiation, and recent thermal histories. Lunar meteorites have induced TL properties similar to Apollo samples of the same provenance (highland or mare), indicating similar crystallization and metamorphic histories. MacAlpine Hills 88104/5 has experienced the greatest degree of impact/regolith processing among the highland-dominated meteorites. The basaltic breccia QUE 94281 is dominated by mare component but may also contain a significant highland component. For the mare-dominated meteorites, EET 87521 may have a significant highland impact-melt component, while Asuka 881757 and Y-793169 have been heavily shocked. The thermal history of Y-793169 included slow cooling, either during impact processing or during its initial crystallization. Our natural TL data indicate that most lunar meteorites have apparently been irradiated in space a few thousand years, with most <15,000 a. Elephant Moraine 87521 has the lowest irradiation exposure time, being <1,000 a. Either the natural TL of ALHA81005, Asuka 881757 and Y-82192 was only partially reset by lunar ejection or these meteorites were in small perihelia orbits (≤0.7 AU).  相似文献   

15.
Abstract— We used the nuclear reaction 37Cl (n,γ) 38Ar, achieved during neutron irradiation for dating meteorites by the 39Ar‐40Ar technique, to calculate the elemental Cl concentration of 132 samples of 94 different meteorites (mostly finds) representing several different classes. determined k and ca concentrations are also reported. Total [Cl] varies considerably, both among meteorites of the same class and among different meteorite classes. The range in [Cl] is approximately 15–177 ppm for ordinary chondrites; approximately 24–650 ppm for enstatite chondrites; approximately 4–177 ppm for eucrites; approximately 7–128 ppm for mesosiderites; approximately 35–268 ppm for acapulcoites and lodranites; and approximately 12–507 ppm for winonaites and iron silicates. As expected, most differentiated meteorites have lower [Cl] compared to chondrites and iron silicates. Analyses of 11 interior samples (~0.1 g each) of a large L6 chondrite varied over 68–129 ppm, which is a measure of the homogeneity of Cl distribution. By evaluating Ar release during stepwise sample degassing, we separated the Cl into low‐temperature and high‐temperature components, the former of which may consist of terrestrial contamination. Most samples show low‐temperature Cl concentrations of <40 ppm, but for several samples terrestrial Cl contamination constitutes significant fractions of the total Cl. Among most differentiated meteorites, finds show considerably greater low‐temperature [Cl] compared to falls.  相似文献   

16.
The data on the concentration of cosmogenic neon isotopes and the density of cosmic-ray tracks in about 600 ordinary chondrites were analyzed. For ordinary chondrites of all chemical classes, the dispersion of the ratios between cosmogenic isotopes of neon, (22Ne/21Ne) c , and a fraction of meteorites with high rates of cosmic-ray-track formation were demonstrated to decrease with increasing cosmic-ray-exposure age. Most likely, these effects are related to the fact that chondrites of small exposure ages are more frequent among meteorites with low degrees of shielding (small sizes), probably because smaller meteorites are placed into Earth-crossing orbits faster than larger ones. This, in turn, is attributed to more effective insertion of small asteroid-belt bodies into resonances, most likely due to the diurnal Yarkovsky effect.  相似文献   

17.
Abstract— Cosmic‐ray exposure ages calculated from cosmogenic noble gas nuclides are reported for 57 enstatite (E) chondrites, 43 of them were measured for the first time. With a total of 62 individual E chondrites (literature and this data, corrected for pairing) the observed spectrum of ages ranges between 0.07 and 66 Ma. Three clusters seem to develop at about 3.5, 8, and 25 Ma, respectively. Since the uncertainty of ages is estimated to be ~20% (in contrast to 10 to 15% for ordinary chondrites) and the number of examined samples is still comparatively small, these peaks have to be confirmed by more measurements. Regarding the two subgroups, EH and EL chondrites, no systematic trend is apparent in the distribution of cosmic‐ray exposure ages. Several E chondrites yield significantly lower 38Ar ages compared to those calculated from cosmogenic 3He and 21Ne. For these E chondrites, we suggest a reduction of cosmogenic 38Ar as a result of weathering. In order to prove the possible influence of terrestrial alteration on the cosmogenic noble gas record of E‐chondritic material, we simulated terrestrial weathering in an experiment of 12 weeks duration. The treatment showed that a significant amount of cosmogenic 38Ar is lost on Earth by the influence of water.  相似文献   

18.
We measured the concentrations and isotopic compositions of He, Ne, and Ar in 14 fragments from 12 different meteorites: three carbonaceous chondrites, six L chondrites (three most likely paired), one H chondrite, one R chondrite, and one ungrouped chondrite. The data obtained for the CV3 chondrites Ramlat as Sahmah (RaS) 221 and RaS 251 support the hypothesis of exposure age peaks for CV chondrites at approximately 9 Ma and 27 Ma. The exposure age for Shi?r 033 (CR chondrite) of 7.3 Ma is also indicative of a possible CR chondrite exposure age peak. The three L chondrites Jiddat al Harasis (JaH) 091, JaH 230, and JaH 296, which are most likely paired, fall together with Hallingeberg into the L chondrite exposure age peak of approximately 15 Ma. The two L chondrites Shelburne and Lake Torrens fall into the peaks at approximately 40 Ma and 5 Ma, respectively. The ages for Bassikounou (H chondrite) and RaS 201 (R chondrite) are approximately 3.5 Ma and 5.8 Ma, respectively. Six of the studied meteorites show clear evidence for 3He diffusive losses, the deficits range from approximately 17% for one Lake Torrens aliquot to approximately 45% for RaS 211. The three carbonaceous chondrites RaS 221, RaS 251, and Shi?r 033 all have excess 4He, either of planetary or solar origin. However, very high 4He/20Ne ratios occur at relatively low 20Ne/22Ne ratios, which is unexpected and needs further study. The measured 40Ar ages fit well into established systematics. They are between 2.5 and 4.5 Ga for the carbonaceous chondrites, older than 3.6 Ga for the L and H chondrites, and about 2.4 Ga for the R chondrite as well as for the ungrouped chondrite. Interestingly, none of our studied L chondrites has been degassed in the 470 Ma break‐up event. Using the amount of trapped 36Ar as a proxy for noble gas contamination due to terrestrial weathering we are able to demonstrate that the samples studied here are not or only very slightly affected by terrestrial weathering (at least in terms of their noble gas budget).  相似文献   

19.
Abstract– Xenoliths are inclusions of a given meteorite group embedded in host meteorites of a different group. Xenoliths with dimensions between a few μm and about 1 mm (microxenoliths) are “meteorite‐trapped” analogues of micrometeorites collected on the Earth. However, they have the unique features of sampling the zodiacal cloud (1) at more ancient times than those sampled by micrometeorites and (2) at larger distances from the Sun (corresponding to the asteroid Main Belt) than that sampled by micrometeorites (1 AU). Herein we describe a systematic search for new xenoliths and microxenoliths in H chondrites, aimed at determining their abundance in these ordinary chondrites, analyzing their mineralogy, and searching for possible correlations with host meteorite properties. Sixty‐six sections from 40 meteorites have been analyzed. Twenty‐four new xenoliths have been discovered. About 87% of them are microxenoliths (i.e., <1 mm), only three are >1 mm in their largest dimension. All the newly discovered xenoliths and microxenoliths are composed of carbonaceous chondritic material. Hence, the zodiacal cloud was dominated by carbonaceous material even in past epochs. All the new xenoliths and microxenoliths have been found in regolith breccias. Hydrous‐phase‐rich xenoliths and microxenoliths in H4 and H5 chondrites attest that their embedding happened after the end of the thermal metamorphism. All these data suggest that xenoliths and microxenoliths were embedded when their host meteorites were part of the parent body regolith. This, combined with the H chondrite impact age distribution, attests that the embedding may have happened as early as 3.5 Gyr ago.  相似文献   

20.
Abstract— In this review, we summarize the data published up to December 2001 on the porosity and density of stony meteorites. These data were taken from 925 samples of 454 different meteorites by a variety of techniques. Most meteorites have densities on the order of 3 to 4 g/cm3, with lower densities only for some volatile‐rich carbonaceous meteorites and higher densities for stony irons. For the vast majority of stones, porosity data alone cannot distinguish between different meteorite compositions. Average porosities for most meteorite classes are around 10%, though individual samples can range as high as 30% porosity. Unbrecciated basaltic achondrites appear to be systematically less porous unless vesicles are present. The measured density of ordinary chondrites is strongly controlled by the amount of terrestrial weathering the sample has undergone with porosities steadily dropping with exposure to the terrestrial environment. A theoretical grain density based on composition can model “pre‐weathered” porosities. The average model porosity for H and LL chondrites is 10%, while L chondrite model porosities average only 6%, a statistically significant difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号