首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plausible forms of fluoride (F) responsible for the persistence of fluoride toxicity in ground water of a granitic terrain of semi-arid region, which is the main source of drinking water, have been studied. The study area in Anantapur District of Andhra Pradesh, India, is one of the chronic regions with excess fluoride in groundwater and the region is under transformation into aridity due to poor rainfall and over-exploitation of groundwater. Geochemical analysis of soil, groundwater, and rock samples of the study area revealed the presence of other toxic elements also in addition to fluoride which need to be addressed in drinking water sector in near future. Soil fluoride leaching experiments demonstrated the probable mode of mobilization of F into the groundwater through natural recharge process during monsoon. Analysis of saturation indices indicates that the fluorite solubility alone is not attributable to the high fluoride content in groundwater. The groundwater flow controls fluoride mobilization in the study area as it is evidenced through fluoride concentration and electrical conductivity increase from catchment to downstream region. Creation of lesser fluoride groundwater sources through rainwater harvesting and artificial recharge of groundwater in catchment areas is suggested as a long-term sustainable safe drinking water strategy.  相似文献   

2.
More and more data indicated that high- or low-fluoride-bearing drinking water led to endemic diseases in which fluoride poisoning was caused by high levels of fluoride (fluoride ion content >1.0 mg/I) in drinking water. Fluoride poisoning in North China is characterized by pathological changes of bones and teeth. Much attention has been devoted to the study of fluoride-bearing groundwater in North China because regionally groundwater has been the main source of water supply, and fluoride poisoning has developed to the extent that it affects human health seriously. Results from the studies in North China summarized in this article indicate that regional high-fluoride-bearing groundwater has a regular distribution corresponding with the development of endemic fluoride poisoning and has something to do with paleogeographic and paleoclimatic conditions, geology, and hydrogeology, especially with types of hydrogeochemistry, pH value of groundwater, degree of mineralization, and so forth. High-fluoride-bearing groundwater in relation to fluorosis occurs mainly in North China, and many effective measures have been taken to reduce the fluoride content in drinking water and to cure the disease after analyzing the distribution and environmental characteristics of high-fluoride-bearing groundwater.  相似文献   

3.
Groundwater is critical for the sustainable development of the Loess Plateau, while groundwater quality is generally poor in this area due to natural factors and anthropogenic pollution. This study was carried out to investigate the suitability of groundwater for domestic and agricultural purposes in Yan’an City on the Chinese Loess Plateau and to assess its implications to sustainable groundwater management on the plateau. The index levels were compared with the threshold values established by the national and the WHO drinking water guidelines, and the suitability of groundwater for irrigation purposes was assessed using multiple agricultural water quality indicators. An entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (entropy-weighted TOPSIS) was adopted for overall groundwater quality assessment. The results indicate that the study area is characterized by saline, hard, and slightly alkaline groundwater, mainly of the HCO3–Ca·Mg type, accompanied by some minor SO4·Cl–Ca·Mg type. The dissolution of carbonates and gypsum and the leaching of soluble salts are important natural processes influencing the groundwater ion chemistry. The parameters TH, TDS, and SO42? are major indices, while Fe, Mn, F?, and NH4+ are minor contaminants affecting groundwater quality. The overall groundwater quality is generally acceptable for irrigation, and most of the water is suitable for drinking. Rainwater harvesting, water quality improvement programs, regular water quality monitoring, and multidisciplinary water research programs are suggested as measures for sustainable groundwater management on the Loess Plateau.  相似文献   

4.
The present study focuses on the hydrogeochemical composition of groundwater in Chhatarpur area with special focus on nitrate and fluoride contamination, considering the fact that groundwater is the only major source of drinking water here. Carbonate and silicate mineral weathering followed by ground water–surface water interactions, ion exchange and anthropogenic activities are mainly responsible for high concentrations of cations and anions in the groundwater in the region. The average concentration of nitrate and fluoride found in 27 samples is 1.08 and 61.4 mg/L, respectively. Nitrate enrichment mainly occurs in areas occupied with intense fertilizer practice in agricultural fields. Since the area is not dominated by industrialization, the possibility of anthropogenic input of fluoride is almost negligible, thus the enrichment of fluoride in groundwater is only possible due to rock–water interaction. The highly alkaline conditions, which favor the fluorite dissolution, are the main process responsible for high concentration of fluoride.  相似文献   

5.
Exposure to arsenic and fluoride through contaminated drinking water can cause serious health effects. In this study, the sources and occurrence of arsenic and fluoride contaminants in groundwater are analyzed in Dawukou area, northwest China, where inhabitants rely on groundwater as the source of drinking water. The triangular fuzzy numbers approach is adopted to assess health risk. The fuzzy risk assessment model incorporates the uncertainties that are caused by data gaps and variability in the degree of exposure to contaminants. The results showed that arsenic and fluoride in groundwater were mainly controlled by the dissolution–precipitation of Ca-arsenate and fluorite under weakly alkaline conditions. The arsenic and fluoride concentrations were higher in the shallow groundwater. The most probable risk values for arsenic and fluoride were 4.57 × 10?4 and 0.4 in the shallow groundwater, and 1.58 × 10?4 and 0.3 in the deep groundwater. Although the risks of fluoride were almost within the acceptable limit (<1.0), the risk values of arsenic were all beyond the acceptable levels of 10?6 for drinking water. Further, the local administration should pay more attention to the potential health risk through dietary intake and to the safety of deep water by ensuring it is not contaminated under prolonged pumping conditions. The fuzzy risk model treats the uncertainties associated with a quantitative approach and provides valuable information for decision makers when uncertainties are explicitly acknowledged, particularly for the variability in contaminants. This study can provide a new insight for solving data uncertainties in risk management.  相似文献   

6.
《China Geology》2021,4(3):509-526
The fresh groundwater in the Loess Plateau serves as a major source of water required for the production and livelihood of local residents and is greatly significant for regional economic and social development and ecological protection. This paper analyzes the hydrogeological conditions and groundwater characteristics in the Loess Plateau, expatiates on the types and distribution characteristics of the fresh groundwater in the plateau, and analyzes the influencing factors and mechanisms in the formation of the fresh groundwater in the plateau as a priority. Based on this, it summarizes the impacts of human activities and climatic change on the regional fresh groundwater. The groundwater in Loess Plateau features uneven temporal-spatial distribution, with the distribution space of the fresh groundwater closely relating to precipitation. The groundwater shows a distinct zoning pattern of hydrochemical types. It is fresh water in shallow parts and is salt water in deep parts overall, while the fresh water of exploration value is distributed only in a small range. The storage space and migration pathways of fresh groundwater in the loess area feature dual voids, vertical multilayers, variable structure, poor renewability, complex recharge processes, and distinct spatial differences. In general, the total dissolved solids (TDS) of the same type of groundwater tends to gradually increase from recharge areas to discharge areas. Conditions favorable for the formation of fresh groundwater in loess tablelands include the low content of soluble salts in strata, weak evaporation, and special hydrodynamic conditions. Owing to climate change and human activities, the resource quantity of regional fresh water tends to decrease overall, and the groundwater dynamic field and the recharge-discharge relationships between groundwater and surface water have changed in local areas. Human activities have a small impact on the water quality but slightly affect the water quantity of the groundwater in loess.© 2021 China Geology Editorial Office.  相似文献   

7.
Groundwater is one of the most important natural resources of drinking water on the earth planet. In rural areas of Yemen, groundwater is the main resource for drinking as well as for domestic purposes. According to the World Health Organization, one of the most important elements that has to be found in drinking water is fluorine (fluoride) but within the range of concentration of 0.5 up to 1.5 mg/l. Otherwise, any concentration of fluoride out of that range may cause serious diseases in human’s body such as fluorosis, kidney chronic disease, and/or nephrotoxicity. Taiz City, the third important and largest city in Yemen, has been suffering from dental fluorosis for a few decades. The main resource for drinking water in this city and adjacent areas is Al-Howban Basin (the study area) from where 33 groundwater samples were collected from 33 stations. These samples were preserved and then chemically analyzed according to the American Public Health Association Standards. The results reflected high levels of fluoride concentrations up to 3.6 mg/l in groundwater of many stations. GIS mapping was used to produce a geospatial distribution map of fluoride concentrations using ArcGIS-inverse distance weighted (IDW) tool. As a result, three zones of risks were identified in the study area: mild risk zone which covers the major part of the study area, moderate risk zone, and zone of no risk (optimum level zone). The last two zones occupy small portions of the study area. Consequently, dental and skeletal fluorosis, kidney, and/or nephrotoxic diseases are highly expected to be detected in the study area. Groundwater treatment measurements and health precautions are strongly recommended to be taken by local authorities in the near future.  相似文献   

8.
The occurrence of fluoride in ground water is the focus of the public and has attracted the attention of many scientists all over the world due to its importance in public health. Deficiency or increase of fluoride uptake is considered a public health problem due to the narrow permissible limit which should not exceed 1.5 mg/l according to the World Health Organization (WHO). The range of fluoride tolerance and toxicity is narrow. Deviation from the optimal levels therefore results in dental health effects such as caries and fluorosis. Many studies have found fluorosis to be invariably associated with high concentrations of fluoride in drinking water. Fluorosis is a considerable health problem in many areas of the world including Brazil, China, East Africa, Ghana, India, Kenya, Korea, Malawi, Mexico, Pakistan, South Africa, southeastern Korea, Spain, Sri Lanka, Sudan, Taiwan, Tanzania, and Turkey. Fluoride in groundwater of Quaternary aquifer of the Nile Valley, Egypt, does not gain the attention of the authors in the Nile Valley which makes the public health status of fluoride is not certain. The present work aims at investigating the fluoride concentration of Quaternary groundwater aquifer at Luxor as a representative area of the Nile Valley to be a base line for subsequent studies and criteria for public health. Ground water samples were collected from Quaternary groundwater aquifer at Luxor area, Egypt and analyzed for the purpose of investigating fluoride content. The results showed that fluoride concentration in the study area ranges between 0.113 and 0.452 with an average of 0.242 mg/l. Sources of fluoride in the study area can result from the natural dissolution from fluoride-rich minerals, fertilizers and from groundwater recharge. It is worth mentioning that low fluoride content in the study area is considered a public health threat specially limited growth, fertility, and dental caries. Corrective measures should be taken to avoid the public health impacts of fluoride deficiency at Luxor area as well as similar areas in the Nile Valley. A public health program should be initiated to account for the deficiency of fluoride in groundwater and deal with the other supplementary fluoride sources in food or fluoridation of drinking water supplies.  相似文献   

9.
Nitrogenous pollutants from intense human activities have become serious environmental and health problems worldwide, particularly in groundwater source areas used for public water supply. To investigate the genesis and pollution risks associated with elevated concentrations of ammonium nitrogen in a groundwater source area, investigations were undertaken in the Jinji groundwater source area, located in an arid loess plain in northwestern China where 16 groundwater samples were collected from an aquifer used for water supply. The investigation indicated that high concentrations of ammonium nitrogen originated mainly from: infiltration of water from the Yellow River; livestock; and the discharge of industrial wastes. Measured parameters including pH, the permanganate index and the oxidation reduction potential could be used as important indicators of the genesis of ammonium nitrogen. A modified DRTCLN model was applied to the observed distribution of ammonium nitrogen to assess pollution risk of regional groundwater. The model was optimized by rebuilding the index system, and the analytic hierarchy process was used to calculate the rating scale of each index. A Monte Carlo simulation was performed to analyze the uncertainty of results of the risk assessment. The result showed that the risk value is relatively low in most areas of the groundwater source area. Only an industrial area in the southwestern part of the groundwater source area was classified as high risk; it should be the key factor of pollution control.  相似文献   

10.
金犇  谭红兵  张玉东  柳子豪 《水文》2017,37(2):89-96
为了揭示黄土高原山地-沟壑区黄土地下水水化学特征及成因,对六盘山东西两侧山区及其西部典型黄土高原山地-沟壑区进行了多次实地考察,合理选择采样点,采集了浅层地下水监测水样。对采集的样品水化学数据进行了分析,结果表明:六盘山地区浅层地下水以低TDS重碳酸盐型为主,径流途径较短,循环条件较好,保持了较好的天然淡水资源状态;而在山地-沟壑区水化学类型则复杂多样,TDS平均值达1 870mg/L,淡水资源相对匮乏。结合各类水化学图可以看出,浅层地下水和地表水的离子来源优势机制以岩石风化为主,并且在山地-沟壑区受到不同程度蒸发作用控制。通过分析地下水中的离子浓度比以及锶元素,发现六盘山区主要为补给区和径流区,山地-沟壑区则是补给区、径流区和径流滞缓区,黄土地下水可能有来自六盘山岩溶水的补给。氟离子浓度和硬度超标是影响区域内水质的最主要因素,在受蒸发作用影响较大的地区尤为突出。黄土高原地下水资源的分布状况和质量参差不齐,保护好区域内较好的淡水资源并且按照地下水分布规律进行合理的开发与宏观调控,是缓解黄土高原水资源问题的关键。  相似文献   

11.
为解决当地农村群众饮水安全问题,探讨黔中丘峰盆地区岩溶找水及开发技术,开展了贵阳市乌当区地下水机井工程。在对区内地形地貌、地质构造、水文地质等情况调查的基础上,初步圈定出沿构造等可能布设机井的地下水富集地带,并通过高密度电阻率法在靶区布设物探剖面,根据电性差异查明主径流带的走向及埋深状况,进一步确定机井位置。最终通过钻探施工和抽水试验,查明区内含水层岩溶发育程度及其富水性,并成功施工6口探采结合井,为当地居民饮水提供了安全水源。黔中丘峰盆地为裸露岩溶区,主要含水岩组为寒武系娄山关群白云岩、灰质白云岩,地下水赋存条件较差;区内岩溶中等发育,以溶蚀裂隙为主,局部裂隙、溶洞发育地带和断层等储水构造富水性强,为地下水的富集地段,也是机井布设的首选位置。   相似文献   

12.
Groundwater is the main source of irrigation within south Al Madinah Al Munawarah region. It is also an important source of drinking water in many areas including Madinah city. The wells installed in the aquifer of the study area (south Madinah city) are not currently regulated by the local authorities although they are a key component of water supply. The aquifers in the study area range from unconfined to semi-confined and confined. The main aim of this study is to assess the groundwater in the region for drinking and agricultural uses. For this purpose, hydrochemical analyses of major, minor and trace constituents and nutrients were performed on 29 groundwater samples from the aquifer located about 20 km south of Madinah. The recharge rate of the aquifer of the study area was estimated to be 6.58 % of the annual precipitation using the chloride mass-balance method. Chloride was positively correlated with major ions, which suggests that agricultural activities have some effect on groundwater chemistry through leaching of readily soluble salts from the soil zone. Groundwater of the study area is characterized by dominance of Na over Ca. Chloride was found to be the most dominant anion and replaced by HCO3, thus reflecting geochemical evolution in the study area. The groundwater of the study area is not safe for drinking but can be safely used for salt-tolerant crops.  相似文献   

13.
Distribution of fluoride in groundwater of Maku area, northwest of Iran   总被引:3,自引:0,他引:3  
High fluoride groundwater occurs in Maku area, in the north of West Azarbaijan province, northwest of Iran. Groundwater is the main source of drinking water for the area residents. Groundwater samples were collected from 72 selected points including 40 basaltic and 32 nonbasaltic springs and wells, in two stages, during June and August 2006. The areas with high fluoride concentrations have been identified, and the possible causes for its variation have been investigated. Regional hydrogeochemical investigation indicates that water-rock interaction is probably the main reason for the high concentration of ions in groundwater. The concentration of F in groundwater is positively correlated with that of HCO3 and Na+, indicating that groundwater with high HCO3 and Na+ concentrations help to dissolve some fluoride-rich minerals. All of the water samples, collected from the basaltic areas do not meet the water quality standards for fluoride concentration and some other parameters. Hence, it is not suitable for consumption without any prior treatment. Inhabitants of the area that obtain their drinking water supplies from basaltic springs and wells are suffering from dental fluorosis. The population of the study area is at a high risk due to excessive fluoride intake especially when they are unaware of the amount of fluoride being ingested due to lack of awareness.  相似文献   

14.
西南岩溶区岩溶水有效开发利用规划分区   总被引:5,自引:3,他引:5  
我国西南岩溶地区由于自然地理、地质构造背景特征,造成了岩溶水补给、径流、排泄及动态的差异,以及在开发利用岩溶水资源的方式和途径上的不同。本文以岩溶水赋存条件及其地质环境条件为基础,依据岩溶水的富水性、开发意义、开发的紧迫性以及开发方式和社会效益,进行岩溶水有效开发利用规划分区,为该地区的岩溶水有效开发提供参考。   相似文献   

15.
The present study was carried out in the Mulaylih area which forms a part of Wadi Al Hamad in the Madinah Province of Saudi Arabia. Thirty groundwater samples from agricultural farms were collected and analyzed for various physio-chemical parameters including trace elements. The area is occupied by the Quaternary alluvium deposits which form shallow unconfined aquifers. Evaporation and ion exchange are the major processes which control the major ion chemistry of the area. The extreme aridity has results in high total dissolved solid values (average of 9793.47 mg/l). Trace element concentrations are low and are mainly attributed to geogenic sources (silicate weathering). Na-Cl groundwater type is the main hydrochemical facies found in the area. The waters are found to be oversaturated with calcite/aragonite and dolomite. The average nitrate concentration was found to be 134.10 mg/l and is much higher than the WHO recommended limit of 50 mg/l in drinking water. Their high values are mainly associated with the application of N-fertilizers on the agricultural farms. The average fluoride concentration in the study was found to be 1.54 mg/l. The relation between F and Cl and Cl and Na reveals that the fluoride concentrations are mainly attributed to geogenic sources. A comparison of the groundwater quality with the Saudi drinking water standards shows that the water is unfit for drinking. The high salinity and sodicity of the groundwater make it unfit for irrigation. Principal component analysis resulted in extraction of four principal components accounting for 79.5% of the total data variability and supports the fact that the natural hydrochemical processes (evaporation and ion exchange) control the overall groundwater chemistry.  相似文献   

16.
To study arsenic(As) content and distribution patterns as well as the genesis of different kinds of water, especially the different sources of drinking water in Guanzhong Basin, Shaanxi province, China, 139 water samples were collected at 62 sampling points from wells of different depths, from hot springs, and rivers. The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method(HG-AFS). The As concentrations in the drinking water in Guanzhong Basin vary greatly(0.00–68.08 μg/L), and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin. Even within the same location in southern Guanzhong Basin, the As concentrations at different depths vary greatly. As concentration of groundwater from the shallow wells(50 m deep, 0.56–3.87 μg/L) is much lower than from deep wells(110–360 m deep, 19.34–62.91 μg/L), whereas As concentration in water of any depth in northern Guanzhong Basin is 10 μg/L. Southern Guanzhong Basin is a newly discovered high-As groundwater area in China. The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers, which store water in the Lishi and Wucheng Loess(Lower and Middle Pleistocene) in the southern Guanzhong Basin. As concentration of hot spring water is 6.47–11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68–68.08 μg/L. The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine(F) value, which is generally 0.10 mg/L. Otherwise, the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values(8.07–14.96 mg/L). The results indicate that highAs groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area. As concentration of all reservoirs and rivers(both contaminated and uncontaminated) in the Guanzhong Basin is 10 μg/L. This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin. The partition boundaries of the high- and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin. This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework. In southern Guanzhong Basin, the main sources of drinking water for villages and small towns today are wells between 110–360 m deep. All of their As contents exceed the limit of the Chinese National Standard and the International Standard(10 μg/L) and so local residents should use other sources of clean water that are 50 m deep, instead of deep groundwater(110 to 360 m) for their drinking water supply.  相似文献   

17.
Anomalous high fluoride concentration up to 7.59 mg/dm3 is found in groundwater from “La Victoria” area. This water is used to supply drinking water to Hermosillo City, Sonora. Geochemistry of groundwater, relationship between physicochemical parameters, hydrogeology and geologic setting were correlated to define the origin and the geochemical mechanisms of groundwater fluorine enrichment. High fluoride concentration is associated with high bicarbonates, pH and temperature, and it decreases toward the west and south of the area. Fluoride is in negative correlation to calcium concentration. Sodium sulphate facies of regional deep water flow are related to high fluoride concentration. High electric resistivity rocks associated with granites from the Sierra Bachoco basement might be the deep source of fluoride. Outcropping of Sierra Bachoco in the west causes upward regional flow. Groundwater of longer residence time can be pumped there. The anomalous area is restricted to “La Victoria” because calcareous paleozoic rocks outcrop to the south.  相似文献   

18.
天然成因的高氟地下水是世界范围内备受关注的环境问题和饮用水安全问题。前人对高氟地下水的形成过程已开展了大量研究,但是对于高原盆地复杂水文地质条件下不同类型含水层组(第四系松散层含水层、基岩裂隙或岩溶含水层以及新生代古近纪以来的碎屑岩含水层)高氟地下水的分布和形成过程尚不明确。本文以化隆—循化盆地为研究区,通过采集、测试研究区内的各类地下水样品,分析研究区内不同类型含水层中地下水的化学特征及同位素特征。结果表明,高氟地下水(1.007.73 mg/L)主要分布在沿黄河的河谷区域和巴燕低山丘陵区域的泉水和潜水中以及深部的承压水中,在垂向上高氟地下水无明显分布规律。接受黄河水入渗补给的河谷潜水中氟离子浓度较低,补给黄河的河谷潜水中氟离子浓度较高。贫钙富钠的弱碱性苏打型水有利于地下水中氟的富集。泉水和潜水中氟主要来源于萤石的溶解,而承压水中氟除了来源于萤石外,还来源于其他含氟矿物。对于潜水和第四系松散层泉水,蒸发浓缩作用促进了地下水中氟的富集。另外,阴离子竞争吸附作用、阳离子交换吸附作用是泉水(第四系松散层泉水和基岩裂隙泉水)和潜水中氟元素富集的主要原因,而承压水中氟离子浓度受竞争吸附作用影响较大,阳离子交换吸附作用影响较小。研究成果可为化隆—循化盆地低氟地下水的勘查和开发提供科学依据。  相似文献   

19.
鲁中南岩溶水资源综合类型及合理调蓄研究   总被引:7,自引:1,他引:7  
鲁中南岩溶区是中国北方半干旱温带岩溶区中具有代表性的地区之一。该区岩水资源分布具有明显的不均匀性和大面积分散补给而局部富集等特征。岩溶形态以溶蚀裂隙洞穴为主,地下水类型多为裂隙溶洞型。在对该区岩溶水补给,富集,径流及排泄特征的研究基础上,初步将本区地表水和地下水资源划分为两大类型,即地下岩溶水径带变化带水资源类型和排泄带水资源及地下岩溶水资源类型。对该地区地表水和地下水的合理调蓄问题进行了系统的分析和总结,并提出了相关的对策。  相似文献   

20.
A study was undertaken to examine the content and spatial distribution of fluoride in drinking water. Water samples (735) from public water systems covering all Estonian territory were analysed using SPADNS method. In order to specify the natural source of fluoride, the chemistry data from five aquifer systems utilised for water supply were included into the study. Fluoride concentrations in tap water, to a great extent, ranged from 0.01 to 6.95 mg/l. Drinking water in southern Estonia, where terrigenous Middle-Devonian aquifer system is exploited, has a fluoride concentration lower than recommended level (0.5 mg/l), thus promoting susceptibility to dental caries. The western part of the country is supplied by water with excess fluoride content (1.5–6.9 mg/l). Groundwater abstracted for drinking purposes originates from Ordovician and Silurian carbonate rocks. The content of fluoride in Silurian–Ordovician aquifer system is associated with the groundwater abstraction depth and the main controlling factors of dissolved fluoride are the pH value and the chemical type of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号