共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
对基于LIDAR数据的建筑物重建进行研究,提出了一种自动化的建筑物重建方法.根据建筑物的边缘线通常互相垂直或平行这一特点对提取的轮廓线进行规则化.然后在屋顶三角网中随机选取种子三角形进行区域生长,将屋顶分割成不同的平面,通过平面相交得到建筑物的屋脊线.最后通过搜索离建筑物轮廓点最近的LIDAR点云,将搜索到的LIDAR点云高程值赋给该轮廓点.实验结果表明:利用该方法进行建筑物重建具有较高的精度. 相似文献
3.
4.
5.
6.
基于LIDAR数据的建筑物轮廓提取 总被引:2,自引:0,他引:2
建筑物轮廓的准确提取是建筑物三维重建中最重要的一步。本文在研究已有建筑物轮廓提取方法的基础上,针对LIDAR离散的点云数据,提出了一种自动快速提取建筑物轮廓信息的方法。首先通过点云数据生成城市的数字表面模型(DSM)和数字地面模型(DTM)相减计算得出规则化的数字表面模型(nDSM),进而将地面点和非地面点进行分类;其次,考虑到地物的几何特性,提出一种8邻域搜索的方法对非地面点点云进行分割,得到建筑物表面点云;最后运用基于梯度图的边界跟踪的方法来获取建筑物的轮廓信息。实验表明:该方法能有效地提取建筑物轮廓。 相似文献
7.
提出了一种基于蚁群算法的地面激光扫描数据建筑物立面提取方法,该方法可以有效地区分沿街LiDAR扫描景观数据中建筑物立面和位于其前方的树木、街灯、行人、停靠车辆等遮挡物。三组真实的地面激光点云的实验结果表明,该方法能准确、有效地提取建筑物立面点云数据。 相似文献
8.
建筑物轮廓线作为建筑物建模的基础数据,其精确获取成了点云研究者的重点研究内容。本文以原始点云数据为基础,探究点云数据中建筑物轮廓线的提取流程,采用渐进三角网滤波实现地面点与地物点的分离,利用22种特征向量训练随机森林获取建筑物点云,最后以方向约束的随机抽样一致算法(RANSAC)实现建筑物轮廓线规则化提取。实验表明,本文算法可实现轮廓线的精确提取,与实际屋顶边缘偏差稳定在较低水平,可满足现实需求。 相似文献
9.
10.
建筑物是城市三维建模的重要元素,其轮廓信息的提取既是难点又是重点。本文提出了原始激光雷达点云数据的渐进式建筑物轮廓线提取方法。首先对原始点云数据采用渐进数学形态学滤波分离非地面点;然后使用改进的三维Hough转换分类出建筑物点云;进一步提取建筑物轮廓点,并根据相邻点方位角阈值确定建筑点云轮廓的关键点,以此简化并拟合建筑物轮廓线;最后基于轮廓线长度加权方向将建筑物轮廓规则化。结果表明,该方法大大提高了点云处理的效率和精度,可以直接从采集到的初始数据中自动化渐进式得到建筑物轮廓线信息。同时该方法对解决中小城镇建筑物体积小,距离近和屋顶坡度较大等问题具有较好的效果。 相似文献
11.
在介绍常用的阈值分割方法的基础上,详述了基于阈值分割的LIDAR建筑物提取方法,对不同阈值分割方法的优越性与实用性进行分析。研究结果表明,阈值法是一种最简单最基本的图像分割方法。全局阈值能快速有效地分割噪声小、比较均匀的图像,动态阈值和c均值模糊阈值分割对不均匀图像能进行较好的分割,其中c均值模糊阈值分割法最佳。 相似文献
12.
13.
一些大型的工程项目在前期使用航飞LIDAR系统采集地面数据,获取了大量的三维点云数据和DOM影像数据,要制作该项目全区域的线划图,使用传统的制图方法,不仅效率低,而是几乎不可能完成该项工作。因为海量数据已经让传统的AutoCAD平台制图软件不堪重负,基于此原因,必须研究探索新的方法,就是使用GIS方法来生产线划图。 相似文献
14.
基于形态学梯度的机载激光扫描数据滤波方法 总被引:3,自引:0,他引:3
机载激光扫描技术能实时获取大范围、高精度的三维空间信息,从而受到日益广泛的重视和应用.然而由于地理环境的复杂性,其数据滤波一直是一个研究难点.针对数据点云的特点和滤波所面临的问题,提出了一种基于形态学梯度的机载激光扫描数据滤波方法.使用改进的形态学梯度计算方法得到每个点的梯度,再基于梯度选择特定的点进行迭代开运算,并根据梯度直方图减少迭代的次数,通过判断每次开运算后点的高程与原高程的差值是否小于一定的阈值,逐步滤除非地面点.使用国际摄影测量与遥感学会(ISPRS)提供的测试数据对算法进行实验,并与国际上8种滤波算法进行对比,结果表明该算法对各种复杂环境的适应性强,基于形态学梯度的滤波既能减少不必要的计算,又能降低误差产生的可能,从而在有效地去除非地面点的同时,也能很好地保留地面点,故具有良好的可靠性与实用性. 相似文献
15.
以航空LIDAR点云数据为基础,在无其他辅助数据的情况下,采用数字图像处理技术,实现基于航空LIDAR点云数据提取城市地区建筑物的目标. 相似文献
16.
17.
LIDAR数据是目前生产DEM/DSM最为理想的数据源,利用机载激光雷达获取DEM/DSM数据是机载激光雷达最为直接的应用。本文提出了一种将LIDAR点云数据格网化与坡度滤波相结合的点云分类方法,该方法将数据格网化的概念用于LIDAR点云数据的预处理,避免了LIDAR点云数据内插或者平滑造成的信息损失,并且引入坡度突变对格网化处理后的LIDAR点云数据进行第二次地面点的选取,提高了LIDAR点云数据分类的效果。 相似文献