首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Magma ascent, decompression-induced H2O exsolution and crystallization is now recognized as an important process in hydrous subduction zone magmas. During the course of such a process calculations suggest that the ascent rate of a degassing and crystallizing mafic magma will be greater than crystal settling velocities. Thus, any crystals formed as a consequence of volatile exsolution will remain suspended in the magma. If the magma erupts before the percentage of suspended crystals reaches the critical crystallinity value for mafic magma (~55 vol.%) it will produce the commonly observed crystal rich island arc basalt lava. If the magma reaches its critical crystallinity before it erupts then it will stall within the crust. Extension of compaction experiments on a 55 vol.% sand-Karo syrup suspension at different temperatures (and liquid viscosities) to the likely viscosities of interstitial andesitic to dacitic liquid within such a stalled magma suggest that small amounts (up to ~10%) can be expelled on a time scale of 1–10 years. The expelled liquid can create a new intermediate to silicic body of magma that is related to the original mafic magma via fractional crystallization. The short time scale for liquid expulsion indicate that decompression-induced H2O exsolution and crystallization can be an important mechanism for fractional crystallization. Based on this assumption a general model of decompression-induced crystallization and fractionation is proposed that explains many of the compositional, mineralogical and textural features of Aleutian (and other andesites).  相似文献   

2.
Apatite is a versatile mineral crystallizing at different stages of silicic magma evolution. Its composition may record that of magma, but could also be affected by interaction with fluids. The focus of this study is the well-recognized magma mingling process that was previously detected using plagioclase composition and in this study complementary record is sought in apatite. The apatite was analysed in two dioritic enclaves (primitive and hybrid) and host quartz monzonite, which is an igneous rock emplaced at ca. 340 Ma in mylonitized Góry Sowie gneisses (NE Bohemian Massif). The apatite was analysed in-situ by microprobe that allowed for chemical characterization of different apatite populations in quartz monzonite and analyses of thin acicular apatite in the enclaves. Apatite population in the quartz monzonite was chemically distinct from that in both enclave types and characterized by higher Y and lower Ce contents, such values are usually typical for peraluminous magmas. As such, the apatite transfer from felsic to mafic magma should be well recorded in apatite composition, which was not the case. Monzonite apatite composition was not commonly observed in the hybrid enclave despite massive plagioclase transfer and only rare resorbed cores with low Ce and Y contents were present. However, such low Ce and Y cores crystalized at the latest stage of apatite crystallization in the quartz monzonite, whereas the plagioclase transfer was an early episode. Therefore, we conclude that apatite transfer was limited during mingling and the apatite composition in the quartz monzonite is best explained by an early Cl-Ce-rich fluid removal and then fractional crystallization, while apatite in the primitive enclave is affected only by fractional crystallization. Altogether, Ce and Y composition of apatite is a valuable tool to record diverse magmatic processes such as fluid removal and precipitation from fluid in addition to fractionation of different REE phases and should be further explored.  相似文献   

3.
《International Geology Review》2012,54(14):1817-1834
We present new geochronological, mineralogical, geochemical, and isotopic data for recently recognized lamprophyre dikes in the East Kunlun orogenic belt of NW China. Based on euhedral amphibole phenocrysts and fine-grained, plagioclase-bearing groundmass with accessory magnetite, apatite, and titanite, these dikes are classified as spessartites. Plagioclase in these rocks is Ca-rich with An ranging from 45 to 82. Most of the amphibole phenocrysts are magnesiohastingsite or ferropargasite, with systematic ‘‘normal’ zoning in which Al2O3, CaO, and Mg# decrease from core to rim. The dikes have moderate Mg# (43–49) and high Al2O3 (17.5–18.0 wt.%), FeOtotal (7.4–8.4 wt.%), and CaO (5.9–7.4 wt.%). Based on low total alkalis (Na2O?+?K2O?=?4.2%–5.0 wt.%), most samples plot in the low-K, calc-alkaline field. They are enriched in large-ion lithophile elements (e.g. K, Rb, Sr, and Ba) and light rare-earth elements, but are depleted in high-field-strength elements (e.g. Ta, Nb, P, and Ti), and have enriched Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)= 0.70883–0.71045, εNd(t) = –5.51–5.72, εHf(t)?=?–4.42–0.38). Zircon U–Pb geochronology indicates that the dikes were emplaced at 253 ± 2.5 Ma and are unrelated to their granite host, which has an age of 443 ± 1.7 Ma. The geochemical and isotopic data suggest derivation from an enriched lithospheric mantle source that had been metasomatized by subduction-related fluids. Low degrees of partial melting of a phlogopite-bearing, spinel peridotite, followed by fractional crystallization of olivine, amphibole, and Ti-bearing minerals, can account for the observed geochemical features of the dikes. Trace element geochemistry and regional geology suggest that the East Kunlun lamprophryes formed in a subduction-related setting.  相似文献   

4.
《Lithos》2004,72(1-2):1-18
The northern margin of the Nagssugtoqidian mobile belt in Southeast Greenland exposes a suite of moderately fractionated Fe-rich tholeiitic dykes of Paleo-proterozoic age. The dykes were intruded during extension of the crust prior to the development of the Nagssugtoqidian mobile belt. Although the dykes recrystallized under amphibolite facies conditions during Proterozoic orogenesis, they suffered little deformation. Excluding two very evolved samples, the compositions range between: 7.8–4.6 wt.% MgO, 44.5–52.9 wt.% SiO2 and 1.8–6.9 wt.% total alkalis. One group of mafic dykes shows distinct mantle-normalized trace element patterns with high abundance of low field strength elements and light rare earth elements and low abundances of high field strength elements. These characteristics are consistent with a process of fractional crystallization coupled with assimilation of the regional granulitic crust. Relatively high rates of assimilation to fractional crystallization (0.7) are required to generate the level of incompatible trace elements. This points to lower crustal conditions, and the assimilation is believed to have taken place at the base of the continental crust.Trace element variations indicate fractionation at high pressure involving clinopyroxene as the main extracted phase. We evaluate two fractionation models corresponding to a pressure of 0.9 and 1.5 GPa, respectively, and show that the trace element variations require polybaric fractionation at pressures from a maximum of 1.5 GPa to a minimum of 0.9 GPa.  相似文献   

5.
During the Neogene, a magmatic change from calc-alkaline to alkaline types occurred in all the regions surrounding the western Mediterranean. This change has been studied in Oranie (western Algeria). In this area, potassic to shoshonitic calc-alkaline andesites (with La/Nb ratios in the range 4–6) were mainly erupted between 12 and 9 Ma. They were followed (between 10 and 7 Ma) by basalts displaying geochemical features which are transitional between calc-alkaline and alkaline lavas (La/Nb=1–1.7). After a ca. 3-Ma quiescence period, volcanic activity resumed, with the eruption of OIB-type alkaline basalts (La/Nb=0.5–0.6), from 4 to 0.8 Ma. A combined geochemical approach, using incompatible elements and Sr, Nd and O isotopes, allows us to conclude that the transitional basalts derived from the melting of a heterogeneous mantle source, at the boundary between lithosphere and asthenosphere. We propose that melting of a previously subduction-modified lithospheric mantle occurred between 12 and 10 Ma, in response to the upwelling of hot asthenosphere flowing up into an opening gap above a detached sinking slab. As a result, calc-alkaline magmas were formed. From 10 to 7 Ma, the transitional basalts were generated through melting of the boundary mantle zone between the lithosphere and the upwelling asthenosphere. During that stage, the contribution of the lithospheric source was still predominant. Then, as sinking of the oceanic slab progressed, the increasing uprise of the asthenosphere led to the formation and emplacement (from 4 to 0.8 Ma) of typical within-plate alkaline basalts derived from a plume-modified asthenospheric mantle.  相似文献   

6.
The widespread late Carboniferous calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain provide crucial constraints on the tectonic evolution of the western Tianshan. Here, we perform detailed petrological investigations as well as zircon U-Pb chronological, whole-rock geochemical and Sr-Nd isotopic analyses on these magmatic rocks from two geological sections along the Duku road. Magmatic rocks in the section I with zircon SHRIMP U-Pb ages of 306.8 Ma and 306.4 Ma are composed of medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte, while those in the section II consist of shoshonitic trachy-andesite, trachyte with a U-Pb age of 308.1 Ma, and monzonite with a U-Pb age of 309.6 Ma. All these magmatic rocks are characterized by strong enrichments in large iron lithophile elements with depletions of Nb, Ta and Ti, indicating the origination from subduction-modified lithospheric mantle. The εNd(t) values of the rock samples collected from the section I (2.80–5.45) and section II (3.34–5.37) are generally higher than those of the Devonian to early Carboniferous arc-type magmatic rocks in the Yili-central Tianshan, suggesting that depleted asthenosphere might also be involved in their generation. Based on these geochemical data and petrological observations, we suggest that the early-stage (308.1–309.6 Ma) shoshonitic monzonite, trachy-andesite and trachyte in the section II were generated by mixing between mafic magmas and trachytic melts, while the late-stage (306.4–306.8 Ma) medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte in the section I were produced by partial melting of depleted asthenospheric and metasomatized lithospheric mantle, followed by the processes of fractional crystallization and crustal contamination. Taking into account the available regional geological data, the subduction of south Tianshan ocean was probably ceased at ∼310 Ma, and these calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain formed in a post-collisional setting subsequent to slab break-off.  相似文献   

7.
We present field and petrographic data on Mafic Magmatic Enclaves (MME), hybrid enclaves and synplutonic mafic dykes in the calc-alkaline granitoid plutons from the Dharwar craton to characterize coeval felsic and mafic magmas including interaction of mafic and felsic magmas. The composite host granitoids comprise of voluminous juvenile intrusive facies and minor anatectic facies. MME, hybrid enclaves and synplutonic mafic dykes are common but more abundant along the marginal zone of individual plutons. Circular to ellipsoidal MME are fine to medium grained with occasional chilled margins and frequently contain small alkali feldspar xenocrysts incorporated from host. Hybrid magmatic enclaves are intermediate in composition showing sharp to diffused contacts with adjoining host. Spectacular synplutonic mafic dykes commonly occur as fragmented dykes with necking and back veining. Similar magmatic textures of mafic rocks and their felsic host together with cuspate contacts, magmatic flow structures, mixing, mingling and hybridization suggest their coeval nature. Petrographic evidences such as disequilibrium assemblages, resorption, quartz ocelli, rapakivi-like texture and poikilitically enclosed alkali feldspar in amphibole and plagioclase suggest interaction, mixing/mingling of mafic and felsic magmas. Combined field and petrographic evidences reveal convection and divergent flow in the host magma chamber following the introduction of mafic magmas. Mixing occurs when mafic magma is introduced into host felsic magma before initiation of crystallization leading to formation of hybrid magma under the influence of convection. On the other hand when mafic magmas inject into host magma containing 30–40% crystals, the viscosities of the two magmas are sufficiently different to permit mixing but permit only mingling. Finally, if the mafic magmas are injected when felsic host was largely crystallized (~70% or more crystals), they fill early fractures and interact with the last residual liquids locally resulting in fragmented dykes. The latent heat associated with these mafic injections probably cause reversal of crystallization of adjoining host in magma chamber resulting in back veining in synplutonic mafic dykes. Our field data suggest that substantial volume of mafic magmas were injected into host magma chamber during different stages of crystallization. The origin of mafic magmas may be attributed to decompression melting of mantle associated with development of mantle scale fractures as a consequence of crystallization of voluminous felsic magmas in magma chambers at deep crustal levels.  相似文献   

8.
Trace element analysis of Phlegrean Fields volcanic products shows that they belong to a homogeneous series whose evolution is due mainly to fractional crystallization. However quantitative modelling of crystal fractionation using measured mineral/groundmass and computed bulk distribution coefficients singles out K, Sb, Cl and F as elements which are selectively enriched in the differentiation process with respect to proven hygromagmaphile (HYG) elements. This anomalous enrichment involving elements that are easily transported in a magmatic fluid phase is thought to be due to percolation of such a fluid through a stored magma body. This enrichment is strongest in products resulting from protracted differentiation (trachybasalts-latites). Isotopic data from the literature are reinterpreted in terms of this model and show good agreement. Trace elements concentrations in clinopyroxenes provide evidence that complex differentiation paths were followed to produce latitic magmas. Their origin by mixing of magmas from different parentages is not indicated by the data. However, mixing of batches of the same parentage but of different degree of evolution seems likely. Because HYG elements ratios are not modified in the evolution of the magmas, they record these ratios in the partial melting zone. For example, the Th/Ta ratio in the source areas of the magmas has apparently been quite heterogeneous.  相似文献   

9.
Geochemical and field data for the Cordillera Paine (CP) pluton of southern Chile, indicate that differentiation took place by closed system in situ fractional crystallization. Minor, local and irregular separation of liquids from crystals led to the formation of evolved granites and aplites which are encountered mostly at the plutons roof and margins. Chemical trends show strong depletions of Sr, Ba, Mg less intense depletions of Ca, La, Ce, Nd, Fe, Ti, Al and enrichment of Nb, Y, Th, Rb and Si with differentiation. Pronounced crystal zoning of Ca, Sr and Ba in plagioclase, Ba in orthoclase and LREE, Y and Th in allanite closely correspond to the whole rock chemical variation. The crystal zoning data suggest that surface equilibrium only was maintained for the zoned elements during crystallization. Thus, continuous separation of liquids from crystals was not necessary to generate the kind highly evolved differentiates whose character reflects fractional crystallization. The schedule of liquid-crystal separation affects mainly the location, degree of dispersion and relative abundance of the differentiates. The homogeneity of the CP pluton and the intense crystal zoning suggest that crystal-liquid separation was inefficient, and that whole rock compositions approach liquid compositions. Assumption of a closed system during crystallization allows estimation of mineral/melt partition coefficients (K d s) using crystal core and whole rock compositions. Crystal zoning and whole rock chemical trends are consistent with models constructed using the K d s thus obtained along with modal abundances from petrographic estimates. Lamont-Doherty Geological Observatory Contribution Number 3701  相似文献   

10.
李永生  张招崇 《岩石学报》2011,27(10):2975-2983
除极少数情况外,岩浆的演化过程基本为开放体系.AFC模型(同化混染+分离结晶)是模拟岩浆演化过程的经典方法.事实上,岩浆演化过程不仅和围岩有物质交换还存在能量的交换,因此由Spera和Bohrson提出的能量约束下的开放系统岩浆演化过程的同化混染与分离结晶(EC-AFC)模型更加符合地质实际,本文介绍了该模型的方法,在此基础上,以含铜镍矿床的四川力马河岩体为例,运用EC-AFC模型模拟该岩体的岩浆演化过程.结果表明,EC-AFC模型能很好的模拟该岩体的开放系统中岩浆演化过程;Sr同位素的EC-AFC模拟曲线表明岩浆很可能在中下地壳发生混染,岩浆与发生混染的围岩在成分上都具有不均一性.  相似文献   

11.
东昆仑造山带早中生代幔源岩浆事件及其地质意义   总被引:5,自引:0,他引:5  
王亚磊 《地质与勘探》2017,53(5):855-866
东昆仑造山带早中生代幔源岩浆底侵不仅为花岗岩类的广泛发育提供了能量和物质基础,也为厘定区域构造环境提供了新的约束。本文对区域上发育的小尖山岩体、拉陵高里沟脑2、3号岩体开展了精确的锆石U-Pb年代学研究,并与区域上镁铁质岩体做了对比。LA-ICP-MS U-Pb定年结果表明,小尖山岩体磁黄铁矿化辉长岩锆石~(206)Pb/~(238)U-~(207)Pb/~(235)U谐和年龄为247.1±1.1Ma,与前人获得的中细粒辉长岩年龄相差20Ma,暗示该岩体为多期岩浆活动的产物。拉陵高里沟脑2号和3号岩体辉长岩锆石~(206)Pb/~(238)U-~(207)Pb/~(235)U谐和年龄分别为(244.9±1.6)Ma和(238.4±4.1)Ma,二者年龄在测试误差范围内一致,为同期岩浆作用的产物。结合区域上已知镁铁质岩体的形成时代及地球化学特征,认为早中生代幔源岩浆形成于后碰撞伸展环境,活动时限为251~221Ma。该期幔源岩浆与地壳物质发生了广泛的物质与能量交换,是今后该区铜镍矿勘查的重要对象之一。  相似文献   

12.
The late-Proterozoic Allard Lake ilmenite deposit is located in the Havre-Saint-Pierre anorthosite complex, part of the allochtonous polycyclic belt of the Grenville Province. Presently the world's largest Fe–Ti oxide deposit, it had a pre-mining amount in excess of 200 Mt at grades over 60 wt.% hemo-ilmenite. The main ore body is a funnel-shaped intrusion, measuring 1.03 × 1.10 km and 100–300 m-thick. Two smaller bodies are separated by faults and anorthosite. The ore is an ilmenite-rich norite (or ilmenitite) made up of hemo-ilmenite (Hem22.6–29.4, 66.2 wt.% on average), andesine plagioclase (An45–50), aluminous spinel and locally orthopyroxene. Whole-rock chemical compositions are controlled by the proportions of ilmenite and plagioclase ± orthopyroxene which supports the cumulate origin of the deposit. Ore-forming processes are further constrained by normal and reverse fractionation trends of Cr concentration in cumulus ilmenite that reveal multiple magma emplacements and alternating periods of fractional crystallization and magma mixing. Mixing of magmas produced hybrids located in the stability field of ilmenite resulted in periodic crystallization of ilmenite alone. The unsystematic differentiation trends in the Allard Lake deposit, arising from a succession of magma pulses, hybridisation, and the fractionation of hemo-ilmenite alone or together with plagioclase suggest that the deposit formed within a magma conduit. This dynamic emplacement mechanism associated with continuous gravity driven accumulation of Fe–Ti oxides and possibly plagioclase buoyancy in a fractionating ferrobasalt explains the huge concentration of hemo-ilmenite. The occurrence of sapphirine associated with aluminous spinel and high-alumina orthopyroxene (7.6–9.1 wt.% Al2O3) lacking exsolved plagioclase supports the involvement of a metamorphic overprint during the synchronous Ottawan orogeny, which is also responsible for strong textural equilibration and external granule of exsolved aluminous spinel due to slow cooling.  相似文献   

13.
北山造山带位于中亚造山带南缘,区内广泛发育古亚洲洋-陆演化的岩浆记录,是研究北山造山带构造-岩浆-成矿作用及其动力学背景的重要窗口。红柳河槽-跃进山地区是北山造山带中北部的重要组成部分,区内与成矿有关花岗岩的形成时代、成因及构造背景尚不明确,由此制约了对北山造山带内成岩成矿动力学背景的探讨。本次在系统、详细的野外地质调查、岩石(相)学观察的基础上,结合岩浆岩地球化学、锆石U-Pb年代学和Lu-Hf同位素等证据,深入剖析了北山造山带内红柳河槽-跃进山地区的花岗岩形成时代、类型、源区和动力学背景,取得了以下认识:(1)通过锆石LA-ICP-MS U-Pb定年测得与成矿有关的狼娃山二长花岗岩、红柳河槽正长花岗岩、跃进山北正长花岗岩、跃进山二长花岗岩形成时代分别为327.1±2.4Ma、326.7±2.4Ma、321.3±2.4Ma和309.7±2.2Ma,表明红柳河槽-跃进山地区铜、钨、钼、铅、锌等元素成矿与石炭纪(327.1~309.7Ma)岩浆活动有关;(2)通过花岗岩地球化学研究表明,红柳河槽-跃进山地区的花岗岩均属于钙碱性-高钾钙碱性、准铝质-弱过铝质系列,强烈富集LREE、LILE,亏损HREE、HSFE,具有典型弧岩浆的地球化学特征,花岗岩成因类型均为I型;(3)本次获得狼娃山二长花岗岩和红柳河槽正长花岗岩的εHf(t)值分别为5.90~9.92(平均值7.93)和5.87~10.28(平均值8.11),t DM2分别为0.703~0.959Ga和0.93~1.03Ga,且具有较低的Nb/Ta比值(5.1~14.2,平均值8.5),与典型新生下地壳来源岩浆(8.3)相似,表明岩浆物质可能源于新生下地壳岩石部分熔融;(4)根据锆石Ti温度计查明北山造山带红柳河槽-跃进山地区狼娃山二长花岗岩、红柳河槽正长花岗岩、跃进山北正长花岗岩、跃进山二长花岗岩的平均结晶温度分别为765℃、765℃、816.4℃、771.5℃,锆石Ce^(Ⅳ)/Ce^(Ⅲ)平均值分别为85.27、108.4、103.6、135.7,表明从石炭纪早期到晚期,岩浆的氧逸度呈逐渐升高的趋势。根据以上研究,结合前人研究成果,初步建立了北山造山带构造-岩浆演化模型如下:石炭纪北山造山带北部红石山洋向南侧公婆泉-明水-旱山复合构造单元(弧)之下发生俯冲,诱发新生下地壳部分熔融形成的壳源岩浆;其侵入到地壳浅部,并最终形成红柳河槽-跃进山花岗岩体。  相似文献   

14.
P. Barbey  D. Gasquet  C. Pin  A.L. Bourgeix   《Lithos》2008,104(1-4):147-163
This study deals with the origin of igneous layering in plutons, and, especially, the extent layering is related to mafic–silicic magma interactions. The Budduso pluton (Sardinia) shows three main scales of organization.(i) Large scale lithological variations correspond to three main magmatic units, with differentiation increasing from the Outer (hornblende-bearing biotite granodiorite/monzogranite) to the Middle (biotite monzogranite) and the Inner (leucomonzogranite) units. The striking homogeneity of 87Sr/86Sr initial ratios (0.7090 ± 4) and εNd(t) values (− 5.6 ± 0.1) strongly suggests that magma isotopic equilibration was achieved prior to emplacement, whereas mixing/mingling structures observed within the pluton reflect second-stage processes involving broadly cogenetic components.(ii) Metre to decametre-scale igneous layering may be isomodal or modally-graded, locally with cross-layering. Biotite and plagioclase compositions are similar in both biotite-rich and quartzofeldspathic layers, as are the trace-element patterns which differ only by relative abundances. This precludes an origin by fractional crystallization. A penetrative submagmatic fabric superimposed on the layering and corresponding mainly to flattening can be ascribed to interference between pluton growth and regional deformation.(iii) Composite layering and schlieren are commonly associated to mafic microgranular enclaves, locally within synmagmatic shear zones or disrupted synplutonic dykes. In that case, there is a progressive shift in biotite XFe values from the core of enclave ( 0.65) to the host monzogranite ( 0.72): schlieren in the monzogranite show biotite XFe values similar to that of the host rock, whereas schlieren close to mafic enclaves show lower XFe values ( 0.69) towards those of enclave rims.These features can be ascribed to three main processes: (i) assembly of differentiated (± mixed/mingled) magmatic pulses; (ii) local hydrodynamic sorting related to density currents in a mush, and segregation of residual melt; (iii) mechanical disruption and chemical hybridization of mafic magmas during ascent or within the pluton related to magma dynamics. None of these processes affect the whole pluton but they are limited to specific magmatic units. Therefore, pluton growth by incremental assembly of magma batches is not incompatible with magma chamber processes.  相似文献   

15.
赵燕  孙勇 《岩石学报》2018,34(4):963-980
敦煌复合造山带位于塔里木克拉通东端,是连接塔里木克拉通和华北克拉通的重要纽带。近年来,敦煌基础地质研究取得了重大进展。本文简要回顾了敦煌基础地质研究历史和现状,系统归纳了区内前寒武纪地质单元时空分布特征及前寒武纪构造-热事件序列,初步讨论了前寒武纪大陆地壳形成和演化规律、前寒武纪结晶基底亲缘性及构造演化过程,提出:(1)敦煌造山带前寒武纪结晶基底形成于ca.3.1~1.6Ga,构造-热事件主要划分为新太古代(ca.2.7~2.6Ga和2.6~2.5Ga)、古元古代晚期(ca.2.0~1.8Ga)和中元古代早期(1.8~1.6Ga)三个阶段;(2)新太古代早期(ca.2.7~2.6Ga)和新太古代晚期(2.6~2.5Ga)是敦煌造山带大陆地壳形成的主要阶段;古元古代晚期(ca.2.0~1.8Ga)和中元古代早期(1.8~1.6Ga)主要是古老大陆地壳物质再循环阶段,也有少量新生陆壳物质的形成;(3)敦煌造山带前寒武纪结晶基底最初拼合事件可能发生在新太古代末期(~2.5Ga),之后经历了古元古代晚期(ca.2.0~1.8Ga)汇聚、碰撞造山过程,直到中元古代早期(1.8~1.6Ga),造山活动结束,前寒武纪结晶基底最终固结,进入稳定发展阶段;(4)前寒武纪结晶基底最终稳定固结之后,即~1.6Ga之后,敦煌前寒武纪结晶基底可能进入长达12亿年的静寂期,一直处于稳定状态,目前没有发现相关的岩浆-变质-沉积记录(类似于地盾状态),直至古生代志留纪开始活化(~440Ma),卷入古亚洲洋南缘俯冲、碰撞造山过程并被强烈改造。  相似文献   

16.
Seven distinct phases of Variscan two-mica granite are recognized in the Guarda-Sabugal area. They intruded the Cambrian schist-metagraywacke complex, crystallized in the middle crust, and are syn- to late-D3 (309.2 ± 1.8 Ma), late-D3 (304–300 Ma) and late- to post-D3 (299 ± 3 Ma; ID-TIMS ages on zircon and monazite). Two of the granites, G2 and G5, are close in age and have similar Sr, Nd and O isotope characteristics but contrasting whole rock and mineral features and formed by sequential increasing degree of partial melting of a common metasedimentary protolith. During sequential melting Ti, total Fe, Mg, Ca, Zr, Zn, Sr, Ba and REE contents and (La/Yb)N increase and Si and Rb contents decrease, plagioclase becomes richer in anorthite and biotite and muscovite richer in Ti and Mg. Each of these granites evolved subsequently by fractional crystallization of quartz, K-feldspar, plagioclase, biotite and ilmenite, defining separate series G2–G3–G7 and G5–G6 containing late Sn-bearing differentiates. Two other granites G1 and G4 represent distinct pulses of magma with individual fractionation trends for major and trace elements and distinct (87Sr/86Sr)300, ?Nd300 and δ18O values.  相似文献   

17.
利用区域重力资料,通过位场分离、转换技术,揭示了造山带深部构造特征。正的线状重磁异常带及各阶小波细节,清晰地反映了桐柏—大别及东秦岭造山带南缘缝合带的位置,特别是重力异常小波四阶逼近,深部构造特征更加醒目。在鄂西北地区岩石圈所呈现出的"立交桥式"双层结构中,自由空间、均衡重力、剩余重力异常及小波各阶细节明显地反映出相对浅部的造山带近东西向延伸的构造特征;各阶逼近结果则反映了相对深部的地壳-岩石圈地幔南北向伸展的构造特征。应用地球物理资料来研究地球岩石圈结构、构造,除深层地震外,区域重力也是最有效方法手段之一。特别是近年来二维小波变换技术日趋成熟,为应用区域重力资料解决诸如造山带深部构造等疑难问题提供了新的手段和工作思路。  相似文献   

18.
北山造山带处于中亚造山带南缘,研究其岩浆事件对于推演中亚造山带地质构造演化具有重要意义。在甘肃北山南带的双鹰山-花牛山岛弧带中,分布有大量花岗质岩体。本文选取甘肃北山南带双峰山南复式岩体中的花岗闪长岩和二长花岗岩,开展LA-ICP-MS锆石年代学、Hf同位素、全岩地球化学和Sr-Nd同位素研究。研究结果表明该复式岩体成岩时代、地球化学与同位素特征基本一致,具体如下:(1)锆石年代学结果显示二长花岗岩年龄为367.5±1.7Ma、368.0±1.8Ma,花岗闪长岩年龄为366.3±2.2Ma,均为晚泥盆世;(2)复式岩体SiO_(2)含量为64.39%~74.95%、碱含量为5.01%~9.21%,属准铝质(A/CNK=0.88~1.00),P 2O 5含量低(0.02%~0.17%),且与SiO_(2)呈负相关,具有典型的I型花岗岩特征;(3)样品总体富集轻稀土元素((La/Yb)N=6.23~23.0),具有较强烈的Eu负异常(δEu=0.31~0.55),富集Rb、Th、U等大离子亲石元素,亏损Nb、Ti、P等高场强元素;(4)锆石εHf(t)值为-3.1~+6.0,t DM2为928~1327Ma,全岩(87 Sr/86 Sr)i在0.705607~0.708523之间,εNd(t)在-4.1~-1.9之间。结合区域构造环境,实验数据表明,双峰山南晚泥盆世复式岩体是在活动大陆边缘的环境下,由幔源岩浆底侵加热下地壳使之部分熔融,并与之混合形成的,代表了晚泥盆世柳园洋向北俯冲的构造事件。  相似文献   

19.
毛亚晶  秦克章  唐冬梅 《岩石学报》2018,34(8):2410-2424
岩浆铜镍矿床100%硫化物中的Ni含量与赋矿岩石和成矿过程紧密相关,记录岩浆成分、分异程度与硫化物演化过程。硫化物异常高镍(高镍硫化物)往往被认为与科马提质岩浆或者后期热液作用密切相关。近年研究结合勘查证实,赋含高镍硫化物的矿床(高镍铜镍矿床)不仅限于科马提岩,还与苦橄质、玄武质岩浆有关,另外,热液富集作用并不是必要因素。本文总结了世界上高镍铜镍矿床的基本特征和形成机制,分析提出了不同机制的判别标志,并展望了其勘查前景。详细对比高镍铜镍矿床的产出环境、赋矿岩相、矿石特征、矿物组合等特征,该类矿床往往产于大陆裂谷和造山带环境,与基性程度较高的岩浆有关,以橄榄岩赋矿为主,含镍硫化物组合主要为镍黄铁矿-磁黄铁矿-黄铜矿组合,少数为针镍矿-镍黄铁矿-黄铁矿组合。科马提岩相关矿床可将Ni含量大于16%的硫化物定义为高镍硫化物,苦橄质-玄武质岩浆相关矿床的硫化物可分为高镍硫化物(Ni10%)、中镍硫化物(5%~10%)和富铜硫化物(Ni5%,CuNi)。原生高镍硫化物可由富镍岩浆熔离、硫化物从橄榄石中吸取Ni、硫化物结晶分异、硫化物与硫不饱和岩浆反应等机制形成。苦橄质-玄武质岩浆相关的矿床,硫化物与橄榄石的Fe-Ni交换反应是高镍硫化物形成的重要机制。辉石岩源区地幔部分熔融形成富镍岩浆是否为高镍硫化物形成的必要条件尚存争议。不同机制形成的高镍硫化物具有迥异的岩石-矿物组合和地化特征。硫化物矿物组合、橄榄石成分(Fo值、Ni含量、Fo值-Ni含量的相关性)、伴生元素(铜、铂族元素)丰度-配分模式等特征可作为区分不同高镍硫化物形成机制的有效指标。我国新疆黄山南、坡一和青海夏日哈木矿床(部分浸染状矿化橄榄岩)以赋含高镍硫化物为特征,新疆喀拉通克矿床的硫化物则以富铜为特征,中国其余矿床的硫化物均属中镍硫化物。目前研究指示中国的高镍铜镍矿床与母岩浆相对富镍、硫化物与橄榄石Fe-Ni交换作用密切相关,后者可使硫化物Ni含量提升3%~5%。在铜镍矿床勘查方面,稀疏-中等浸染状高镍硫化物矿石即可达到工业品位,稠密浸染状-块状高镍硫化物矿石可达到很高的Ni品位(10%),是高品位镍矿勘查的一个重要方向。造山带环境富水、相对高氧逸度(可高达QFM+1)的岩浆可能是形成高镍硫化物的有利条件,该环境橄榄石Fo值较高(87mol%)的岩体有利于形成高镍硫化物。  相似文献   

20.
Although most arc lavas have experienced significant magma differentiation, the effect of the differentiation process on U-series disequilibria is still poorly understood. Here we present a numerical model for simulating the effect of time-dependent magma differentiation processes on U-series disequilibria in lavas from convergent margins. Our model shows that, in a closed system with fractional crystallization, the ageing effect can decrease U-series disequilibria via radioactive decay while in an open system, both ageing and bulk assimilation of old crustal material serve to reduce the primary U-series disequilibria. In contrast, with recharge of refresh magma, significant 226Ra excess in erupted lavas can be maintained even if the average residence time is longer than 8000 years.The positive correlations of (226Ra/230Th) between Sr/Th or Ba/Th in young lavas from convergent margins have been widely used as evidence of fluid addition generating the observed 226Ra excess in subduction zones. We assess to what extent the positive correlations of (226Ra/230Th) with Sr/Th and Ba/Th observed in the Tonga arc could reflect AFC process. Results of our model show that these positive correlations can be produced during time-dependent magma differentiation at shallow crustal levels. Specifically, fractional crystallization of plagioclase and amphibole coupled with contemporaneous decay of 226Ra can produce positive correlations between (226Ra/230Th) and Sr/Th or Ba/Th (to a lesser extent). Therefore, the correlations of (226Ra/230Th) with Sr/Th and Ba/Th cannot be used to unambiguously support the fluid addition model, and the strength of previous conclusions regarding recent fluid addition and ultra-fast ascent rates of arc magmas is significantly lessened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号