首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Abstract The well-preserved 2.5 km diameter Roter Kamm impact crater is located in the Namib desert in Namibia. The impact has occurred in Precambrian granitic and granodioritic orthogneisses of the 1200–900 Ma old Namaqualand Metamorphic Complex which were partly covered by Gariep metasediments; the granites are invaded by quartz veins and quartz-feldspar-pegmatites. Previous geological field evidence suggested a crater age of about 5–10 Ma. In order to constrain this age, we selected a set of basement rocks (granites, granodiorites) exposed at the crater rim and studied the Rb-Sr, K-Ar, 40Ar-39Ar, and 10Be-26Al isotopic systems as well as apatite fission track ages of these samples. The Rb-Sr isotopic systematics confirm the derivation of these samples from the Namaqualand basement (age about 1.29 Ga), which underwent Damaran orogenesis at about 650 Ma. No basement rocks with Rb-Sr ages younger than about 410 Ma were identified. The K-Ar ages of pseudotachylite and melt breccia samples show that these samples are dominated by incompletely degassed fragments of basement rocks, with some retaining their original metamorphic ages of about 470 Ma. The apatite fission track ages range from 20–28 Ma, which may be interpreted as an extension of the 25 Ma Burdigalian peneplanation event, or as incomplete resetting of the apatite fission tracks during the impact event. The 10Be and 26Al exposure age of a quartz sample isolated from a quartz-pegmatite was found to be 150 ka; it is likely that the exposure of the sample began after material covering it had been removed by erosion 150 ka ago. Two glassy fractions extracted from a rim granite were dated by 40Ar-39Ar analysis. One sample gives practically a plateau age of 3.7 ± 0.3 Ma, while the other gives a minimum age of 3.6 Ma. The best available age estimate for the Roter Kamm crater is therefore 3.7 ± 0.3 Ma.  相似文献   

2.
Abstract— This is a report on 40Ar-39Ar studies of 7 low petrographic type L and H chondrites from Antarctica. From petrographic similarities it has been argued that the L3 chondrites ALHA77015, ?77167, ?77249, and ?77260 are pieces from a common fall (McKinley et al., 1981). Our results now confirm this supposition: The four meteorites have identical characteristic Ar-degassing patterns, very similar K, Ca, Cl, and 36Artrapped contents, and similar 40Ar-39Ar ages of <4 Ga which are rather unusual for ordinary chondrites and might be due to shock. The undulating age patterns could be due to weathering or to 39Ar recoil. The L4 chondrite ALHA77230 shows no age plateau and only a lower limit for the time of a severe degassing, 4.0 Ga, can be given. ALHA77226 and RKPA78002, two H4 chondrites, exhibit reasonably well defined age plateaus at about 4.3 and 4.4 Ga. Two individual chondrules from RKPA78002 have the same age as the whole rock sample.  相似文献   

3.
We studied three lithologies (light and dark chondritic and impact melt rock) differing in shock stage from the LL5 chondrite Chelyabinsk. Using the 40Ar-39Ar dating technique, we identified low- and high-temperature reservoirs within all samples, ascribed to K-bearing oligoclase feldspar and shock-induced jadeite–feldspar glass assemblages in melt veins, respectively. Trapped argon components had variable 40Ar/36Ar ratios even within low- and high-temperature reservoirs of individual samples. Correcting for trapped argon revealed a lithology-specific response of the K-Ar system to shock metamorphism, thereby defining two distinct impact events affecting the Chelyabinsk parent asteroid (1) an intense impact event ~1.7 ± 0.1 Ga ago formed the light–dark-structured and impact-veined Chelyabinsk breccia. Such a one-stage breccia formation is consistent with petrological observations and was recorded by the strongly shocked lithologies (dark and impact melt) where a significant fraction of oligoclase feldspar was transformed into jadeite and feldspathic glass; and (2) a young reset event ~30 Ma ago particularly affected the light lithology due to its low argon retentivity, while the more retentive shock-induced phases were more resistant against thermal reset. Trapped argon with 40Ar/36Ar ratios up to 1900 was likely incorporated during impact-induced events on the parent body, and mixed with terrestrial atmospheric argon contamination. Had it not been identified via isochrons based on high-resolution argon extraction, several geochronologically meaningless ages would have been deduced.  相似文献   

4.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

5.
Lunar mare basalts provide insights into the compositional diversity of the Moon's interior. Basalt fragments from the lunar regolith can potentially sample lava flows from regions of the Moon not previously visited, thus, increasing our understanding of lunar geological evolution. As part of a study of basaltic diversity at the Apollo 12 landing site, detailed petrological and geochemical data are provided here for 13 basaltic chips. In addition to bulk chemistry, we have analyzed the major, minor, and trace element chemistry of mineral phases which highlight differences between basalt groups. Where samples contain olivine, the equilibrium parent melt magnesium number (Mg#; atomic Mg/[Mg + Fe]) can be calculated to estimate parent melt composition. Ilmenite and plagioclase chemistry can also determine differences between basalt groups. We conclude that samples of approximately 1–2 mm in size can be categorized provided that appropriate mineral phases (olivine, plagioclase, and ilmenite) are present. Where samples are fine‐grained (grain size <0.3 mm), a “paired samples t‐test” can provide a statistical comparison between a particular sample and known lunar basalts. Of the fragments analyzed here, three are found to belong to each of the previously identified olivine and ilmenite basalt suites, four to the pigeonite basalt suite, one is an olivine cumulate, and two could not be categorized because of their coarse grain sizes and lack of appropriate mineral phases. Our approach introduces methods that can be used to investigate small sample sizes (i.e., fines) from future sample return missions to investigate lava flow diversity and petrological significance.  相似文献   

6.
Abstract— 20–25 mg whole rock samples of the nakhlites Lafayette and Nakhla have been analyzed via the 40Ar‐39Ar technique, in part to verify their formation ages, but primarily, in an attempt to determine the timing of aqueous alteration in these martian meteorites. As in previous studies, plateaus in apparent age are observed at about 1300 Ma (1322 ± 10 for Lafayette, 1332 ± 10 and 1323 ± 11 for Nakhla), presumably corresponding to crystallization ages. The plateaus are not entirely flat, perhaps reflecting the effects of recoil during creation of 39Ar in the nuclear irradiation. The first 5–20% of the K‐derived Ar released from all three samples give apparent ages <1300 Ma. Coupled with the fact that chronometric isotopic studies of nakhlites typically show some disturbance, we believe the low temperature pattern represents more recent (than 1300 Ma) formation of martian aqueous alteration products such as iddingsite. No low temperature plateaus are observed. This is consistent with petrographic evidence for multiple formation events, although the lack of low temperature plateaus is far from conclusive. On the other hand, if there was a single time of alteration, we believe that it will be difficult, if not impossible, to determine it using the K‐Ar system.  相似文献   

7.
The Almahata Sitta (AhS) meteorite consists of disaggregated clasts from the impact of the polymict asteroid 2008 TC3, including ureilitic (70%–80%) and diverse non-ureilitic materials. We determined the 40Ar/39Ar release patterns for 16 AhS samples (3–1500 μg) taken from three chondritic clasts, AhS 100 (L4), AhS 25 (H5), and MS-D (EL6), as well as a clast of ureilitic trachyandesite MS-MU-011, also known as ALM-A, which is probably a sample of the crust of the ureilite parent body (UPB). Based on our analyses, best estimates of the 40Ar/39Ar ages (Ma) of the chondritic clasts are 4535 ± 10 (L4), 4537–4555 with a younger age preferred (H5), and 4513 ± 17 (EL6). The ages for the L4 and the H5 clasts are older than the most published 40Ar/39Ar ages for L4 and H5 meteorites, respectively. The age for the EL6 clast is typical of older EL6 chondrites. These ages indicate times of argon closure ranging up to 50 Ma after the main constituents of the host breccia, that is, the ureilitic components of AhS, reached the >800°C blocking temperatures of pyroxene and olivine thermometers. We suggest that these ages record the times at which the clasts cooled to the Ar closure temperatures on their respective parent bodies. This interpretation is consistent with the recent proposal that the majority of xenolithic materials in polymict ureilites were implanted into regolith 40–60 Ma after calcium–aluminum-rich inclusion and is consistent with the interpretation that 2008 TC3 was a polymict ureilite. With allowance for its 10-Ma uncertainty, the 4549-Ma 40Ar/39Ar age of ALM-A is consistent with closure within a few Ma of the time recorded by its Pb/Pb age either on the UPB or as part of a rapidly cooling fragment. Plots of age versus cumulative 39Ar release for 10 of 15 samples with ≥5 heating steps indicate minor losses of 40Ar over the last 4.5 Ga. The other five such samples lost some 40Ar at estimated times no earlier than 3800–4500 Ma bp . Clustering of ages in the low-temperature data for these five samples suggests that an impact caused localized heating of the AhS progenitor ~2.7 Ga ago. In agreement with the published work, 10 estimates of cosmic-ray exposure ages based on 38Ar concentrations average 17 ± 5 Ma but may include some early irradiation.  相似文献   

8.
Abstract— Eighteen new lithic fragments from the Soviet Luna missions have been analyzed with electron microprobe and 40Ar‐39Ar methods. Luna 16 basalt fragments have aluminous compositions consistent with previous analyses, but have two distinct sets of well‐constrained ages (3347 ± 24 Ma, 3421 ± 30 Ma). These data, combined with other Luna 16 basalt ages, imply that there were multiple volcanic events filling Mare Fecunditatis. The returned basalt fragments have relatively old cosmicray exposure (CRE) ages and may have been recovered from the ejecta blanket of a young (1 Ga), nearby crater. A suite of highlands rocks (troctolites and gabbros) is represented in the new Luna 20 fragments. One fragment is the most compositionally primitive (Mg# = 91–92) spinel troctolite yet found. Both troctolites have apparent crystallization ages of 4.19 Ga; other rocks in the suite have progressively younger ages and lower Mg#s. The age and composition progression suggests that these rocks may have crystallized from a single source magma, or from similar sources mobilized at the same time. Within the new Luna 24 basalt fragments is a quench‐textured olivine vitrophyre with the most primitive composition yet analyzed for a Luna 24 basalt, and several much more evolved olivine‐bearing basalts. Both new and previously studied Luna 24 very low‐Ti (VLT) basalt fragments have a unimodal age distribution (3273 ± 83 Ma), indicating that most returned samples come from a single extrusive episode within Mare Crisium much later than the Apollo 17 VLT basalts (3.6–3.7 Ga).  相似文献   

9.
Seven impact melts from various places in the Nördlinger Ries were dated by 40Ar‐39Ar step‐heating. The aim of these measurements was to increase the age data base for Ries impact glasses directly from the Ries crater, because there is only one Ar‐Ar step‐heating spectrum available in the literature. Almost all samples display saddle‐shaped age spectra, indicating the presence of excess argon in most Ries glass samples, most probably inherited argon from incompletely degassed melt and possibly also excess argon incorporated during cooling from adjacent phases. In contrast, moldavites usually contain no inherited argon, probably due to their different formation process implying solidification during ballistic transport. The plateau age of the only flat spectrum is 14.60 ± 0.16 (0.20) Ma (2σ), while the total age of this sample is 14.86 ± 0.20 (0.22) Ma (isochron age: 14.72 ± 0.18 [0.22] Ma [2σ]), proofing the chronological relationship of the Ries impact and moldavites. The total ages of the other samples range between 15.77 ± 0.52 and 20.4 ± 1.0 Ma (2σ), implying approximately 2–40% excess 40Ar (compared to the nominal age of the Ries crater) in respective samples. Thus, the age of 14.60 ± 0.16 (0.20) (2σ) (14.75 ± 0.16 [0.20 Ma] [2σ], calculated using the most recent suggestions for the K decay constants) can be considered as reliable and is within uncertainties indistinguishable from the most recent compilation for the age of the moldavite tektites.  相似文献   

10.
The Tissint meteorite fell on July 18, 2011 in Morocco and was quickly recovered, allowing the investigation of a new unaltered sample from Mars. We report new high‐field strength and highly siderophile element (HSE) data, Sr‐Nd‐Hf‐W‐Os isotope analyses, and data for cosmogenic nuclides in order to examine the history of the Tissint meteorite, from its source composition and crystallization to its irradiation history. We present high‐field strength element compositions that are typical for depleted Martian basalts (0.174 ppm Nb, 17.4 ppm Zr, 0.7352 ppm Hf, and 0.0444 ppm W), and, together with an extended literature data set for shergottites, help to reevaluate Mars’ tectonic evolution in comparison to that of the early Earth. HSE contents (0.07 ppb Re, 0.92 ppb Os, 2.55 ppb Ir, and 7.87 ppb Pt) vary significantly in comparison to literature data, reflecting significant sample inhomogeneity. Isotope data for Os and W (187Os/188Os = 0.1289 ± 15 and an ε182W = +1.41 ± 0.46) are both indistinguishable from literature data. An internal Lu‐Hf isochron for Tissint defines a crystallization age of 665 ± 74 Ma. Considering only Sm‐Nd and Lu‐Hf chronometry, we obtain, using our and literature values, a best estimate for the age of Tissint of 582 ± 18 Ma (MSWD = 3.2). Cosmogenic radionuclides analyzed in the Tissint meteorite are typical for a recent fall. Tissint's pre‐atmospheric radius was estimated to be 22 ± 2 cm, resulting in an estimated total mass of 130 ± 40 kg. Our cosmic‐ray exposure age of 0.9 ± 0.2 Ma is consistent with earlier estimations and exposure ages for other shergottites in general.  相似文献   

11.
Abstract— The 15 km diameter Ames structure in northwestern Oklahoma is located 2.75 km below surface in Cambro‐Ordovician Arbuckle dolomite, which is overlain by Middle Ordovician Oil Creek Formation shale. The feature is marked by two concentric ring structures, with the inner ring of about 5 km diameter probably representing the collapsed remnant of a structural uplift composed of brecciated Precambrian granite and Arbuckle dolomite. Wells from both the crater rim and the central uplift are oil‐ and gas‐producing, making Ames one of the economically important impact structures. Petrographic, geochemical, and age data were obtained on samples from the Nicor Chestnut 18‐4 drill core, off the northwest flank of the central uplift. These samples represent the largest and best examples of impact‐melt breccia obtained so far from the Ames structure. They contain carbonate rocks, which are derived from the target sequence. The chemical composition of the impact‐melt breccias is similar to that of target granite, with variable carbonate admixture. Some impact‐melt rocks are enriched in siderophile elements indicating the possible presence of a meteoritic component. Based on stratigraphic arguments, the age of the crater was estimated at 470 Ma. Previous 40Ar‐39Ar dating attempts of impact‐melt breccias from the Dorothy 1–19 core yielded plateau ages of about 285 Ma, which is in conflict with the stratigraphic age. The new 40Ar‐39Ar age data obtained on the melt breccias from the Nicor Chestnut core by ultraviolet (UV) laser spot analysis resulted in a range of ages with maxima around 300 Ma. These data could reflect processes related either the regional Nemaha Uplift or resetting due to hot brines active on a midcontinent‐wide scale, perhaps related to the Alleghenian and Ouachita orogenies. The age data indicate an extended burial phase associated with thermal overprint during Late Pennsylvanian‐Permian.  相似文献   

12.
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号