首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— We studied the elemental and isotopic abundances of noble gases (He, Ne, Ar in most cases, and Kr, Xe also in some cases) in individual chondrules separated from six ordinary, two enstatite, and two carbonaceous chondrites. Most chondrules show detectable amounts of trapped 20Ne and 36Ar, and the ratio (36Ar/20Ne)t (from ordinary and carbonaceous chondrites) suggests that HL and Q are the two major trapped components. A different trend between (36Ar/20Ne)t and trapped 36Ar is observed for chondrules in enstatite chondrites indicating a different environment and/or mechanism for their formation compared to chondrules in ordinary and carbonaceous chondrites. We found that a chondrule from Dhajala chondrite (DH‐11) shows the presence of solar‐type noble gases, as suggested by the (36Ar/20Ne)t ratio, Ne‐isotopic composition, and excess of 4He. Cosmic‐ray exposure (CRE) ages of most chondrules are similar to their host chondrites. A few chondrules show higher CRE age compared to their host, suggesting that some chondrules and/or precursors of chondrules have received cosmic ray irradiation before accreting to their parent body. Among these chondrules, DH‐11 (with solar trapped gases) and a chondrule from Murray chondrite (MRY‐1) also have lower values of (21Ne/22Ne)c, indicative of SCR contribution. However, such evidences are sporadic and indicate that chondrule formation event may have erased such excess irradiation records by solar wind and SCR in most chondrules. These results support the nebular environment for chondrule formation.  相似文献   

2.
Abstract— We report noble gas data for 37 H chondrites collected from the Allan Hills by EUROMET in the 1988–1989 field season. Among these are 16 specimens with high levels (>100 krad) of natural thermoluminescence (NTL), originally interpreted as signaling their derivation from a single meteoroid with an orbit that became Earth‐crossin‐100 ka ago. One of these 16 is an H3 chondrite with a cosmic‐ray exposure age of ~33 Ma and clearly represents a separate fall. The other 15 H4–6 chondrites derive from three separate meteoroids, each of which is represented by a five or six member group. These groups have mean exposure ages of 3.7, 4.1, and 6.6 Ma: the middle‐group members all contain solar Ne. The two younger groups also seem to each include a few H chondrites with normal NTL levels. Measurements of cosmogenic 10Be (1.5 Ma), 26AI (710 ka), and 36CI (301 ka) in 14 of the high‐NTL chondrites indicate that all reflect a simple irradiation history. In contrast, many of a different (38 member) randomly selected suite of Antarctic H chondrites seem to have different cosmic‐ray irradiation histories. The 3.7 and 6.6 Ma groups from the 37 member Allan Hills suite come from about 5–30 and about 5–10 cm depths in 80–125 and 60–125 cm radius meteoroids, respectively.  相似文献   

3.
Abstract— Micrometeorites (MMs) currently represent the largest steady‐state mass flux of extraterrestrial matter to Earth and may have delivered a significant fraction of volatile elements and organics to the Earth's surface. Nitrogen and noble gases contents and isotopic ratios have been measured in a suite of 17 micrometeorites recovered in Antarctica (sampled in blue ice at Cap Prudhomme) and Greenland (separated from cryoconite) that have experienced variable thermal metamorphism during atmospheric entry. MMs were pyrolized using a CO2 laser and the released gases were analyzed for nitrogen and noble gas abundances and isotopic ratios by static mass spectrometry after specific purification. Noble gases are a mixture of cosmogenic, solar, atmospheric, and possibly chondritic components, with atmospheric being predominant in severely heated MMs. δ15N values vary between ?240 ± 62‰ and +206 ± 12‰, with most values being within the range of terrestrial and chondritic signatures, given the uncertainties. Crystalline MMs present very high noble gas contents up to two orders of magnitude higher than carbonaceous chondrite concentrations. In contrast, nitrogen contents between 4 ppm and 165 ppm are much lower than those of carbonaceous chondrites, evidencing either initially low N content in MMs and/or degradation of phases hosting nitrogen during atmospheric entry heating and terrestrial weathering. Assuming that the original N content of MMs was comparable to that of carbonaceous chondrites, the contribution of nitrogen delivery by these objects to the terrestrial environment would have been probably marginal from 3.8 Gyr ago to present but could have been significant (?10%) in the Hadean, and even predominant during the latest stages of terrestrial accretion.  相似文献   

4.
Abstract— Cosmic-ray produced nuclear tracks and noble gases have been studied in the martian orthopyroxenite Allan Hills 84001 to delineate its cosmic-ray exposure history, preatmospheric size, and fall characteristics. A K-Ar age of 3.9 Ga, cosmic-ray exposure duration of 16.7 Ma, and a preatmospheric radius of 10 cm have been deduced from the noble gas and track data. The track data suggest ALH 84001 to be a single fall that has suffered atmospheric mass ablation in excess of 85%, higher than the value deduced for the shergottites, ALHA 77005, EETA 79001, and Shergotty. The formation age, as well as the cosmic-ray exposure duration, determined in this work are in good agreement with values reported earlier and are distinctly different from other shergottite, nakhlite, and chassignite (SNC) meteorites analysed so far. The high cosmogenic 22Ne/21Ne ratio of 1.22 most probably reflects an effect due to non-chondritic composition of ALH 84001 as the track data suggest high shielding (<5cm) for the analysed samples. There are signatures in the noble gas data that indicate the possible presence of trapped Ar and Ne of martian atmospheric origin in ALH 84001.  相似文献   

5.
The elemental and isotopic composition of noble gases in six samples from different depths of the Luna-24 drill core soil column, obtained by mass spectrometric analyses, are presented and the results are compared with those obtained by others for additional samples from the same drill core. The elemental ratios of22Ne/132Xe, seem to indicate a low degree of maturity for the majority of the samples in this soil column. A detailed study of the cosmogenic isotopes, particularly21Ne, in samples from different depths suggests that the entire soil column could be divided into two zones. Most of the samples in the upper zone fit to a regolith deposition model where about a meter of material got rapidly deposited and was irradiated as a single slab for a period of about (500±100) m. y. The samples from the lower zone, however, show cosmogenic21Nec contribution due to predepositional irradiation.  相似文献   

6.
Abstract— We have measured Ne, Ar, Kr and Xe in Si2O3 “smokes” that were condensed on Al substrates, vapor-deposited with various mixtures of CH4, NH3, H2O and noble gases at 10 K and subsequently irradiated with 1 MeV protons to simulate conditions during grain mantle formation in interstellar clouds. The noble gases were analyzed using conventional stepwise heating and static noble gas mass spectrometry. Neither Ne nor Ar is retained by the samples upon warming to room temperature, but Xe is very efficiently trapped and retained. Kr is somewhat less effectively retained, typically depleted by factors of about 10–20 relative to Xe. Isotopic fractionation favoring the heavy isotopes of Xe and Kr of about 5–10‰/amu is observed. Correlations between the specific chemistry of the vapor deposition and heavy noble gas retention are most likely the result of competition by the various species for irradiation-produced trapping sites. The concentration of Xe retained by some of these smokes exceeds that observed in phase Q of meteorites and, like phase Q, they do not seem to be carriers of the light noble gases. Such artificially prepared material may, therefore, offer clues concerning the incorporation of the heavy planetary noble gases in meteoritic material and the nature of phase Q.  相似文献   

7.
We report light noble gas (He, Ne, and Ar) concentrations and isotopic ratios in 11 achondrites, Tafassasset (unclassified primitive achondrite), Northwest Africa (NWA) 12934 (angrite), NWA 12573 (brachinite), Jiddat al Harasis (JaH) 809 (ureilite), NWA 11562 (ungrouped achondrite), four lodranites (NWA 11901, NWA 7474, NWA 6685, and NWA 6484), NWA 2871 (acapulcoite), and Sahara 02029 (winonaite), most of which have not been previously studied for noble gases. We discuss their noble gas isotopic composition, determine their cosmogenic nuclide content, and systematically calculate their cosmic ray exposure (CRE) and gas retention ages. In addition, we estimate their preatmospheric radii and preatmospheric masses based on the shielding parameter (22Ne/21Ne)cos. None of the studied meteorites shows evidence of contribution from solar cosmic rays (SCRs). JaH 809 and NWA 12934 show evidence of 3He diffusive losses of >90% and 40%, respectively. The winonaite Sahara 02029 has lost most of its noble gases, either during or before analysis. The average CRE age of Tafassasset of ~49 Ma is lower than that reported by Patzer et al. (2003), but is consistent with it within the uncertainties; this confirms that Tafassasset and CR chondrites are not source paired, CR chondrites having CRE ages from 1 to 25 Ma (Herzog & Caffee, 2014). The ureilite JaH 809 has a CRE age of ~5.4 Ma, which falls into the typical range of exposure ages for ureilites; the angrite NWA 12934 has a CRE age of ~49 Ma, which is within the main range of exposure ages reported for angrites (0.2–56 Ma). We calculate a CRE age of ~2.4 Ma for the brachinite NWA 12573, which falls into a possible “cluster” in the brachinite CRE age histogram around ~3 Ma. Three lodranites (NWA 11901, NWA 7474, and NWA 6685) have CRE ages higher than the average CRE ages of lodranites measured so far, NWA 11901 and NWA 6685 having CRE ages far higher than the CRE age already reported by Li et al. (2019) on NWA 8118. The measured 40K-40Ar gas retention ages fit well into established systematics. The gas retention age of Tafassasset is consistent, within respective uncertainties, with that previously calculated by Patzer et al. (2003). Our study indicates that Tafassasset originates from a meteoroid with a preatmospheric radius of ~20 cm, however discordant with the radius of ~85 cm inferred in a previous study (Patzer et al., 2003).  相似文献   

8.
《Icarus》1986,66(2):195-210
A model for the selective loss of noble gases by thermal escape of the gases from planetesimals as they grow to form the terrestrial planets has been developed. The initial elemental and isotopic abundance ratios are assumed to be solar. Competition between gravitational binding and escape determines the degree of fractionation that occurs. Two classes of planetesimals can be formed on a time scale consistent with modern models of accretion. One class is depleted in neon and, in some cases, partly in 36Ar. The other class is neon rich. Subject to the validity of some assumptions regarding loss of planetary atmospheres following collisions between very large embryo planets and a strong radial dependence in the rate of accumulation of neon-rich planetesimals, the mechanism can account for all known properties of the noble gas volatiles on the terrestrial planets except one. This is the 36Ar/38Ar ratios for Earth and Mars which are predicted to be much lower than observed. This failure is probably fatal for the hypothesis.  相似文献   

9.
New petrography, mineral chemistry, and whole rock major, minor, and trace element abundance data are reported for 29 dominantly unbrecciated basaltic (noncumulate) eucrites and one cumulate eucrite. Among unbrecciated samples, several exhibit shock darkening and impact melt veins, with incomplete preservation of primary textures. There is extensive thermal metamorphism of some eucrites, consistent with prior work. A “pristinity filter” of textural information, siderophile element abundances, and Ni/Co ratios of bulk rocks is used to address whether eucrite samples preserve endogenous refractory geochemical signatures of their asteroid parent body (i.e., Vesta), or could have experienced exogenous impact contamination. Based on these criteria, Cumulus Hills 04049, Elephant Moraine 90020, Grosvenor Range 95533, Pecora Escarpment 91245, and possibly Queen Alexander Range 97053 and Northwest Africa 1923 are pristine eucrites. Eucrite major element compositions and refractory incompatible trace element abundances are minimally affected by metamorphism or impact contamination. Eucrite petrogenesis examined through the lens of these elements is consistent with partial melting of a silicate mantle that experienced prior metal–silicate equilibrium, rather than as melts associated with cumulate diogenites. In the absence of the requirement of a large-scale magma ocean to explain eucrite petrogenesis, the interior structure of Vesta could be more heterogeneous than for larger planetary bodies.  相似文献   

10.
The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni‐rich Fe‐Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic‐ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.  相似文献   

11.
Abstract— We report noble gas, oxygen isotope, 14C and 10Be data of Itqiy as well as noble gas, 14C and 10Be results for Zak?odzie. Both samples have been recently classified as anomalous enstatite meteorites and have been compared in terms of their mineralogy and chemical composition. The composition of enstatite and kamacite and the occurrence of specific sulfide phases in Itqiy indicate it formed under similar reducing conditions to those postulated for enstatite chondrites. The new results now seem to point at a direct spatial link. The noble gas record of Itqiy exhibits the presence of a trapped subsolar component, which is diagnostic for petrologic types 4–6 among enstatite chondrites. The concentration of radiogenic 4He is very low in Itqiy and indicates a recent thermal event. Its 21Ne cosmic‐ray exposure age is 30.1 ± 3.0 Ma and matches the most common age range of enstatite chondrites (mostly EL6 chondrites) but not that of Zak?odzie. Itqiy's isotopic composition of oxygen is in good agreement with that observed in Zak?odzie as well as those found in enstatite meteorites suggesting an origin from a common oxygen pool. The noble gas results, on the other hand, give reason to believe that the origin and evolution of Itqiy and Zak?odzie are not directly connected. Itqiy's terrestrial age of 5800 ± 500 years sheds crucial light on the uncertain circumstances of its recovery and proves that Itqiy is not a modern fall, whereas the 14C results from Zak?odzie suggest it hit Earth only recently.  相似文献   

12.
Abstract— We report measurements of 26AI, 10Be, 41Ca, and 36Cl in the silicate and metal phases of 11 mesosiderites, including several specimens each of Budulan and Estherville, of the brecciated meteorite Bencubbin, and of the iron meteorite Udei Station. Average production rate ratios (atom/atom) for metal phase samples from Estherville and Budulan are 26Al/10Be = 0.77 ± 0.02; 36Cl/10Be = 5.3 ± 0.2. For a larger set of meteorites that includes iron meteorites and other mesosiderites, we find 26Al/10Be = 0.72 ± 0.01 and 36Cl/10Be = 4.5 ± 0.2. The average 41Ca/36Cl production rate ratio is 1.10 ± 0.04 for metal separates from Estherville and four small iron falls. The 41Ca activities in dpm/(kg Ca) of various silicate separates from Budulan and Estherville span nearly a factor of 4, from <400 to >1600, indicating preatmospheric radii of >30 cm. After allowance for composition, the activities of 26Al and 10Be (dpm/kg silicate) are similar to values measured in most ordinary chondrites and appear to depend only weakly on bulk Fe content. Unless shielding effects are larger than suggested by the 36Cl and 41Ca activities of the metal phases, matrix effects are unimportant for 10Be and minor for 26Al. Noble gas concentrations and isotopic abundances are reported for samples of Barea, Emery, Mincy, Morristown, and Marjalahti. New estimates of 36Cl/36Ar exposure ages for the metal phases agree well with published values. Neon‐21 production rates for mesosiderite silicates calculated from these ages and from measured 21Ne contents are consistently higher than predicted for L chondrites despite the fact that the mesosiderite silicates have lower Mg contents than L chondrites. We suggest that the elevation of the 21Ne production rate in mesosiderite silicates reflects a “matrix effect,” that is, the influence of the higher Fe content of mesosiderites, which acts to enhance the flux of low‐energy secondary particles and hence the 21Ne production from Mg. As 10Be production is relatively insensitive to this matrix effect, 10Be/21Ne ages give erroneously low production rates and high exposure ages. By coincidence, standard 22Ne/21Ne based “shielding” corrections give fairly reliable 21Ne production rates in the mesosiderite silicates.  相似文献   

13.
Abstract— Isotopic abundances of the noble gases were measured in the following Martian meteorites: two shock glass inclusions from Elephant Moraine (EET) 79001, shock vein glass from Shergotty and Yamato (Y) 793605, and whole-rock samples of Allan Hills (ALH) 84001 and Queen Alexandra Range (QUE) 94201. These glass samples, when combined with literature data on a separate single glass inclusion from EET 79001 and a glass vein from Zagami, permit examination in greater detail of the isotopic composition of Ne, Ar, Kr, and Xe trapped from the Martian atmosphere. The isotopic composition of Martian Ne, if actually present in these glasses, remains poorly defined. The 40Ar/36Ar ratio of trapped Martian atmospheric Ar is probably considerably lower than the nominal ratio of 3000 measured by Viking, and data on impact glasses suggest a value of ~1900. The atmospheric 36Ar/38Ar ratio is ≤4.0. Martian atmospheric Kr may be enriched in lighter isotopes by ~0.5%/amu compared to both solar-wind Kr and to the Martian composition previously reported. The isotopic composition of Xe in these glasses agrees with that previously reported in the literature. The Martian atmospheric 36Ar/132Xe and 84Kr/132Xe elemental ratios are higher than those reported by Viking by factors of ~2.5–1.6 (depending on the 40Ar/36Ar ratio adopted) and ~1.8, respectively, and are discussed in a separate paper. Cosmogenic gases indicate space exposure ages of 2.7 ± 0.6 Ma for QUE 94201 and Shergotty and 14 ± 1 Ma for ALH 84001. Small amounts of 21Ne produced by energetic solar protons may be present in QUE 94201 but are not present in ALH 84001 or Y-793605. The space exposure age for Y-793605 is 4.9 ± 0.6 Ma and appears to be distinctly older than the ages for basaltic shergottites. However, uncertainties in cosmogenic production rates still makes somewhat uncertain the number of Martian impact events required to produce the exposure ages of Martian meteorites.  相似文献   

14.
Abstract Noble gases and N were analyzed in handpicked metal separates from lunar soil 68501 by a combination of step-wise combustions and pyrolyses. Helium and Ne were found to be unfractionated with respect to one another when normalized to solar abundances, for both the bulk sample and for all but the highest temperature steps. However, they are depleted relative to Ar, Kr and Xe by at least a factor of 5. The heavier gases exhibit mass-dependent fractionation relative to solar system abundance ratios but appear unfractionated, both in the bulk metal and in early temperature steps, when compared to relative abundances derived from lunar ilmenite 71501 by chemical etching, recently put forward as representing the abundance ratios in solar wind. Estimates of the contribution of solar energetic particles (SEP) to the originally implanted solar gases, derived from a basic interpretation of He and Ne isotopes, yield values of about 10%. Analysis of the Ar isotopes requires a minimum of 20% SEP, and Kr isotopes, using our preferred composition for solar wind Kr, yield a result that overlaps both of these values. It is possible to reconcile the data from these gases if significant loss of solar wind Ar, Kr and presumably Xe has occurred relative to the SEP component, most likely by erosive processes that are mass independent, although mass-dependent losses (Ar > Kr > Xe) cannot be excluded. If such losses did occur, the SEP contribution to the solar implanted gases must have been no more than a few percent. Nitrogen is a mixture of indigenous meteoritic N, whose isotopic composition is inferred to be relatively light, and implanted solar N, which has probably undergone diffusive redistribution and fractionation. If the heavy noble gases have not undergone diffusive loss, then N/Ar in the solar wind can be inferred to be at least several times the accepted solar ratio. The solar wind N appears, even after correction for fractionation effects, to have a minimum δ15N value ≥+150‰ and a more probable value ≥+200‰.  相似文献   

15.
Ronen Jacovi 《Icarus》2008,196(1):302-304
Titan's haze, formed by photolysis of C2H2, C2H4 and HCN, was found experimentally to trap Ar, Kr and Xe with efficiencies of 3.5 × 10−4, 1.9 × 10−3 and 6.5 × 10−2 [noble gas atom]/[carbon atom] in the polymer, respectively. The rate of aerosol formation and settling down of 3 × 10−13 kg m−2 s−1, as inferred from our experiments on CH4 photolysis in the far UV [Podolak, M., Bar-Nun, A., 1979. Icarus 39, 272-276], is sufficient to reduce the mixing ratios of 36Ar and 40Ar to their low values of (2.8 ± 0.3) × 10−7 and (4.3 ± 0.1) × 10−3, respectively, and those of Kr and Xe to below the detection limit of 10−8.  相似文献   

16.
Abstract— Results are reported for documented samples from two drill cores and for specimens from the strewn field of the largest known stone meteorite, the H chondrite Jilin. Core B was found to have been parallel to the surface of Jilin during its first stage of irradiation, in 2π geometry. Core A was normal to the 2π surface; in it the mean attenuation length for the production by galactic cosmic rays of 38Ar from metal and of 21Ne from Mg, Al, Si in silicates was found to be the same. A numerical value for the mean attenuation length of (71 ± 4) cm or (246 ± 14) g × cm?2 follows if corrections for the contribution from the second stage of exposure are based on T2 = 0.32 Ma; agreement with the lower values of ~180 g × cm?2 obtained from lunar studies and target data requires T2 to be about twice as long. Previous results are confirmed that in specimens with high contents of stable spallogenic gases the ratio 21Nebulk/38Armetal is low. The suggestion had been, and is, mat this is a transition effect in near-surface samples where the secondary cascade of nuclear-active particles, and hence the production of 21Ne, was not yet fully developed. This suggestion is borne out by the present results on two samples that, based on cosmic-ray tracks and 60Co content, are certified near-surface samples (although, strictly speaking, this is true only for the depth of burial during the second stage of irradiation). Cosmic-ray produced 60Co is positively correlated with 4He content, indicating that significant losses of 4He occurred when the Jilin meteoroid had acquired already its final size and shape and that the losses were more severe for near-surface samples than for such from the 4π interior. Presumably, the losses were caused by a thermal spike associated with the excavation of Jilin from its parent body. The same event caused losses of part of the 3He produced during the first irradiation stage. From the systematics of the 3He/21Ne vs. 4He correlation, we derive for the second 4π irradiation a production ratio 3He/21Ne = 3.2 ± 0.4.  相似文献   

17.
Abstract— We performed a comprehensive study of the He, Ne, and Ar isotopic abundances and of the chemical composition of bulk material and components of the H chondrites Dhajala, Bath, Cullison, Grove Mountains 98004, Nadiabondi, Ogi, and Zag, of the L chondrites Grassland, Northwest Africa 055, Pavlograd, and Ladder Creek, of the E chondrite Indarch, and of the C chondrites Hammadah al Hamra 288, Acfer 059, and Allende. We discuss a procedure and necessary assumptions for the partitioning of measured data into cosmogenic, radiogenic, implanted, and indigenous noble gas components. For stone meteorites, we derive a cosmogenic ratio 20Ne/22Ne of 0.80 ± 0.03 and a trapped solar 4He/3He ratio of 3310 ± 130 using our own and literature data. Chondrules and matrix from nine meteorites were analyzed. Data from Dhajala chondrules suggest that some of these may have experienced precompaction irradiation by cosmic rays. The other chondrules and matrix samples yield consistent cosmic‐ray exposure (CRE) ages within experimental errors. Some CRE ages of some of the investigated meteorites fall into clusters typically observed for the respective meteorite groups. Only Bath's CRE age falls on the 7 Ma double‐peak of H chondrites, while Ogi's fits the 22 Ma peak. The studied chondrules contain trapped 20Ne and 36Ar concentrations in the range of 10?6–10?9 cm3 STP/g. In most chondrules, trapped Ar is of type Q (ordinary chondritic Ar), which suggests that this component is indigenous to the chondrule precursor material. The history of the Cullison chondrite is special in several respects: large fractions of both CR‐produced 3He and of radiogenic 4He were lost during or after parent body breakup, in the latter case possibly by solar heating at small perihelion distances. Furthermore, one of the matrix samples contains constituents with a regolith history on the parent body before compaction. It also contains trapped Ne with a 20Ne/22Ne ratio of 15.5 ± 0.5, apparently fractionated solar Ne.  相似文献   

18.
Abstract– Noble gas isotopic compositions were measured for a eucritic pebble and bulk material of a silicate–metal mixture from the Vaca Muerta mesosiderite as well as pyroxene and plagioclase separated from the eucritic pebble by total melting and stepwise heating methods. Trapped noble gases were degassed completely by a high‐temperature thermal event, probably at the formation of the Vaca Muerta parent body (VMPB). The presence of fissiogenic Xe isotopes from extinct 244Pu in the bulk samples might be a result of rapid cooling from an early high‐temperature metamorphism. High concentrations of cosmogenic noble gases enabled us to determine precise isotopic ratios of cosmogenic Kr and Xe. Spallogenic Ne from Na and unique Ar isotopic compositions were observed. The 81Kr‐Kr exposure age of 168 ± 8 Myr for the silicate pebble is distinctly longer than the age of 139 ± 8 Myr for the bulk samples. The precursor of the pebble had been irradiated on the surface of the VMPB for more than 60 Myr (first stage irradiation), with subsequent incorporation into bulk materials approximately 4 Gyr ago. The Vaca Muerta meteorite was excavated from the VMPB 140 Myr ago (second stage irradiation). Relative diffusion rates among the cosmogenic Ar, Kr, and Xe based on data obtained by stepwise heating indicate that Kr and Xe can be partially retained in pyroxene and plagioclase under the condition that resets the K‐Ar system. This result supports the presence of fission Xe and of excess concentration of cosmogenic Kr, which could have survived the thermal event approximately 3.8 Gyr ago.  相似文献   

19.
Abstract— A glass separate from the LEW88516 shergottite was analyzed by step-wise combustion for N and noble gases to determine whether it contained trapped gas similar in composition to the martian atmosphere-like component previously observed in lithology C of EETA79001. Excesses of 40Ar and 129Xe were in fact observed in this glass, although the amounts of these excesses are ≤20% of those seen in the latter meteorite, and are comparable to the amounts seen in whole-rock analyses of LEW88516. The isotopic composition of N in LEW88516 does not show an enrichment in 15N commensurate with the amount of isotopically-heavy N expected from the noble gases excesses. One must posit some extreme assumptions about the nature of the N components present in LEW88516 in order to allow the presence of the trapped nitrogen component. Alternatively, the N has somehow been decoupled from the noble gases, and was either never present or has been lost.  相似文献   

20.
In this paper, we use a statistical thermodynamic approach to quantify the efficiency with which clathrates on the surface of Titan trap noble gases. We consider different values of the Ar, Kr, Xe, CH4, C2H6 and N2 abundances in the gas phase that may be representative of Titan's early atmosphere. We discuss the effect of the various parameters that are chosen to represent the interactions between the guest species and the ice cage in our calculations. We also discuss the results of varying the size of the clathrate cages. We show that the trapping efficiency of clathrates is high enough to significantly decrease the atmospheric concentrations of Xe and, to a lesser extent, of Kr, irrespective of the initial gas phase composition, provided that these clathrates are abundant enough on the surface of Titan. In contrast, we find that Ar is poorly trapped in clathrates and, as a consequence, that the atmospheric abundance of argon should remain almost constant. We conclude that the mechanism of trapping noble gases via clathration can explain the deficiency in primordial Xe and Kr observed in Titan's atmosphere by Huygens, but that this mechanism is not sufficient to explain the deficiency in Ar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号