首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay)   总被引:1,自引:0,他引:1  
Two great Mongolian earthquakes, Tsetserleg and Bolnay, occurred on 1905 July 9 and 23. We determined the source history of these events using body waveform inversion. The Tsetserleg rupture (azimuth N60°) correspond to a N60° oriented branch of the long EW oriented Bolnay fault.
Historical seismograms recorded by Wiechert instruments are digitized and corrected for the geometrical deformation due to the recording system. We use predictive filters to recover the signals lost at the minute marks.
The total rupture length for the Tsetserleg earthquake may reach up to 190 km, in order to explain the width of the recorded body waves. This implies adding 60 km to the previously mapped fault. The rupture propagation is mainly eastward. It starts at the southwest of the central subsegment, showing a left lateral strike-slip with a reverse component. The total duration of the modelled source function is 65 s. The seismic moment deduced from the inversion is 1021 N m, giving a magnitude   M w = 8  .
The nucleation of the Bolnay earthquake was at the intersection between the main fault (375 km left lateral strike-slip) and the Teregtiin fault (N160°, 80 km long right lateral strike-slip with a vertical component near the main fault). The rupture was bilateral along the main fault: 100 km to the west and 275 km to east. It also propagated 80 km to the southeast along the Teregtiin fault. The source duration was 115 s. The moment magnitude Mw varies between 8.3 and 8.5.
The nucleation and rupture depths remain uncertain. We tested three cases: (1) nucleation and rupture depth limited to the seismogenic zone; (2) nucleation in the seismogenic zone and rupture propagation going to the base of the crust and (3) nucleation within the crust–upper mantle interface and rupture propagation within the upper mantle.  相似文献   

2.
Ultra‐large rift basins, which may represent palaeo‐propagating rift tips ahead of continental rupture, provide an opportunity to study the processes that cause continental lithosphere thinning and rupture at an intermediate stage. One such rift basin is the Faroe‐Shetland Basin (FSB) on the north‐east Atlantic margin. To determine the mode and timing of thinning of the FSB, we have quantified apparent upper crustal β‐factors (stretching factors) from fault heaves and apparent whole‐lithosphere β‐factors by flexural backstripping and decompaction. These observations are compared with models of rift basin formation to determine the mode and timing of thinning of the FSB. We find that the Late Jurassic to Late Palaeocene (pre‐Atlantic) history of the FSB can be explained by a Jurassic to Cretaceous depth‐uniform lithosphere thinning event with a β‐factor of ~1.3 followed by a Late Palaeocene transient regional uplift of 450–550 m. However, post‐Palaeocene subsidence in the FSB of more than 1.9 km indicates that a Palaeocene rift with a β‐factor of more than 1.4 occurred, but there is only minor Palaeocene or post‐Palaeocene faulting (upper crustal β‐factors of less than 1.1). The subsidence is too localized within the FSB to be caused by a regional mantle anomaly. To resolve the β‐factor discrepancy, we propose that the lithospheric mantle and lower crust experienced a greater degree of thinning than the upper crust. Syn‐breakup volcanism within the FSB suggests that depth‐dependent thinning was synchronous with continental breakup at the adjacent Faroes and Møre margins. We suggest that depth‐dependent continental lithospheric thinning can result from small‐scale convection that thins the lithosphere along multiple offset axes prior to continental rupture, leaving a failed breakup basin once seafloor spreading begins. This study provides insight into the structure and formation of a generic global class of ultra‐large rift basins formed by failed continental breakup.  相似文献   

3.
The Middle Durance fault system, southeastern France, is a slow active fault that produced moderate-size historical seismic events and shows evidence of at least one   M w ≳ 6.5  event in the last 29 000 yr. Based on dynamic rupture simulation, we propose earthquake scenarios that are constrained by knowledge of both the tectonic stress field and of the 3-D geometry of the Durance fault system. We simulate dynamic rupture interaction among several fault segmentations of different strikes, dips and rakes, using a 3-D boundary integral equation method. 50 combinations of reasonable stress field orientations, stress field amplitudes and hypocentre locations are tested. The probability of different rupture evolutions is then computed. Each segment ruptures mainly as a single event (44 per cent of the 50 simulations test in this paper). However, the probability that an event triggers simultaneously along three segments is high (26 per cent), leading to a potential rupture length of 45 km. Finally, 2 per cent of the simulations occur along four adjacent segments, producing the greatest total rupture length of 55 km. The simulation results show that the southernmost segment is most easily ruptured (40 per cent), because of its favourable orientation with respect to the tectonic stress and of its favourable location for interaction with the other segments. South-bound unilateral propagation is slightly preferable (41 per cent), compared to north-bound unilateral and bilateral propagation modes. Although, these rupture scenarios cannot be directly translated into probabilities of occurrence, they do provide a better insight as to which rupture scenarios are more likely, an important element to better estimate near-field strong ground motion and seismic hazard.  相似文献   

4.
High-frequency body waves recorded by a temporary seismic array across the surface rupture trace of the 1992 Landers, California, earthquake were used to determine fault-zone structures down to the seismogenic depth. We first developed a technique to use generalized ray theory to compute synthetic seismograms for arbitrarily oriented tabular low-velocity fault-zone models. We then generated synthetic waveform record sections of a linear array across a vertical fault zone. They show that both arrival times and waveforms of P and S waves vary systematically across the fault due to transmissions and reflections from boundaries of the low-velocity fault zone. The waveform characteristics and arrival-time patterns in the record sections allow us to locate the boundaries of the fault zone and to determine its P - and S -wave velocities independently as well as its depth extent. Therefore, the trade-off between the fault-zone width and velocities can be avoided. Applying the method to the Landers waveform data reveals a low-velocity zone with a width of 270–360 m and a 35–60 per cent reduction in P and S velocities relative to the host rock. The analysis suggests that the low-velocity zone extends to a depth of ∼7 km. The western boundary of the low-velocity zone coincides with the observed main surface rupture trace.  相似文献   

5.
An analysis of the Zihuatanejo, Mexico, earthquake of 1994 December 10 ( M = 6.6), based on teleseismic and near-source data, shows that it was a normal-faulting, intermediate-depth ( H = 50 ± 5 km) event. It was located about 30 km inland, within the subducted Cocos plate. The preferred fault plane has an azimuth of 130°, a dip of 79° and a rake of −86°. The rupture consisted of two subevents which were separated in time by about 2 s, with the second subevent occurring downdip of the first. The measured stress drop was relatively high, requiring a Δσ of about a kilobar to explain the high-frequency level of the near-source spectra. A rough estimate of the thickness of the seismogenic part of the oceanic lithosphere below Zihuatanejo, based on the depth and the rupture extent of this event, is 40 km.
This event and the Oaxaca earthquake of 1931 January 15 ( M = 7.8) are the two significant normal-faulting, intermediate-depth shocks whose epicentres are closest to the coast. Both of these earthquakes were preceded by several large to great shallow, low-angle thrust earthquakes, occurring updip. The observations in other subduction zones show just the opposite: normal-faulting events precede, not succeed, updip, thrust shocks. Indeed, the thrust events, soon after their occurrence, are expected to cause compression in the slab, thus inhibiting the occurrence of normal-faulting events. To explain the occurrence of the Zihuatanejo earthquake, we note that the Cocos plate, after an initial shallow-angle subduction, unbends and becomes subhorizontal. In the region of the unbending, the bottom of the slab is in horizontal extension. We speculate that the large updip seismic slip during shallow, low-angle thrust events increases the buckling of the slab, resulting in an incremental tensional stress at the bottom of the slab and causing normal-faulting earthquakes. This explanation may also hold for the 1931 Oaxaca event.  相似文献   

6.
Summary. In this paper computer modelling is used to test simple approximations for simulating strong ground motions for moderate and large earthquakes in the Mexicali–Imperial Valley region. Initially, we represent an earthquake rupture process as a series of many independent small earthquakes distributed in a somewhat random manner in both space and time along the rupture surface. By summing real seismograms for small earthquakes (used as empirical Green's functions), strong ground motions at specific sites near a fault are calculated. Alternatively, theoretical Green's functions that include frequencies up to 20 Hz are used in essentially similar simulations. The model uses random numbers to emulate some of the non-deterministic irregularities associated with real earthquakes, due either to complexities in the rupture process itself and/or strong variations in the material properties of the medium. Simulations of the 1980 June 9 Victoria, Baja California earthquake ( M L= 6.1) approximately agree with the duration of shaking, the maximum ground acceleration, and the frequency content of strong ground motion records obtained at distances of up to 35 km for this moderate earthquake. In the initial stages of modelling we do not introduce any scaling of spectral shape with magnitude, in order to see at what stage the data require it. Surprisingly, such scaling is not critical in going from M = 4–5 events to the M = 6.1 Victoria earthquake. However, it is clearly required by the El Centro accelerogram for the Imperial Valley 1940 earthquake, which had a much higher moment ( Ms ∼ 7). We derive the spectral modification function for this event. The resulting model for this magnitude ∼ 7 earthquake is then used to predict the ground motions at short distances from the fault. Predicted peak horizontal accelerations for the M ∼ 7 event are about 25–50 per cent higher than those observed for the M = 6.1 Victoria event.  相似文献   

7.
The Benevento region is part of the southern Apennines seismogenic belt, which experienced large destructive seismic events both in historical and in recent times. The study area lies at the northern end of the Irpinia fault, which ruptured in 1980 with a Ms = 6.9 normal faulting event, which caused about 3000 casualties. The aims of this paper are to image lateral heterogeneities in the upper crust of the Benevento region, and to try to identify the fault segments that are expected to generate such large earthquakes. This work is motivated by the recognition that lithological heterogeneities along major fault zones, inferred from velocity anomalies, reflect the presence of fault patches that behave differently during large rupture episodes. In this paper, we define the crustal structure of the Benevento region by using the background seismicity recorded during 1991 and 1992 by a local seismic array. These data offer a unique opportunity to investigate the presence of structural discontinuities of a major seismogenic zone before the occurrence of the next large earthquake. The main result that we obtained is the delineation of two NW-trending high-velocity zones (HVZs) in the upper crust beneath the Matese limestone massif. These high velocities are interpreted as high-strength regions that extend for 30-40 km down to at least 12 km depth. The correspondence of these HVZs with the maximum intensity regions of historical earthquakes (1688 AD, 1805 AD) suggests that these anomalies delineate the extent of two fault segments of the southern Apenninic belt capable of generating M = 6.5−7 earthquakes. The lateral offset observed between the two segments from tomographic results and isoseismal areas is possibly related to transverse right-lateral faults.  相似文献   

8.
We combine Global Positioning System (GPS) measurements with forward modelling of viscoelastic relaxation and after-slip to study the post-seismic deformation of the 1997 Umbria-Marche (Central Apennines) moderate shallow earthquake sequence. Campaign GPS measurements spanning the time period 1999–2003 are depicting a clear post-seismic deformation signal. Our results favour a normal faulting rupture model where most of the slip is located in the lower part of the seismogenic upper crust, consistent with the rupture models obtained from the inversion of strong motion data. The preferred rheological model, obtained from viscoelastic relaxation modelling, consists of an elastic upper crust, underlain by a transition zone with a viscosity of 1018 Pa s, while the rheology of deeper layers is not relevant for the observed time-span. Shallow fault creep and after-slip at the base of the seismogenic upper crust are the first order processes behind the observed post-seismic deformation. The deep after-slip, below the fault zone at about 8 km depth, acting as a basal shear through localized time-dependent deformation, identifies a rheological discontinuity decoupling the seismogenic upper crust from the low-viscosity transition zone.  相似文献   

9.
Summary. The 1973 Hawaii earthquake occurred north of Hilo, at a depth of 40 to 50km. The location was beneath the east flank of Mauna Kea, a volcano dormant historically, but active within the last 4000 yr. Aftershocks were restricted to a depth of 55–35km. The event and its aftershock sequence are located in an area not normally associated with the seismicity of the Mauna Loa and Kilauea calderas. The earthquake was a double event, the epicentres trending NE-SW. The events were of similar size and faulting mechanism. The fault plane solutions obtained by seismic waveform analysis are a strike-slip fault striking EW and dipping 55° S, the auxiliary plane a NS vertical plane with a faulting plunge of 35°. The axis of maximum compressive stress is aligned with the direction of the gravity gradient associated with the island of Hawaii. The fault plane striking EW parallels a surface feature, the Mauna Kea east rift zone. The earthquakes were clearly not associated with volcanic activity normally associated with Mauna Loa and Kilauea and may indicate a deep seated prelude to a resumption of activity at Mauna Kea.  相似文献   

10.
Summary. The mid-crustal earthquake of 1973 March 9 (mb= 5.5, h ≤ 20 km) located 60 km south-west of Sydney, Australia, provides unambiguous evidence of contemporary thrust faulting in South-eastern Australia — a region of high heat flow and Cenozoic basaltic volcanism. Aftershock locations suggest a steeply dipping fault in the depth range from 8 to 24 km with a lateral extent of about 8 km. The mechanism solution is consistent with a tectonic stress field that is dominated by east—west horizontal compression. A seismic moment of 5.7 ± 1023± 20 per cent dyne-cm was computed from surface-wave amplitudes. Minimum values of slip and stress drop, 2 cm and 1 bar respectively, were estimated from the moment and a fault size taken' from aftershock locations.
Refinement modelling by a controlled Monte Carlo technique was used to provide unbiased models directly from multimode group velocities. The dispersion of fundamental and higher mode surface waves recorded at the digital high-gain station at Charters Towers, Queensland, and the WWSSN station at Adelaide, South Australia, is satisfied by crust- and upper-mantle models which have neither pronounced S-wave low-velocity zones nor thick high-velocity lids within 140 km of the Earth's surface. These models have subcrustal shear velocities of 4.20–4.32 km/s which are 0.4–0.5 km/s slower than Canadian shield shear velocities (CANSD).  相似文献   

11.
Standard data and methods, such as the inversion of seismic and GPS data, have been used extensively to infer the details of the 2004 December 26 earthquake. The unprecedented large size of this event gave the opportunity to modern altimeters to provide the first clear records of a tsunami in deep ocean, therefore allowing us to study the rupture history from an independent perspective. We invert the Jason-1 and Topex–Poseidon altimetry records, considering the new constraints available on the geometry of the fault plane, and taking them into account in a 3-D rupture model. The data are corrected for the non-negligible effect of satellite motion during measurements. Our results show that the rupture propagated over the 1500 km of subduction zone initially identified by the aftershock distribution, with a magnitude of   M w= 9.1  . Our solution compares well with the latitudinal distribution of slip inferred from other data sets, with a maximum of energy release north of Sumatra, and two other slip patches near the Nicobar and Andaman islands. Based on waveform comparison, we assert that the shallow portion of the megathrust offshore Banda Aceh had slip amplitudes of more than 20 m. Also, we find that significant amounts of slip (about 10 m) concentrated below the Andaman islands and did not propagate on the shallow portion of the interface. Although synthetic tests tend to show less resolution in the northern part of the rupture, this solution is compatible with the near-field data (GPS, coral heads and imagery), and would allow one to explain the apparent paradox between the large local displacements and the moderate tsunami observed locally. Finally, we demonstrate the rapidly dominating effect of propagation and slip distribution over the rupture velocity, and how it precludes the direct estimate of this latter parameter.  相似文献   

12.
2-D full-waveform inversion of double-couple earthquake sources is implemented. Temporally and spatially extended sources are represented by superposition of double-couples. The source parameters solved for are the spatial location, origin time, amplitude and orientation of each double-couple. The velocity and density distribution and source time function are assumed to be known a priori but may be arbitrarily complicated. The non-linear inverse problem is solved by iterative linear approximation. The Jacobian matrix elements for source depth and rupture angle are computed by wavefield extrapolation forward in time, while those for origin time and amplitude are computed analytically. A smoothing technique that results in faster convergence and avoids local minima associated with cycle skipping is applied at each iteration. A spatial sampling interval, between discrete sources, of one-quarter wavelength of the dominant shear wave is optimal for inversion if high uniqueness of the result is desired. The presence of a fault is inferred from the spatial continuity of the rupture solution, rather than being imposed a priori. The method is illustrated by successful application to three synthetic source models: a single double-couple, a single extended rupture and a double extended rupture. The resolutions of the source depth and origin time are higher, and their posterior covariances are lower than those of the amplitude and rupture angle at each source point. Source depth, origin time and amplitude are primarily determined by the data; the rupture angle is more strongly influenced by the a priori information.  相似文献   

13.
Summary. A tripartite ocean-bottom seismograph array at the junction of the East Pacific Rise and Rivera Fracture Zone recorded an eathquake sequence, consisting of three main shocks ( m B= 4.3, 4.3 and 4.8) and numerous aftershocks from the fracture zone, in the distance range 35–50 km. Delineation of the rupture zones by aftershocks indicates that the first two main shocks took place on overlapping fault areas, while the third occurred over a fault area separated from the first by several kilometres. Both rupture zones were about 4 km long. Surface wave spectra indicate a shallow (about 3 km below the sea floor) source, as does OBS array phase velocity data. The seismic moments, obtained from teleseismic surface wave data, of 1.3, 2.1 and 2.8 × 1023 dyn cm, with the fault areas as delineated by aftershocks, imply a stress drop of about 8 bars for the main shocks. Aftershock sequences of each of the main shocks are similar, with a b -value of about 0.65. Teleseismic P travel times are similar to those from near-surface sources in Nevada.  相似文献   

14.
We propose a two-step inversion of three-component seismograms that (1) recovers the far-field source time function at each station and (2) estimates the distribution of co-seismic slip on the fault plane for small earthquakes (magnitude 3 to 4). The empirical Green's function (EGF) method consists of finding a small earthquake located near the one we wish to study and then performing a deconvolution to remove the path, site, and instrumental effects from the main-event signal.
The deconvolution between the two earthquakes is an unstable procedure: we have therefore developed a simulated annealing technique to recover a stable and positive source time function (STF) in the time domain at each station with an estimation of uncertainties. Given a good azimuthal coverage, we can obtain information on the directivity effect as well as on the rupture process. We propose an inversion method by simulated annealing using the STF to recover the distribution of slip on the fault plane with a constant rupture-velocity model. This method permits estimation of physical quantities on the fault plane, as well as possible identification of the real fault plane.
We apply this two-step procedure for an event of magnitude 3 recorded in the Gulf of Corinth in August 1991. A nearby event of magnitude 2 provides us with empirical Green's functions for each station. We estimate an active fault area of 0.02 to 0.15 km2 and deduce a stress-drop value of 1 to 30 bar and an average slip of 0.1 to 1.6 cm. The selected fault of the main event is in good agreement with the existence of a detachment surface inferred from the tectonics of this half-graben.  相似文献   

15.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

16.
A large nearly vertical, normal faulting earthquake ( M w = 7.1) took place in 1997 in the Cocos plate, just beneath the ruptured fault zone of the great 1985 Michoacan thrust event ( M w = 8.1). Dynamic rupture and resultant stress change during the 1997 earthquake have been investigated on the basis of near-source strong-motion records together with a 3-D dynamic model.
Dynamically consistent waveform inversion reveals a highly heterogeneous distribution of stress drop, including patch-like asperities and negative stress-drop zones. Zones of high stress drop are mainly confined to the deeper, southeastern section of the vertical fault, where the maximum dynamic stress drop reaches 280 bars (28 MPa). The dynamically generated source time function varies with location on the fault, and yields a short slip duration, which is caused by a short scalelength of stress-drop heterogeneities. The synthetic seismograms calculated from the dynamic model are generally consistent with the strong-motion velocity records in the frequency range lower than 0.5 Hz.
The pattern of stress-drop distribution appears, in some sense, to be consistent with that of coseismic changes in shear stress resulting from the 1985 thrust event. This consistency suggests that the stress transfer from the 1985 event to the subducting plate could be one of the possible mechanisms that increased the chance of the occurrence of the 1997 earthquake.  相似文献   

17.
《Basin Research》2018,30(5):926-941
Constraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year.  相似文献   

18.
We invert surface-wave and geodetic data for the spatio-temporal complexity of slip during the M w =8.1 Chile 1995 event by simulated annealing. This quasi-global inversion method allows for a wide exploration of model space, and retains the non-linearity of the source tomography problem. Complex source spectra are obtained from 5 to 45 mHz from first- and second-orbit fundamental-mode Rayleigh waves using an empirical Green's function cross-correlation technique. Coseismic displacement vectors were measured at 10 GPS sites near Antofagasta. They are part of a French-Chilean experiment which monitors the Northern Chile seismic gap. The spectra, together with the geodetic data, are inverted for the moment distribution on a 2-D dipping fault, under the physical constraints of slip positivity and causality. Marginal a posteriori distributions of the model parameters are obtained from several independently inverted solutions. In general, features of the slip model are well resolved. Data are well fitted by a purely unilateral southward rupture with a nearly uniform velocity around 2.5–3.0 km s−1, and a total duration of 65 s. Several regions of moment release were imaged, one near the hypocentre, a major one 80 km south of it and a minor one 160 km south of it. The major patch of moment release seemed to have propagated to relatively shallow depths near the trench, 100 km SSW of the epicentre. The region of major slip is located updip of the 1987, M w =7.5 earthquake, suggesting a causal relationship. Most of the slip occurred updip of the hypocentre (36 km), but the entire coupled plate interface (20–40 km) ruptured during the Chile 1995 event.  相似文献   

19.
Summary. A preliminary study of the aftershocks of three earthquakes that occurred near to Corinth (Greece) in 1981 is combined with observations of the morphology and faulting to understand the evolution of the Eastern Gulf of Corinth. The well located aftershocks form a zone 60km long and 20km wide. They do not lie on the main fault planes and are mostly located between the north-dipping faulting on which the first two earthquakes occurred and the south-dipping faulting associated with the third event. A cluster of aftershocks also lies in the footwall of the eastern end of the south-dipping fault of the third event.
Morphologically, it is observed that in the evolution of the Eastern Gulf of Corinth, antithetic faulting apparently predates the appearance of the main faulting at the surface. This evolution can be explained by motion on a deep seated, shallow angle, aseismic normal fault. A model based on such a fault also accounts for the aftershock distribution of the 1981 earthquakes.  相似文献   

20.
The highest intermediate depth moment release rates in Indonesia occur in the slab beneath the largely submerged segment of the Banda arc in the Banda Sea to the east of Roma, termed the Damar Zone. The most active, western-part of this zone is characterized by downdip extension, with moment release rates (∼1018 Nm yr–1 per 50 km strike length) implying the slab is stretching at ∼10−14 s−1 consistent with near complete slab decoupling across the 100–200 km depth range. Differential vertical stretching along the length of the Damar Zone is consistent with a slab rupture front at ∼100–200 km depth beneath Roma propagating eastwards at ∼100 km Myr–1. Complexities in the slab deformation field are revealed by a narrow zone of anomalous in-plane P -axis trends beneath Damar, where subhorizontal constriction suggests extreme stress concentrations ∼100 km ahead of the slab rupture front. Such stress concentrations may explain the anomalously deep ocean gateways in this region, in which case ongoing slab rupture may have played a key role in modulating the Indonesian throughflow in the Banda Sea over the last few million years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号