共查询到14条相似文献,搜索用时 62 毫秒
1.
针对辽宁2009年2月中旬旬初雨转暴雪过程和旬末大雪过程,利用常规观测资料和NCEP 10×10 逐6 h分析资料,从环流形势、影响系统、水汽和动力条件及热力结构等方面入手,对这两次过程进行对比分析。结果表明:这两次过程在许多方面显著不同。两次过程均发生在乌山阻高稳定的形势下,均受中纬度东移的中尺度低值系统影响,但雨转暴雪过程中高纬度为两脊一槽型,中纬度短槽与南支低槽结合携强冷空气东移,与低空急流在辽宁上空交汇。大雪过程为东低西高型,中纬度气旋性波动东移,切变线北抬过程中与西南暖湿气流作用影响辽宁。两次过程均发生在600 hPa以下相对湿度为80%以上的大气中,均具有低层辐合高层辐散的特征和深厚的上升运动,但雨转暴雪过程水汽含量更高,辐合层更深厚、强度更强,垂直速度较大雪过程大一个量级;两次过程都有明显的风垂直切变特征,但雨转暴雪过程发生在风垂直切变迅速增大的条件下,大雪过程风垂直切变相对稳定;雨转暴雪过程降水随湿位涡的发展而增强,两者有较好的对应关系,而大雪过程湿位涡表现微弱;雨转暴雪过程槽前0 ℃层达到850 hPa,槽后各层温度迅速下降至0 ℃以下,而大雪过程整层温度始终在0 ℃以下。 相似文献
2.
受强冷空气和低空切变共同影响,2009年2月12日17时至13日08时,集安市出现了历史同期最强的冬季大到暴雨天气,其它市县出现了历史同期最强的雨转暴雪天气过程,本文以常规气象资料及数值预报资料为基础,从大尺度环流特征、影响天气系统、雨转暴雪的前期气温分析、温度场结构特征、各气压层大气温度结构特征,动力条件及高低空急流配置、水汽条件、卫星云图等方面对此次天气过程进行分析。结果表明:本次强降水是产生在欧亚中高纬度呈-槽-脊经向环流形势下,500hPa北涡南槽、地面江淮气旋、850hPa切变线是主要影响天气系统:地面江淮气旋东移加强北上对雨转暴雪天气的形成和维持起到重要作用,2月12日最高气温上升到6~8℃,如此高温为通化地区降水积累了强大动力和能量来源,也是本次降水开始是雨原因。降水开始时我省的东南部受暖锋控制,降水以雨的性质为主,随着冷锋东移南下,我区自北到向南依次转为降雪。高低空急流的动力耦合作用、低空的西南急流水汽输送带从孟加拉湾、南海、东海、黄海带来异常充沛的水汽和强烈的辐合所产生的垂直上升运动是本次强降水的重要原因;低层北方冷空气与南方暖湿气流交汇使低层形成强锋区,为雨转暴雪的产生提供了动力。 相似文献
3.
为了更全面地伊犁河谷极端暴雪发生发展的机制,利用常规探空和地面观测资料、FY-2H长波辐射资料(Outgoing Long-wave Radiation,OLR)和NCEP/NCAR1°×1°再分析资料,采用天气动力学分析方法对2022年11月22日-24日出现在伊犁河谷极端暴雪过程的成因和动力结构演变特征进行分析,结果表明:(1)此次降雪为强锋区降雪,锋区内不断有短波东移,是暴雪发生的大尺度环流背景;300hPa极锋急流、500hPa强锋区、700hPa强偏西急流的流场配置起至关重要作用。(2)低层冷空气入侵,迫使暖湿空气抬升、气温下降,形成了下冷上暖的强逆温层结,而导致降水相态转变。降雪持续时间长,导致强降雪发生。(3)低层偏西急流把水汽输送到暴雪区,并在暴雪区上方产生强的水汽辐合中心,为本次暴雪提供了有利的水汽条件。散度场对大暴雪的发生有较好的先兆意义,双辐合-辐散结构的散度场特征可以作为预报降雪加大的指标。(4)暴雪过程发生时大气处于对流稳定状态,但存在对称不稳定能量的释放。(5)OLR特征分析表明OLR3h平均值与3h降雪量存在明显的负相关关系。 相似文献
4.
2008年1月18-22日河南区域暴雪诊断分析 总被引:3,自引:0,他引:3
利用常规高空地面资料和NCEP 6 h一次1°×1°再分析资料.对2008年1月18-22日河南省出现的大范围暴雪天气过程进行了分析,结果表明:高空低槽、低空切变与地面经华北扩散南下的冷空气相互配合是此次暴雪的主要成因;700 hPa低空西南急流为暴雪天气的产生提供了充沛的水汽和能量供应;中低层"天南地北"的流场配置加大垂直切变,有利于上升运动的加强,致使降雪强度加大;低空辐合、中高空辐散产生的强烈上升运动,是出现暴雪的有利动力条件;暴雪落区与湿位涡的斜压项MPV2负值带有很好的对应关系. 相似文献
5.
根据ERA5(0.25°×0.25°)再分析资料和常规观测资料,对2018年11月初黑龙江省一次由黄海气旋爆发性发展引发的区域性暴雪过程进行深入分析。结果表明:极涡南下,其底部短波槽东移,与高原槽合并促使黄海气旋爆发性生长,同时鄂霍次克海阻高建立并稳定维持,是造成此次暴雪的重要原因。500-850 hPa偏南急流将东海、日本海及黄海的水汽源源不断向暴雪区域传递,并且与200 hPa西南急流相互耦合,进一步加强了上升运动,提供了暴雪产生的动力和水汽条件。低层低涡和地面气旋在北上过程中,其西侧不断有冷空气呈楔形入侵,强迫暖湿空气抬升使大气斜压性增强,在对流层中低层形成次级环流,同样是暴雪发生重要的动力抬升机制。在“冷空气楔”逐步北抬时,其上空始终存在湿正压项ζMPV1<0或湿正压项ζMPV1>0、湿斜压降ζMPV2<0,有明显低层湿对称不稳定,从而有利于暴雪产生。 相似文献
6.
2011年梅汛期影响江苏两次大暴雨过程对比分析 总被引:1,自引:3,他引:1
利用常规观测资料、NCEP再分析资料及加密自动站资料对2011年梅汛期江苏省6月17-18日和7月11-13日2次典型的大暴雨天气过程进行对比分析.结果表明:2种不同类型大暴雨的影响系统不同、动力热力机制不同:“617”过程为江淮切变线大暴雨,切变线南侧的强劲西南低空急流输送了充足的水汽和能量,低层强冷空气活动触发了强暴雨;“711”过程为热带低压倒槽大暴雨,中低层弱冷空气垂直叠加在倒槽东侧偏南低空急流携带的海上暖湿空气上,构成了产生暴雨并持续的不稳定条件.垂直螺旋度上负下正的配置及非地转垂直环流上升支为两次暴雨提供了良好的动力抬升机制.暴雨发生在能量锋区南侧、湿位涡正压项零等值线靠近负值区一侧.位势不稳定度由强变弱,能量开始释放,预示暴雨即将开始. 相似文献
7.
辽宁7次大雪天气过程环流形势分析和预报 总被引:1,自引:0,他引:1
对1999年11月13日~2000年1月13日辽宁7次大雪的环流形势进行分析,并对天气过程的形势特点和预报着眼点归纳总结,以便做出冬季灾害性天气预报。 相似文献
8.
利用2020年1月常规天气图、地面降水、加密自动站和欧洲中心细网格等资料,分析了2020年初山东一次雨转暴雪的天气过程。研究发现,这次过程前期主要是降雨阶段,后期是降雪阶段:降雨阶段,山东处于高空槽前,水汽主要来源于高空槽前的西南气流,上升运动弱,气流的不稳定层位于800 hPa以下;降雪阶段,山东内陆地区近地面层形成冷垫,700~500 hPa槽前暖湿空气沿冷垫爬升,不稳定层较降雨时明显抬升,上升运动加强。山东半岛在降雪阶段受黄海气旋外围影响,水汽来源主要是气旋外围的偏东气流。近地面冷层厚度能引起该层温度的变化:当冷层厚度在2 km以下时,降水相态为雨;超过2 km时,降水相态为雪;当冷层厚度达到5 km以上时,降水过程结束。这次过程中山东多地存在雨雪相态转换,近地层温度与0℃层高度是判定降水相态的有效要素指标。 相似文献
9.
利用常规观测资料和NCEP资料,对2009年11月9—12日石家庄特大暴雪进行分析。结果表明:暴雪过程与高空西槽、河套地区南部南支槽以及中低空切变有着密切联系。高低空急流的较好配合利于暴雪区内上升运动的加强,上升区始终位于高空偏西急流右侧的辐散区内及低空西南急流出口区左前部的辐合区内,且700 hPa北支西北急流对暴雪的增强有着至关重要的作用;上升运动与正涡度区相对应,垂直上升最强区与正涡度中心相吻合;上升运动与湿度场的交汇对暴雪的发生及加强显著,石家庄上空自地面至200 hPa维持一相对湿度为90%的高湿柱,西南气流带来的南方暖湿气流及东北回流带来的渤海湾高湿大气是产生大暴雪的能量及水汽源地。 相似文献
10.
大兴安岭地区的一次暴雪天气诊断分析 总被引:1,自引:0,他引:1
利用常规观测资料、FY-2气象卫星水汽云图、多普勒雷达资料、NCEP(1°×1°)逐6h再分析资料对2016年11月13—14日东北冷涡背景下的大兴安岭地区暴雪天气过程进行分析。结果表明:高空冷涡后部横槽南摆,使干冷空气南下以及冷涡前部西南低空急流北上且辐合急剧加强为暴雪天气提供了非常有利的环流背景;≥20m·s-1的西南低空急流作为水汽输送带,为暴雪区提供了充足的水汽来源;垂直上升运动中心和散度辐合辐散中心基本耦合且加强,为暴雪提供了强有利的动力抬升条件,有利于上升运动的增强发展;暴雪是发生在条件对称不稳定的(湿位涡MPV2<0)的背景下,暴雪中心位于MPV2等值线密集带以及MPV2绝对值得到较大增长的区域。水汽图像上有表征干侵入特征的干缝、斧形暗区等;雷达回波显示低层东南风急流非常显著,低层强烈发展的东南暖湿气流与东北—西南走向的大兴安岭山脉相垂直时,地形强迫抬升不仅使迎风坡的垂直上升运动迅速加强,而且使低层水汽辐合得到加强和维持为暴雪提供了充足的水汽,这也是暴雪主要集中在大兴安岭东麓的重要因素。 相似文献
11.
利用NCEP再分析资料和常规观测资料,对2001年1月6日冀南大到暴雪过程进行分析。结果表明:偏南暖湿气流在东北南下的冷垫上爬升是降雪发生与维持的有利条件;暴雪过程以回流降雪为主,后期为西来槽降雪;暴雪发生时,有较强的上升运动和较大的水汽输送与辐合,高层辐散低层辐合,中低层正涡度的发展尤其是正涡度平流的增强为暴雪过程提供了动力条件;偏南风急流为暴雪区提供了充沛的水汽和能量;非地转湿Q矢量散度的辐合区与降雪区对应;低层高能舌的演变可以大致判断强降水出现的时间和位置;在回流降雪阶段出现对流不稳定。 相似文献
12.
北京“7.21”特大暴雨环流形势极端性客观分析 总被引:11,自引:3,他引:11
2012年7月21日(简称“7.21”),北京发生了自1951年以来最强的暴雨事件。利用倾斜旋转T模态主成分分析法和美国国家环境预报中心/美国国家大气研究中心再分析资料,探讨了北京“7.21”特大暴雨的大尺度环流形势的极端性。结果表明,北京“7.21”暴雨日所属的大尺度环流型在1951—2012年夏季出现的频率为10.9%,而在“7.21”同类环流型中暴雨出现的概率为4.51%。和同类暴雨日平均场相比,“7.21”暴雨日当天西太平洋副热带高压西伸更强,北京地区对流层低空急流更强,并伴随环境大气中极端充沛的可降水量和较大的风垂直切变。在“7.21”同类环流型下的621 d中,“7.21”暴雨日北京南侧的低空急流排在第54位,北京局地风垂直切变排在第209位,可降水量排在第8位,显示出其在低空急流和可降水量上的极端性。1951—2012年夏季,具有“7.21”暴雨日同类环流形势、且925 hPa低空急流和可降水量均达到或超过“7.21”暴雨日值的个例有3次,相当于每21年发生一次。 相似文献
13.
利用MICAPS实况观测、卫星云图TBB、地面气象自动观测资料,对2010年7月16—18日陕西一次持续性暴雨天气过程进行诊断分析,结果表明:500 hPa大陆高压,副热带高压稳定维持使得两高之间低值系统稳定少动,宽广的低压底部不断有短波槽携带冷空气东移南下,与两高之间的低值区合并,Conson台风在登陆和减弱的过程中在南海及附近地区维持较长的时间,低层从台风东侧至陕西建立了温湿能通量的能量输送通道,把台风东侧的温湿能沿副热带高压外围偏南风向陕西输送,暴雨位于低层温湿能等值线密集处;条件性对称不稳定与对流不稳定是此次暴雨发展与维持的重要机制,高层湿位涡大值区向下伸展,对暴雨起到增幅的作用。暴雨产生在地面湿静力温度线密集区略偏向于高能中心一侧。 相似文献
14.
Study on moist potential vorticity and symmetric instability during a heavy rain event occurred in the Jiang-Huai valleys 总被引:2,自引:0,他引:2
In the light of the theory on moist potential vorticity (MPV) investigation was undertaken of the 700 hPa vertical (horizontal) component MP1 (MPV2) for the heavy rain event occurring in Ju-ly 5-6,1991. Results show that the distribution features of the two components were closely related to the development of a mesoscale cyclone as a rainstorm-causing weather system in the lower troposphere in such a way that the ambient atmosphere of which MPV1>0 and MPV2<0 with |MPVl|≥|MPV2| favored the genesis of conditional symmetric instability (CSI) and that, as in-dicated by calculations, a CSI sector was really existent in the lower troposphere during the heavy rain happening and contributed greatly to its development. 相似文献