首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional ablation theory assumes that a meteoroid undergoes intensive heating during atmospheric flight and surface atoms are liberated through thermal processes. Our research has indicated that physical sputtering could play a significant role in meteoroid mass loss. Using a 4th order Runge-Kutta numerical integration technique, we tabulated the mass loss due to the two ablation mechanisms and computed the fraction of total mass lost due to sputtering. We modeled cometary structure meteoroids with masses ranging from 10−13 to 10−3 kg and velocities ranging from 11.2 to 71 km s−1. Our results indicate that a significant fraction of the mass loss for small, fast meteors is due to sputtering, particularly in the early portion of the light curve. In the past 6 years evidence has emerged for meteor luminosity at heights greater than can be explained by conventional ablation theory. We have applied our sputtering model and find excellent agreement with these observations, and therefore suggest that sputtered material accounts for the new type of radiation found at great heights.  相似文献   

2.
The thin atmosphere of Neptune's moon Triton is dense enough to ablate micrometeoroids as they pass through. A combination of Triton's orbital velocity around Neptune and its orbital velocity around the Sun gives a maximum meteoroid impact velocity of approximately 19 km s−1, sufficient to heat the micrometeoroids to visibility as they enter. The ablation profiles of icy and stony micrometeoroids were calculated, along with the estimated brightness of the meteors. In contrast to the terrestrial case, visible meteors would extend very close to the surface of Triton. In addition, the variation in the meteoroid impact velocity as Triton orbits Neptune produces a large variation in the brightness of meteors with orbital phase, a unique Solar System phenomenon.  相似文献   

3.
The lifetime of antimatter fragments which may enter the Earth's atmosphere in the form of meteors is determined in this paper, for cases in which the annihilation may be accompanied by the evaporation process. The antimatter object can be penetrated by the nucleon - antinucleon annihilation products, which can be generated by interactions of atoms of antimatter fragments with the atmospheric molecules. Vaporization of its own antiatoms may be followed, in case of a high rate of annihilation, so that the lifetime of the antimatter object may become shorter, compared with the case of annihilation without vapor production of the meteor. The lifetime of the antimatter fragment is dependent upon the temperature of the object and thus vaporization of such an object would last for as long as =R/, where is the intensity of evaporation, its density andR its radius.  相似文献   

4.
The first results of the television observations of meteors at the Ondejov Observatory are presented. It is shown that three spectral components may be distinguished in meteors: cool meteoric, hot meteoric and hot atmospheric. The intensity ratio of these components varies strongly even in meteors of the same velocity and within the records of single meteors. This is evidence for variations in the ablation process and in the formation of the shock wave. The so called calcium anomaly is in fact only a demonstration of these variations.  相似文献   

5.
Hyperbolic meteor orbits from the catalog of 64,650 meteors observed by the multistation video meteor network located in Japan (SonotaCo 2009) have been investigated with the aim of determining the relation between the frequency of hyperbolic and interstellar meteors. The proportion of hyperbolic meteors in the data decreased significantly (from 11.58% to 3.28%) after a selection of quality orbits, which shows its dependence on the quality of observations. Initially, the hyperbolic orbits were searched for meteors unbound due to planetary perturbation. It was determined that 22 meteors from the 7489 hyperbolic orbits in the catalog (and 2 from the selection of the orbits with the highest quality) had had a close encounter with a planet, none of which, however, produced essential changes in their orbits. Similarly, the fraction of hyperbolic orbits in the data, which could be hyperbolic by reason of a meteor's interstellar origin, was determined to be at most 3.9 × 10?2. From the statistical point of view, the vast majority of hyperbolic meteors in the database have definitely been caused by inaccuracy in the velocity determination. This fact does not necessarily assume great measurement errors, since, especially near the parabolic limit, a small error in the value of the heliocentric velocity of a meteor can create an artificial hyperbolic orbit that does not really exist. The results show that the remaining 96% of meteoroids with apparent hyperbolic orbits belong to the solar system meteoroid population. This is also supported by their high abundance (about 50%) among the meteor showers.  相似文献   

6.
Abstract— A shutter-chopped, direct photograph of a 1980 Perseid meteor is discussed in which no shutter breaks are apparent. Evidence is considered that it is indeed a Perseid and that the phenomenon is the result of an extraordinary fragmentation of the meteoroid. Tentative evidence is presented for the existence in 1980 of a second radiant from which the apparently unchopped meteor and a second meteor, also showing marked fragmentation, emanated. The fragmentation of these two meteors and the concentration of their radiant are consonant with the concept of their origin from recently released material from the nearby parent comet.  相似文献   

7.
We have made an observational study of the newly identified cyanomethane radical CH2CN and the possibly related species CH3CN with the goals of (1) elucidating the possible role of reactions of the type CnHm(+) + N in astrochemistry, and (2) providing a possible test of Bates's models of dissociative electron recombination. We find a remarkably different abundance ratio CH2CN/CH3CN in TMC-1 and Sgr B2, which we deduce is a result of the large difference in temperature of these objects. Studies of CH2CN and CH3CN in other sources, including two new detections of CH2CN, support this conclusion and are consistent with a monotonic increase in the CH2CN/CH3CN ratio with decreasing temperature over the range 10-120 K. This behavior may be explained by the destruction of CH2CN by reaction with O. If this reaction does not proceed, then CH2CN and CH3CN are concluded to form via different chemical pathways. Thus, they do not provide a test of Bates's conjectures (they do not both form from CH3CNH+). CH2CN is then likely to form via C2H4(+) + N --> CH2CNH+, thus demonstrating the viability of this important reaction in astrochemistry. The T dependence of the CH2CN/CH3CN ratio would then reflect the increasing rate of the C2H4(+) + N reaction with decreasing temperature.  相似文献   

8.
Close to 30 deuterated molecules have now been detected in the ISM, including doubly-deuterated species D2H+, ND2H, D2CO, CHD2OH, D2S, and D2CS, as well as triply-deuterated ammonia and methanol. We review the current understanding of depletion and deuteration processes in cold, dense interstellar medium (ISM) and discuss the utility of deuteroammonia as a tracer of the physical conditions and kinematics of cold, dense gas.  相似文献   

9.
A general velocity-height relation for both antimatter and ordinary matter meteor is derived. This relation can be expressed as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaeyOeI0YaaSaaaeaacaWGdbaabaGaamOqaiabew8a1naaBaaa% leaacqGHEisPaeqaaaaakmaacmaabaGaaGymaiabgkHiTiaabwgaca% qG4bGaaeiCamaadmaabaGaeyOeI0YaaSaaaeaacaWGcbaabaGaamyy% aaaacaqGLbGaaeiEaiaabchacaqGOaGaaeylaiaadggacaWG6bGaai% ykaaGaay5waiaaw2faaaGaay5Eaiaaw2haaiaacYcaaaa!64FD!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right] - \frac{C}{{B\upsilon _\infty }}\left\{ {1 - {\text{exp}}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right]} \right\},\]where z is the velocity of the meteoroid at height z, its velocity before entrance into the Earth's atmosphere, is the scale-height, and C parameter proportional to the atom-antiatom annihilation cross- section, which is experimentally unknown. The parameter B (B = DA0/m) is the well known parameter for koinomatter (ordinary matter) meteors, D is the drag factor, 0 is the air density at sea level, A is the cross sectional area of the meteoroid and m its mass.When the annihilation cross-section is zero — in the case of ordinary meteors — the parameter C is also zero and the above derived equation becomes % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaaiilaaaa!4CF5!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right],\]which is the well known velocity-height relation for koinomatter meteors.In the case in which the Universe contains antimatter in compact solid structure, the velocity-height relation can be found useful.Work performed mainly at the Nuclear Physics Laboratory of the National University of Athens, Greece.  相似文献   

10.
It is argued here that unless antimatter meteors can be shown to possess some unambiguously unique characteristic not displayed by ordinary koinomatter meteors, it will be difficult to infer their existence given the standard interpretation of meteoroid structure. It is also argued, however, that the existence of antimatter meteors is extremely unlikely.  相似文献   

11.
Antimatter meteors probably enter the Earth's atmosphere. If they have the ability to escape complete vaporization during their infall flight, it may be possible, that a fraction of their original mass could survive for short or long time, depending on the mechanisms of ablation. In case of ablation through the annihilation process only, the lifetime of such an object is following the simple relation = (N L R)/(rA), where andA are the density and the atomic weight of the antimatter fragment respectively,R is its radius,r is the rate of annihilation per cm2 of its surface, and N L is the Loschmidt number.  相似文献   

12.
The momentum loss for a possible antimatter meteor entrance can be described by the combination of two terms. One which can be characterized by the mechanism of annihilation and a second one, the well known mechanism, which is common for all koinomatter (ordinary) meteors. That is, the momentum loss caused by the air molecules swept up by the moving object. We discuss, in this paper, the contribution of the rocket effect caused by the action of the secondaries which can be produced by the annihilation interactions of the antiatoms with the air molecules. The momentum loss of an iron type meteor made of antimatter, as a function of its equivalent radius R, can be described by the formula, J (MeV/c) = 8R (cm), for values of R within the range 1 cm < R < 5 cm and can be resulted by a single annihilation interaction of a nucleon-antinucleon pair.  相似文献   

13.
A formula to compute the mass-height relation for the case of possible antimatter meteor entrance is derived.It is governed by the annihilation cross section for the atom-antiatom interactions which experimentally is unknown,and by various mechanisms which are possibly reducing its value. For the special case of thermal energies,the annihilation cross-section an may be connected with the elastic cross-sectionel by the relation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaabggacaqGUbaabeaakiabg2da9iabeo8aZnaaBaaaleaa% caqGLbGaaeiBaaqabaGccqGHpis1caWGMbWaaSbaaSqaaiaadMgaae% qaaaaa!4227!\[\sigma _{{\rm{an}}} = \sigma _{{\rm{el}}} \prod f_i \],where the factors % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa% aaleaacaWGPbaabeaaaaa!37F1!\[f_i \]are all less or equal to unity. Among them, the most significant is the barrier factor % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa% aaleaacaWGIbaabeaaaaa!37EA!\[f_b \] b described by many scientists, which may possibly reduce the annihilation cross-section down to lower than 10–11 times than that of a simple elastic collision. The above formula could also be found useful, for some applications, which are currently in progress.  相似文献   

14.
Antimatter meteors, like ordinary ones, can be heated during their infall flight. However, this could happen by a completely different process than in the case of koinomatter meteors, since in the latter case the annihilation interactions mechanism is absent. In case of antimatter meteors, the temperature may be increased mainly due to the energy deposition effect, caused by the passage of the annihilation secondaries penetrating throughout the meteor. The energy deposition of the secondary particles produced in matter antimatter annihilation interactions as a function of the dimensions of an antimatter meteor is described in this paper.  相似文献   

15.
Although it is generally accepted that most, if not all, of the molecular hydrogen in interstellar space is formed through recombination reactions on grains, the exact mechanism by which this is accomplished is far from certain. In the past, great emphasis had been placed on the physical adsorption of H atoms on cold dielectric grains and their subsequent recombination and desorption as H2 molecules. However, a careful re-examination of the problem leads us to believe that a rate coefficient ofk10–17 cm3 s–1—the value usually quoted in the literature—is a very strong overestimate. The same thing can be said for the recombination of H atoms on graphite grains. Since two-body gas phase reactions are not sufficient by themselves to account for the observed abundances of H2, an alternate mechanism must exist. It is suggested that the chemisorption of hydrogen on transition metal grains may be just that formation mechanism. After separating the adsorption rate equations from those of desorption and using experimentally determined parameters, it is shown that transition metal grains can successfully catalyze as much H2 as the theoretical maximum predicted for cold ice grains, even though metal grains are probably less than 10% as abundant (by mass) than dielectrics.  相似文献   

16.
D.K. Yeomans 《Icarus》1981,47(3):492-499
The distribution of dust surrounding periodic comet Tempel-Tuttle has been mapped by analyzing the associated Leonid meteor shower data over the 902–1969 interval. The majority of dust ejected from the parent comet evolves to a position lagging the comet and outside the comet's orbit. The outgassing and dust ejection required to explain the parent comet's deviation from pure gravitational motion would preferentially place dust in a position leading the comet and inside the comet's orbit. Hence it appears that radiation pressure and planetary perturbations, rather than ejection processes, control the dynamic evolution of the Leonid particles. Significant Leonid meteor showers are possible roughly 2500 days before or after the parent comet reaches perihelion but only if the comet passes closer than 0.025 AU inside or 0.010 AU outside the Earth's orbit. Although the conditions in 1998–1999 are optimum for a significant Leonid meteor shower, the event is not certain because the dust particle distribution near the comet is far from uniform. As a by-product of this study, the orbit of comet Tempel-Tuttle has been redetermined for the 1366–1966 observed interval.  相似文献   

17.
18.
19.
Since gas-phase reactions alone cannot account for the observed abundances of H2 in the typical interstellar cloud, one or more surface reactions are probably involved. Of the three possible candidates, only the catalytic production of H2 on transition metal grains is supported by laboratory evidence. Using the rate equations developed in a previous paper for this process, the steady-state equilibrium abundances of H, H2,e , H+, H, H2 +, and H3 + are calculated for large (r>10 pcs;M102 M ), tenuous (n=102–104 cm–3) hydrogen dust clouds under a wide variety of conditions. In addition to the four rate equations involved in the catalytic reactions, 18 gas-phase and one additional surface reaction—the physical adsorption of H-atoms on cold, dielectric surfaces and their subsequent recombination and desorption as H2 molecules—are included in the calculations. It is found that metal grains can produce as much interstellar H2 as the best physical adsorption mechanism under optimum conditions if the extinction in the visible is less than 5m.0. The three critical parameters for efficient catalysis (activation energy of desorption, grain temperature, and the number density of available sites) are examined, and it is shown that catalytic reactions are efficient producers of H2 under all but the most unfavorable conditions.  相似文献   

20.
The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of Doppler shift and delay, but to date the quality of the reconstructions has been poor. Here we report a substantial improvement in the method which we have achieved by simultaneous optimization of the thousands of coefficients that describe the electric field. For our test spectrum of PSR B0834+06 we find that the model provides an accurate representation of the data over the full 63 dB dynamic range of the observations: residual differences between model and data are noise like. The advent of interstellar holography enables detailed quantitative investigation of the interstellar radio-wave propagation paths for a given pulsar at each epoch of observation. We illustrate this using our test data which show the scattering material to be structured and highly anisotropic. The temporal response of the medium exhibits a scattering tail which extends to beyond  100 μs  , and the centroid of the pulse at this frequency and this epoch of observation is delayed by approximately  15 μs  as a result of multipath propagation in the interstellar medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号