首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dust emission from wet and dry playas in the Mojave Desert,USA   总被引:1,自引:0,他引:1  
The interactions between playa hydrology and playa‐surface sediments are important factors that control the type and amount of dust emitted from playas as a result of wind erosion. The production of evaporite minerals during evaporative loss of near‐surface ground water results in both the creation and maintenance of several centimeters or more of loose sediment on and near the surfaces of wet playas. Observations that characterize the texture, mineralogic composition and hardness of playa – surfaces at Franklin Lake, Soda Lake and West Cronese Lake playas in the Mojave Desert (California), along with imaging of dust emission using automated digital photography, indicate that these kinds of surface sediment are highly susceptible to dust emission. The surfaces of wet playas are dynamic surface texture and sediment availability to wind erosion change rapidly, primarily in response to fluctuations in water‐table depth, rainfall and rates of evaporation. In contrast, dry playas are characterized by ground water at depth. Consequently, dry playas commonly have hard surfaces that produce little or no dust if undisturbed except for transient silt and clay deposited on surfaces by wind and water. Although not the dominant type of global dust, salt‐rich dusts from wet playas may be important with respect to radiative properties of dust plumes, atmospheric chemistry, windborne nutrients and human health. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

2.
The arid Qaidam Basin is the largest (~3.88 × 104 km2) basin on the north‐eastern Tibetan Plateau. Wind erosion in the area has been regarded as an important trigger for intra‐basin tectonic balance upheaval, geomorphologic development and as a major supplier of dust to the Chinese Loess Plateau downwind. An initial estimate of the rate of wind erosion (Kapp et al., 2011) based on geological cross‐sections has suggested up to 3.2 × 104 km3 of sediments has been deflated over the past 2.8 Ma, lowering the landscape by an average of 0.29 mm/yr. In this paper we re‐evaluate this estimate by dating surface crusts present on three playas within the basin. Understanding the development of these playas is crucial to assessing the overall role of the wind in shaping the regional landscape because they are typically capped with a thick salt crust which effectively protects them from wind erosion. Optically stimulated luminescence (OSL) and U‐series dating from a pit section and from the top of a deep drill core, together with results from magnetostratigraphy and a climate proxy record correlated to the marine oxygen isotope record, are used here to determine the age of the playa plains and suggest that the salt crusts have an age of c. 0.1 Ma. This young age and the wide distribution of resistant thick salt crusts of the playa plains indicate a much lower degree of wind erosion than previously suggested. The crusts protect the surface from significant surface erosion (including sediment exhumation and unloading) and whilst some wind erosion does occur, it is unlikely to be sufficient to trigger tectonic uplift of the basin or to be a major dust source for the Loess Plateau as previously suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A large groundwater system in the Amadeus Basin, central Australia, discharges to a chain of playa lakes 500 km long. The playas contain highly concentrated brines; these are sodium-chloride rich waters with appreciable magnesium and sulphate and very low concentrations of calcium and bicarbonate. Gypsum, glauberite, and other evaporite minerals are precipitating in the playas. The groundwaters evolve to brine by concurrent processes of dissolution, evaporative concentration, mineral precipitation, and mineralogical change. Chemical evolution is considered with reference to a concentration factor based on chloride. Ion transfer calculations demonstrate losses of magnesium and bicarbonate throughout, as a result of precipitation. Sodium, potassium, calcium, and sulphate are gained initially as a result of dissolution but lost subsequently as a result of precipitation. Larger playas in the chain, exemplified by Lake Amadeus, have dual shallow and deep groundwater flow paths whereas the smaller playas, exemplified by Spring Lake, have only shallow flow paths. Brines in the larger playas are diluted by deep groundwaters and this is reflected in the degree of saturation attained with respect to particular minerals. Thus, saturation with respect to gypsum and glauberite is attained earlier in Spring Lake than in Lake Amadeus. Saturation with respect to halite is attained in Spring Lake but not in Lake Amadeus. Both playas are undersaturated with respect to hexahydrite and sylvite although these minerals occur in efflorescent crusts in Spring Lake.  相似文献   

4.
The importance of monitoring changes in the levels of lakes within endorheic basins using remotely sensed data as a means of assessing changes in regional aridity is noted. Large salt playas are highlighted as ephemeral lakes that can display extreme sensitivity to changes in regional rainfall patterns, and which commonly do not have extensively managed catchments. To explore the application of high temporal frequency monitoring of salt playas using remote sensing, the Chott el Djerid, a large salt playa situated in southern Tunisia was targeted. A short time series of 39 Advanced Very High Resolution Radiometer (AVHRR; resolution 1.1 km at nadir) images of the Chott el Djerid (spanning 36 months between 1987 and 1990) were compiled along with climate information from a weather station at Tozeur. Using image histogram manipulation, lake areas were extracted from the time series. A good level of agreement was observed between recorded rainfall events and the presence of surface water on the playa, and for a limited sample of large flood events it was found that there were significant relationships between rainfall, evaporation and estimated lake areas (r2 = 98.5, p < 0.001). Overall, these data suggest that contemporary lake formation is largely controlled by temporal changes in effective precipitation within the basin. In addition, it was found that the coefficient of variation of the time series, and a combination of temporal reflectance profiles extracted from it, could be used to give a direct indication of which sedimentary surfaces on the playa are affected by large flood events, and the extent to which these events may be preserved within the recent sedimentary record at these sites. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
In bolsons in the desert regions of southern California and adjacent parts of Nevada, the area underlain by alluvial fan gravels and playa sediments is generally ?1·2 times the area being eroded to produce those sediments. In certain larger basins in the vicinity of Death Valley, however, the depositional area is only about half the size of the erosional area. This reflects the more active tectonic environment in these bolsons. Of the areas underlain by recent sediments in these bolsons, playas make up 2–6 per cent. Smaller playas are found in the Mojave region, and seem to be associated with sedimentary terranes. Conversely, igneous terranes support larger playas. Larger deviations of playa area from these averages are attributable to incorrect identification of bolson boundaries. Fine sediment is either able to pass through the bolson to the next down stream, or is being collected from areas upstream that were not considered to be part of the system. For example, the playa in Death Valley is unusually large. This is in part because the Death Valley playa has been deformed tectonically so parts of it are now eroding, and in part because the outlet of Lake Tecopa was downcut in the geologically recent past, so sediment once trapped there now reaches Death Valley. The size of the playa in Death Valley is still adjusting to these changes.  相似文献   

6.
Sodium accumulating playas (also termed sodic or natric playas) are typically covered by polygonal crusts with different pattern characteristics, but little is known about the short‐term (hours) dynamics of these patterns or how pore water may respond to or drive changing salt crust patterning and surface roughness. It is important to understand these interactions because playa‐crust surface pore‐water and roughness both influence wind erosion and dust emission through controlling erodibility and erosivity. Here we present the first high resolution (10?3 m; hours) co‐located measurements of changing moisture and salt crust topography using terrestrial laser scanning (TLS) and infra‐red imagery for Sua Pan, Botswana. Maximum nocturnal moisture pattern change was found on the crests of ridged surfaces during periods of low temperature and high relative humidity. These peaks experienced non‐elastic expansion overnight, of up to 30 mm and up to an average of 1.5 mm/night during the 39 day measurement period. Continuous crusts however showed little nocturnal change in moisture or elevation. The dynamic nature of salt crusts and the complex feedback patterns identified emphasize how processes both above and below the surface may govern the response of playa surfaces to microclimate diurnal cycles. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

7.
The formation of Namibia's extensive pedogenic gypsum crusts (CaSO4·2H2O) is interpreted in a new light. It is suggested that gypsum primarily precipitates at isolated points of evaporitic concentration, such as inland playas, and that deflation of evaporitic‐rich gypsum dust from these playas contributes to the formation of pedogenic gypsum duricrusts on the coastal gravel plains of the Namib Desert surrounding these playas. This study establishes the nature, extent and distribution of playas in the Central Namib Desert and provides evidence for playa gypsum deflation and gravel plain deposition. Remote sensing shows the distribution of playas, captures ongoing deflation and provides evidence of gypsum deflation. It is proposed that, following primary marine aerosol deposition, both inland playas and coastal sabkhas generate gypsum which through the process of playa deflation and gravel plain redeposition contributes to the extensive pedogenic crusts found in the Namib Desert region. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Playa systems are driven by evaporation processes, yet the mechanisms by which evaporation occurs through playa salt crusts are still poorly understood. In this study we examine playa evaporation as it relates to land surface energy fluxes, salt crust characteristics, groundwater and climate at the Salar de Atacama, a 3000 km2 playa in northern Chile containing a uniquely broad range of salt crust types. Land surface energy budget measurements were taken at eight representative sites on this playa during winter (August 2001) and summer (January 2002) seasons. Measured values of net all-wave radiation were highest at vegetated and rough halite crust sites and lowest over smooth, highly reflective salt crusts. Over most of the Salar de Atacama, net radiation was dissipated by means of soil and sensible heat fluxes. Dry salt crusts tended to heat and cool very quickly, whereas soil heating and cooling occurred more gradually at wetter vegetated sites. Sensible heating was strongly linked to wind patterns, with highest sensible heat fluxes occurring on summer days with strong afternoon winds. Very little energy available at the land surface was used to evaporate water. Eddy covariance measurements could only constrain evaporation rates to within 0.1 mm d−1, and some measured evaporation rates were less than this margin of uncertainty. Evaporation rates ranged from 0.1 to 1.1 mm d−1 in smooth salt crusts around the margin of the salar and from 0.4 to 2.8 mm d−1 in vegetated areas. No evaporation was detected from the rugged halite salt crust that covers the interior of the salar, though the depth to groundwater is less than 1 m in this area. These crusts therefore represent a previously unrecorded end member condition in which the salt crusts form a practically impermeable barrier to evaporation.  相似文献   

9.
Groundwater evaporation and subsequent precipitation of soluble salts at Owens Lake in eastern California have created one of the single largest sources of airborne dust in the USA, yet the evaporation and salt flux have not been fully quantified. In this study, we compare eddy correlation, microlysimeters and solute profiling methods to determine their validity and sensitivity in playa environments. These techniques are often used to estimate evaporative losses, yet have not been critically compared at one field site to judge their relative effectiveness and accuracy. Results suggest that eddy correlation methods are the most widely applicable for the variety of conditions found on large playa lakes. Chloride profiling is shown to be highly sensitive to thermal and density-driven fluxes in the near surface and, as a result, appears to underestimate yearly groundwater evaporation. Yearly mean groundwater evaporation from the playa surface estimated from the three study areas was found to range from 88 to 104 mm year−1, whereas mean evaporation from the brine-covered areas was 872 mm year−1. Uncertainties on these mean rates were estimated to be ±25%, based on comparisons between eddy correlation and lysimeter estimates. On a yearly basis, evaporation accounts for approximately 47 × 106 m3 of water loss from the playa surface and open-water areas of the lake. Over the playa area, as much as 7.5 × 108 kg (7.5 × 105 t) of salt are annually concentrated by evaporation at or near the playa surface, much of which appears to be lost during dust storms in area.  相似文献   

10.
Tyler SW  Muñoz JF  Wood WW 《Ground water》2006,44(3):329-338
Dry playa lakes and sabkhat often represent the terminus of large ground water flow systems and act as integrators of both upgradient (recharge) and downgradient discharge (evaporation). Ground water levels beneath playa/sabkha systems show a variety of surprising responses driven by large evaporation demands and chemical processes not typically encountered in more humid regions. When the water table is very close to the land surface, almost instantaneous rises can be observed with little observed change in either upgradient ground water recharge or potential evaporation. Conversely, when water tables are several meters below the playa surface, water table responses to interannual variability of recharge can be damped and lag significantly behind such changes. This review of the dynamics of shallow water tables in playa lakes and sabkhat discusses the pertinent hydraulic and solute processes and extracts a simple but comprehensive model based on soil physics for predicting the water table response to either upstream recharge changes or changes in potential evaporation at the playa/sabkha. Solutes and associated authigenic minerals are also shown to be important in discriminating both the causes and effects of water level fluctuations.  相似文献   

11.
According to information from on-the-spot investigations, the tectonics of salt mining areas and digital seismic records, we studied the activity of earthquakes induced by water pumping in and out of the salt mines in Shuanghe town, Changning county, Sichuan Province. The study found that the rates of water injection and extraction in the Shuanghe salt mining region were evenly matched before April 2006 and earthquake activity was stable. On the other hand, shallow small and moderate earthquake numbers increased sharply after the water injection rate became much larger than the water extraction rate. Large injection over a long time may causes the permeation of water through pre-existing small fractures and micro-cracks in the Changning anticlinal and accelerate the rupture of micro tectonic formations in nearby regions, inducing small earthquake swarm activity. The Q value calculated by using digital earthquake records indicates a relatively inhomogeneous medium in this area. The results of the accurate location of small earthquakes show that sources are relatively shallow and are concentrated at a depth of 2km to 3km. Focal mechanism solutions reveal a normal dip-slip character of shallow earthquakes. All of these show certain characteristics of earthquake activity induced by water injection.  相似文献   

12.
Salt diapirs are common features of sedimentary basins. If close to the surface, they can bear a significant hazard due to possible dissolution sinkholes, karst formation and collapse dolines or their influence on ground water chemistry. We investigate the potential of ambient vibration techniques to map the 3-D roof morphology of shallow salt diapirs. Horizontal-to-vertical (H/V) spectral peaks are derived at more than 900 positions above a shallow diapir beneath the city area of Hamburg, Germany, and are used to infer the depth of the first strong impedance contrast. In addition, 15 small-scale array measurements are conducted at different positions in order to compute frequency-dependent phase velocities of Rayleigh waves between 0.5 and 25 Hz. The dispersion curves are inverted together with the H/V peak frequency to obtain shear-wave velocity profiles. Additionally, we compare the morphology derived from H/V and array measurements to borehole lithology and a gravity-based 3-D model of the salt diapir. Both methods give consistent results in agreement with major features indicated by the independent data. An important result is that H/V and array measurements are better suited to identify weathered gypsum caprocks or gypsum floaters, while gravity-derived models better sample the interface between sediments and homogeneous salt. We further investigate qualitatively the influence of the 3-D subsurface topography of the salt diapir on the validity of local 1-D inversion results from ambient vibration dispersion curve inversion.  相似文献   

13.
新疆艾比湖干涸湖底不同景观单元蒸发盐分布与变化特征   总被引:2,自引:0,他引:2  
盐尘暴是由干旱、半干旱区尾闾湖干涸湖底及其附近盐质荒漠风蚀所导致的一种灾害性极强的天气现象.盐尘主要来自风蚀过程中干涸湖底盐分的释放.由于干涸湖底不同的植被覆盖状况,导致风蚀过程中盐分损失不同.为了解风蚀过程中不同景观单元下盐分分布与变化特征,选择艾比湖干涸湖底自然状态下典型的6种景观单元(胡杨林带(Landscape 1,简写为L1)、乔本结合带(L2)、草本结合带(L3)、芦苇荒漠带(L4)、梭梭荒漠带(L5)、无植被覆盖(L6)),于2011年6月初和10月初2次采集沉积物样品,运用方差分析方法,研究各个景观单元下盐分的分布与季节变化特征.结果表明:1)2次采样不同景观单元0~30 cm和30~60 cm处阳离子Na+、K+、Mg2+含量均存在显著差异,其中Na+含量存在极显著差异且含量最高,而不同景观单元0~30 cm和30~60 cm处阴离子Cl-、SO42-含量均存在显著差异,CO32-、HCO3-含量甚微;2)干涸湖底沉积物的主要盐分类型是NaCl,其次是CaSO4,其它盐分含量较小,且不同景观单元相同深度沉积物盐分含量存在显著差异.无论是盐分离子组成还是含量,L5均最高,其次是L6,而L2均最低.随着深度的增加,不同景观单元沉积物中的盐分含量均呈现降低的趋势.随着时间变化,景观单元L2、L3、L4、L5、L6盐分含量有不同程度的增加,而L1盐分含量减少;3)在小尺度范围内,局地气候条件相对均一,地下水矿化度、地下水埋深及沉积物性质差别不大,不同景观类型是影响盐分表聚的主要因素.  相似文献   

14.
Many tidal marsh surfaces feature water-filled depressions, known as salt pans (shallow) or ponds (deeper). In the Great Marshes at Barnstable, Cape Cod, pond formation is an active process. We hypothesize that degradation of organic matter by sulphate-reducing bacteria in these peat-rich marsh deposits is the primary cause of pan and pond formation. Sulphate reduction below an actively developing pond is probably enhanced by higher temperature and salinity of the pond water. Computer simulation suggests that ponds with similar characteristics to those in the Barnstable marshes may develop by sulphate reduction. Necessary conditions are sufficiently deep percolation and diffusion of sulphate into the underlying marsh deposits, and a high decomposition rate stimulated by high water temperatures in the ponds. In areas with a high density of ponds, drainage of the ponds by headward erosion of tidal creeks may cause rapid disintegration of the marsh surface. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
Runoff‐induced sediments were collected in the Hallamish dune field for four years (1990–1994). Runoff and consequently water‐transported sediments were generated on the dunes owing to the presence of a thin microbiotic crust. These sediments were analysed for their particle‐size distribution and carbonate content. In addition, the organic matter content was calculated by measuring the chlorophyll content within the runoff. The results were compared to the slope parent material, i.e. the crust and the underlying sand, as well as to playa sediments, which are scattered within the Hallamish interdunal areas, and which were previously hypothesized to originate from runoff‐induced sediments. Higher amounts of fines (silt and clay) and carbonate characterize the footslopes in comparison to the midslopes. Intermediate contents of fines (17 per cent) and carbonate (8 per cent) characterized the sediments in comparison to the fines (27 per cent) and carbonate (15 per cent) of the crust and to the fines (4 per cent) and carbonate (4 per cent) of the underlying sand. The runoff‐induced fines and carbonate contents were significantly different from those of the playas, suggesting that the playa flats do not originate from runoff‐induced sediments. The sediments were enriched with organic matter. Organic matter which originates from the crust amounted to 0·3–0·4 per cent as compared to ≤0·1 per cent in the bare sand. Nevertheless, the crust was found to be relatively resilient to water flow. Only 0·1–0·5 per cent of the crust was annually eroded off the slope by water, with south‐facing crusts showing higher resilience than north‐facing crusts. The data may thus assist in the evaluation of the crust's residence time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Two long term microclimate measurement stations with Bowen ratio capability have been used to study water cycling in a closed desert basin. Microclimate variables including the temperature and vapor pressure gradients were monitored continuously and were used to estimate the Bowen ratio, sensible and latent heat fluxes during 1986 and 1987. Despite having a water table that varied between the surface and 30 cm below the surface, the playa had little evaporation except after rainfall events. The very high osmotic pressure of the soil and salt crust caused most of the absorbed radiation to be partitioned to sensible heat. In contrast, along the margin the thin grass and brush cover transpired water freely, with the latent heat flux exceeding 60% of available energy for much of the season. The higher air temperatures above the playa raised potential evapotranspiration (ET) significantly higher than along the margin throughout the summer. The annual average actual ET of the playa was only 36% of the margin. During the drier summer period (May–October), this ratio decreased to < 28%. Immediately after a rainfall event, evaporation rates of the two sites were similar, but the playa rate was quickly reduced as the osmotic potential increased. During this study, the playa lost < 229 mm of subsurface water to evaporation annually, while > 638 mm were lost from the margin groundwater supply.

The 24-h solar and net radiation correlations were 0.80 and 0.94 for the playa and margin, respectively. The lower correlation for the playa resulted from the wide variation of albedo with surface moisture changes. The annual average albedo values for the playa and margin were 0.64 and 0.46, respectively.  相似文献   


17.
Two types of cavernous‐weathering features are exposed in the Oligocene Macigno Sandstone along 5 km of the Tuscan coast south of Livorno, Italy. Honeycomb cells (type 1 features) are typical closely spaced, more or less circular pits of centimetre scale that have been eroded 2 to 6 cm below the general surface of bedding planes or joints. ‘Aberrant honeycomb’ cells (type 2 features) are highly elongate, polygonal, or irregular ?at depressions of decimetre scale surrounded by walls rarely higher than 2 cm, some of which pass into long, free‐standing walls or tendrils. Thus, not all type 2 ‘honeycomb’ cells are fully enclosed. We measured the geometry of 551 honeycomb cells and examined various rock properties (microscopic texture and fabric, mineralogy, porosity, permeability, and chemical composition) to isolate factors that control the size, shape, distribution, and pattern of the honeycombs. Our goal was to narrow potential origins of the features and to understand their formation. The ubiquitous occurrence of sea salt in the honeycombs and scanning electron microscope evidence of physical weathering of silicates, especially micas, favours an origin for the honeycombs chie?y by salt weathering. Honeycombs do not form in siltstone, iron‐oxide‐impregnated sandstone, calcite‐cemented concretions, or in case‐hardened joints. Thus, salt weathering of type 1 and 2 honeycombs is not effective in very low permeability rocks. We propose for type 1 honeycombs that seawater is drawn into micropores of the sandstone and evolves into self‐organized diffusion cells (Turing patterns). Selective evaporation at the stationary nodes of diffusion cells, which form at the same site over time, leads to the precipitation of salt, then grains spall off, and pits are formed. The deepest pits (>40 mm) formed where Turing patterns consistently formed at the same sites. Although the walls are more porous and weathered than the host sandstone, they become selectively case hardened by an unidenti?ed component of low abundance. Initial honeycomb cell shape and gravity locally in?uenced type 1 honeycomb shapes. We suggest that type 2 honeycombs develop where diffusion‐controlled Turing patterns lead to case‐hardening along linear trends; gravity and rock fabric are important locally in in?uencing the orientation of the walls. Only type 2 cells are forming today, suggesting recent environmental changes. Gravity is not a fundamental control on honeycomb shape; in places it is a contributing factor. Pre‐existing depressions (quarry tool marks) have strongly in?uenced honeycomb shape locally. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
张程  黄文峰  李瑞  杨惠杰  赵雯  林战举 《湖泊科学》2022,34(4):1186-1196
伴随结冰过程的盐分排出是驱动冰封浅湖营养盐动态变化的关键过程,影响湖泊水质、环境与生态演变.为探究湖冰冻融过程如何改变寒区浅湖营养盐条件,采用自制定向冻结装置开展了无机氮磷营养盐溶液(NH3-N、NO-2-N、NO-3-N、PO3-4-P)的室内冻结试验,结合现场采样分析评估了冻结排出效应对典型浅湖氮磷营养盐的影响.结果表明:营养盐浓度、盐度(以NaCl表征)是影响冻结排出效率的关键因素;随营养盐浓度的升高,冰内营养盐浓度升高,但冻结分离系数减小;若盐度升高,冰内营养盐浓度和分离系数均增大,主要与未冻卤水泡的形成有关;3种形态的无机氮、磷酸根的分离系数均存在明显差异.将试验结果应用于内蒙古乌梁素海结冰期氮磷营养分析,计算表明湖冰冻结排盐过程不仅造成湖水各类营养盐浓度升高,同时改变无机氮素构成、氮磷比等营养结构状态;特别是若湖泊盐度发生变化,氮磷营养盐的冻结排出效率及其差异性均会显著改变,增加冰封期湖泊营养条件的时空变异性.本文结果可广泛应用于定量评价冰层冻融过程对冬季湖泊营养条件的影响,有助于理解冰封期浮游植物群落演变的内在驱动力.  相似文献   

19.
Salt precipitation on the surface of porous media significantly affects water transport processes. Most studies on salt precipitation mainly focused on single salts, but in nature, salt precipitation usually occurs as mixtures. Consequently, information on the crystallization of salt mixtures and its effect on water transport remains scarce. This study investigated the precipitation of mixtures (the mass ratios of NaCl:Na2SO4 were 3:7, 5:5, and 7:3, respectively) of NaCl (typical efflorescence) and Na2SO4 (typical subflorescence) in the initially saturated sandy soil columns and its effect on evaporation and compared it with the cases of the two salts individually. The results showed that salt mixtures exhibited a mixed pattern of crystals including both efflorescence and subflorescence, and the efflorescence showed granular aggregation, unlike the mono-salts. The crystallization coverage of the salt mixtures was smaller than that of NaCl mono-salt; high (7:3) and low (5:5 and 3:7) proportions of NaCl led to larger and smaller crystallization coverage than that of Na2SO4 mono-salt, respectively. While the salt mixtures had less crystallization coverage than the mono-salts, they showed lower evaporation because the salt mixtures formed a denser crystallization structure of efflorescence-subflorescence-soil layer, this crystallization structure exhibited greater inhibition of water vapour diffusion, thus reducing evaporation. In addition, the crystallization of the salt mixtures with higher NaCl proportion afforded greater resistance of evaporation. The mixed crystallization pattern formed by the salt mixtures significantly enhances the crystallization resistance to evaporation.  相似文献   

20.
段水强 《湖泊科学》2018,30(1):256-265
柴达木盆地众多的湖泊不仅对维持当地脆弱的生态环境具有极其重要的作用,而且中心盐湖也是重要的矿产资源.进入21世纪以来,受气候变化和人类活动的共同影响,盆地湖泊发生了一系列重大变化.为科学认识这一问题,选取了1976-2015年6期Landsat系列卫星影像,解译了该区域1 km2以上的湖泊水面,并分析了湖泊变化对气候和人类活动的响应.结果表明:柴达木盆地湖泊面积总体上存在扩张(1976-1990年)萎缩(1990-2000年)扩张(2000-2010年)萎缩(2010-2015年)4个阶段的变化过程,2010年湖泊面积最大,2015年湖泊又明显萎缩.就气候水文因素而言,湖泊面积变化主要受山区降水径流的影响.湖面变化与前3 a的降水径流关系最为密切.进入21世纪以来,气候变化与上游社会经济耗水、盐湖周边人为阻隔河湖连通、开采卤水、修建人工盐田、排放老卤等人类活动,对盆地中心湖泊的空间格局、面积都产生了显著影响,苦水沟、达布逊湖南部形成了新湖泊,鸦湖、团结湖面积显著扩大,东、西台吉乃尔湖逐渐萎缩、干涸,一里平湖由以前的干盐湖在2010年一跃成为盆地最大的湖泊.针对盐湖大规模开发产生的负面影响,提出了合理开发盐湖资源的建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号