首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Evidence of melting is presented from the Western Gneiss Region (WGR) in the core of the Caledonian orogen, Western Norway and the dynamic significance of melting for the evolution of orogens is evaluated. Multiphase inclusions in garnet that comprise plagioclase, potassic feldspar and biotite are interpreted to be formed from melt trapped during garnet growth in the eclogite facies. The multiphase inclusions are associated with rocks that preserve macroscopic evidence of melting, such as segregations in mafic rocks, leucosomes and pegmatites hosted in mafic rocks and in gneisses. Based on field studies, these lithologies are found in three structural positions: (i) as zoned segregations found in high‐P (ultra)mafic bodies; (ii) as leucosomes along amphibolite facies foliation and in a variety of discordant structures in gneiss; and (iii) as undeformed pegmatites cutting the main Caledonian structures. Segregations post‐date the eclogite facies foliation and pre‐date the amphibolite facies deformation, whereas leucosomes are contemporaneous with the amphibolite facies deformation, and undeformed pegmatites are post‐kinematic and were formed at the end of the deformation history. The geochemistry of the segregations, leucosomes and pegmatites in the WGR defines two trends, which correlate with the mafic or felsic nature of the host rocks. The first trend with Ca‐poor compositions represents leucosome and pegmatite hosted in felsic gneiss, whereas the second group with K‐poor compositions corresponds to segregation hosted in (ultra)mafic rocks. These trends suggest partial melting of two separate sources: the felsic gneisses and also the included mafic eclogites. The REE patterns of the samples allow distinction between melt compositions, fractionated liquids and cumulates. Melting began at high pressure and affected most lithologies in the WGR before or during their retrogression in the amphibolite facies. During this stage, the presence of melt may have acted as a weakening mechanism that enabled decoupling of the exhuming crust around the peak pressure conditions triggering exhumation of the upward‐buoyant crust. Partial melting of both felsic and mafic sources at temperatures below 800 °C implies the presence of an H2O‐rich fluid phase at great depth to facilitate H2O‐present partial melting.  相似文献   

2.
Aluminous, mafic, felsic, calcareous, and sulphide‐rich rocks have been involved in localized deformation and retrograde metamorphism at Broken Hill, western New South Wales, where retrograde schist‐zones intersect high‐grade, regional metamorphic rocks of the lower granulite facies (or the amphibolite‐granulite facies transition). Although technically retrograde, the schists contain mineral assemblages indicative of the lower amphibolite facies. The schist‐zones were formed by local folding, apparently as part of the third stage of deformation in the Broken Hill area.  相似文献   

3.
In the mingled mafic/felsic Halfmoon Pluton at The Neck, Stewart Island (part of the Median Batholith of New Zealand) some hornblende gabbros and diorites retain magmatic structures, whereas others show evidence of major changes in grain and inclusion shapes, and still others are amphibolite‐facies granofelses with few or no igneous relicts. These mafic to intermediate magmas crystallized in felsic magma relatively quickly, with the result that most deformation occurred at subsolidus conditions. It is suggested that mafic‐intermediate rocks with predominantly igneous microstructures spent less time in the magmatic system. The metamorphism of the mafic rocks appears to be ‘autometamorphic’, in the sense that elevated temperatures were maintained by magmatic heat during subsolidus cooling. Elevated temperatures were maintained because of repeated sheet injection and subconcordant dyke injection of hot basaltic and composite mafic‐felsic magmas, into a dominantly transtensional, km‐scale, outboard‐migrating, magmatic shear zone that operated semi‐continuously for between c. 140 and c. 130 Ma. Complete cooling occurred only when the system evolved to transpressional and the locus of magmatism migrated inboard (southward) between c. 130 and c. 120 Ma, associated with solid‐state mylonitic deformation. Intermingled granitic rocks escaped metamorphism, because they remained magmatic to lower temperatures, and experienced shorter and lower‐temperature subsolidus cooling intervals. However, the felsic rocks underwent relatively high‐temperature solid‐state deformation, as indicated by myrmekite replacing K‐feldspar and chess‐board subgrain patterns in quartz; locally they developed felsic mylonites. The felsic rocks were deformed in the solid state because of their high proportion of relatively weak minerals (quartz and biotite), whereas the mafic rocks mostly escaped subsolidus deformation, except in local high‐strain zones of hornblende‐plagioclase schist, because of their high proportion of relatively strong minerals (hornblende and plagioclase). We suggest that such contrasting microstructural features are diagnostic of long‐lived syntectonic magma transfer zones, and contrast with the more typical complex, batholith‐scale magma chambers of magmatic arcs.  相似文献   

4.
The Nagar Parkar area contains three distinct groups of rocks, from oldest to youngest, (1) basement rocks ranging in composition from mafic to (quartz)diorite, tonalite, granite, and younger granodiorite, (2) granite plutons similar in general features to those of the Malani Igneous Suite of Rajasthan, and (3) abundant mafic, felsic and rhyolitic dykes. The basement rocks show strong brittle and local plastic deformation, and epidote amphibolite/upper greenschist facies metamorphic overprint. The chemistry of the basement rocks contrasts the commonly agreed within plate A-type character of the Neoproterozoic granites (group 2) that are emplaced into them. The basement rock association is calc-alkaline; the granodiorite displays the compositional characteristics of adakites, whereas the tonalite has intermediate composition between typical adakite and classical island arc rocks. This paper presents detailed petrography of the basement rocks and compares their geochemistry with those of the group 2 granites as well as with rocks from other tectonic environments. It is proposed that the Nagar Parkar basement is part of a 900–840 Ma magmatic arc that was deformed before it was intruded 800–700 Ma ago by the A-type continental granitic rocks followed by mafic to felsic dykes.  相似文献   

5.
Rudaceous felsic to ultramafic clastic rocks of the Jones Creek Conglomerate are in tectonic contact with supracrustal mafic and ultramafic igneous rocks and associated fine‐grained sediments. All these rocks have a lower amphibolite facies mineralogy. Heterogeneously developed penetrative deformation has allowed sedimentary structures, including an unconformable contact between the Conglomerate and an adamellite, to be preserved in places. However, narrow, strike‐oriented zones containing blastomylonites and very flattened rudites normally characterize both contacts of the Conglomerate. Structural complexities within and at the contacts of the Conglomerate cast doubt on previous postulates that the Conglomerate separates an older from a younger supracrustal cycle.  相似文献   

6.
The Shushui Complex can be divided into three rock units based on field investigation, petrography and geochemistry:(1) felsic gneisses, (2) supracrustal rocks consisting of amphibolite, marble and quartzite, and (3) late granites. Of the complex, felsic gneisses are dominant and formed in the Late Archaean, which were intruded by a basic dyke with a whole-rock Rb-Sr isochron age of 2264±219 Ma. The data on rare-earth elements as well as on major and trace elements presented for most of the rock types making up the complex suggest that (1) basic gneisses were produced by partial melting of mantle peridotite, followed by fractional crystallization, and (2) felsic gneisses produced by varying degree of melting of a mafic source. The most suitable tectonic setting to account for the generation of both types would be similar to the underplate setting.  相似文献   

7.
洪吉安  马斌  黄琦 《地质科学》2009,44(1):231-244
湖北省北部枣阳市境内的大阜山镁铁/超镁铁杂岩体主要由未变质的纯橄岩和橄长岩组成,伴生变质的石榴石角闪石岩、石榴石钠黝帘石角闪石岩和角闪石钠黝帘石岩.杂岩体的围岩为大理岩.该岩体中的金红石矿床产于变质的石榴石角闪石岩或蚀变的石榴石角闪石岩中.橄长岩中锆石SHRIMP U-Pb同位素定年结果表明镁铁/超镁铁质岩体的成岩年龄约为600Ma.变质的岩石和未变质的岩石几乎具有完全相同的地球化学特征,表明前者的原岩应为橄长岩,整个岩体是一个分异的镁铁/超镁铁侵入体.金红石赋存于角闪石解理中等岩相特征表明矿床的含矿岩石就是石榴石角闪石岩,不是由石榴石辉石岩退变质形成的;且其中的石榴石为钙铁榴石,不是富镁、富铝的与高压/超高压作用有关的石榴石.金红石矿床的形成和岩体的局部变质应该与由北向南的近水平推覆构造有关,动力变质作用提供的热和流体,结合推覆过程中的变形作用,导致围岩大理岩和镁铁质岩体发生交代作用,形成石榴石角闪石岩和金红石矿床.  相似文献   

8.
安徽省桐城市挂镇(挂车河镇)地区出露郯庐断裂系(北北东-北东向)和大别构造系(近东西向)的韧性剪切带,变质温度分别为400 ℃~450 ℃和600 ℃~700 ℃,均发育镁铁质和长英质构造岩,是研究不同变形条件下岩石中元素活化迁移规律的理想对象。质量平衡计算表明长英质剪切带在韧性变形过程中,大别构造系体积基本不变,郯庐断裂系体积亏损且随变形程度的增强而增加,镁铁质性剪切带在脆-韧变形过程中体积增加。长英质构造岩的稀土和微量元素变异远弱于镁铁质构造岩,长英质构造岩基本继承了原岩的特征而镁铁质构造岩与原岩的差异显著,长英质和镁铁质混合的构造岩主要显示镁铁质组分的迁移规律。长英质构造岩的元素迁移种类和迁移率与变形程度和变质温度正相关,其中体积亏损变形的郯庐断裂系表现为重稀土中等迁出、中稀土几乎未迁移和轻稀土微弱迁入,等体积变形的大别构造系为稀土元素迁入,轻稀土、中稀土和重稀土的迁移率依次增加。镁铁质构造岩的稀土元素迁移表现为轻稀土强烈迁入和重稀土中等迁出。体积变化不是元素变异的主因,在原岩和矿物蚀变制约的基础上,元素迁移受到岩石流变分异作用和热液渗流作用的双重作用,低温时以渗透流体作用为主,而高温时岩石流变分异作用增强。  相似文献   

9.
吉林省夹皮沟太古代岩石分布及变质、变形作用研究   总被引:3,自引:0,他引:3  
孙胜龙 《吉林地质》1992,11(2):61-70
在野外1∶10000地质填图及室内研究工作基础上,认为夹皮沟地区太古代主体岩石是中酸性侵入体(TTG),已变质成为长英质片麻岩。太古代上壳岩以包体形式分布在长英质片麻岩中。太古代岩石经历了三期变质作用和三期变形作用。太古代上壳岩经历韧性变形作用和具有麻粒岩相变质怍用,长英质片麻岩经历早期韧性变形作用和角闪岩相变质作用,而晚期经历脆—韧性变形作用和绿片岩相变质作用。低级变质作用和晚期变形作用改造、叠加早期变质作用和变形作用。  相似文献   

10.
The Arunta Inlier is a 200 000 km2 region of mainly Precambrian metamorphosed sedimentary and igneous rock in central Australia. To the N it merges with similar rocks of lower metamorphic grade in the Tennant Creek Inlier, and to the NW it merges with schist and gneiss of The Granites‐Tanami Province. It is characterized by mafic and felsic meta‐igneous rocks, abundant silicic and aluminous metasediments and carbonate, and low‐ to medium‐pressure metamorphism. Hence, the Arunta Inlier is interpreted as a Proterozoic ensialic mobile belt floored by continental crust. The belt evolved over about 1500 Ma, and began with mafic and felsic volcanism and mafic intrusion in a latitudinal rift, followed by shale and limestone deposition, deformation, metamorphism and emergence. Flysch sedimentation and volcanism then continued in geosynclinal troughs flanking the ridge of meta‐igneous rocks, and were followed by platform deposition of thin shallow‐marine sediments, further deformation, and episodes of metamorphism and granite intrusion.  相似文献   

11.
In this study, we report the results of an investigation of lithological interpretation of the crust in the central Fennoscandian Shield (in Finland) using seismic wide-angle velocity models and laboratory measurements on P- and S-wave velocities of different rock types. The velocities adopted from wide-angle velocity models were compared with laboratory velocities of different rock types corrected for the crustal PT conditions in the study area. The wide-angle velocity models indicate that the P-wave velocity does not only increase step-wise at boundaries of major crustal layers, but there is also gradual increase of velocity within the layers. On the other hand, the laboratory measurements of velocities indicate that no single rock type is able to provide the gradual downward increasing trends. Thus, there must be gradual vertical changes in rock composition. The downward increase of velocities indicates that the composition of the crust becomes gradually more mafic with increasing depth. We have calculated vertical velocity profiles for a range of possible crustal lithological compositions. The Finnish crustal velocity profiles require a more mafic composition than an average global continental model would suggest. For instance, on the SVEKA'81 transect, the calculated models suggest that the crustal velocity profiles can be simulated with rock type mixtures where the upper crust consists of felsic gneisses and granitic–granodioritic rocks with a minor contribution of amphibolite and diabase. In the middle crust, the amphibolite proportion increases. The lower crust consists of tonalitic gneiss, mafic garnet granulite, hornblendite, pyroxenite and minor mafic eclogite. Assuming that these rock types are present in sufficiently extensive and thick layers, they would also have sufficiently high acoustic reflection coefficients for generating the generally well-developed reflectivity in the crust in the central part of the shield. Density profiles calculated from the lithological models suggest that there is practically no density contrast at Moho in areas of the high-velocity lower crust. Comparison of reflectors from FIRE-1 and FIRE-3 transects and the velocity model from SVEKA'81 wide-angle transect indicated that the reflectors correlate with velocity layering, but the three-dimensional structures of the crust complicate such comparisons.  相似文献   

12.
Early Proterozoic supracrustal and plutonic rocks from the Gold Hill-Wheeler Peak area in northern New Mexico define three populations: amphibolite—diorite—tonalite, hornblendite—cumulus amphibolite and felsic volcanics and porphyries. Also present are mid-Proterozoic granites. Amphibolites are similar in Ti, Zr, Cr, Ni and REE contents to young calc-alkaline and arc basalts and diorites and tonalites are similar in composition to young andesites and to high-Al2O3 tonalites, respectively. Felsic volcanics resemble young felsic volcanics from mature arc systems in their immobile-element contents. Geochemical model studies suggest that the amphibolites, hornblendites, diorites and tonalites are related by progressive fractional crystallization of a hydrous parent tholeiite magma produced from partial melting of undepleted lherzolite. Amphibolites represent parent tholeiites modified by olivine removal. Hornblendite is an early solid residue comprised chiefly of hornblende, clinopyroxene, and olivine; diorite and cumulus amphibolite represent respectively residual solid (clinopyroxene, plagioclase, hornblende) and liquid, after 50% crystallization. Tonalite represents a residual liquid after 80% crystallization. Felsic volcanic rocks are produced by partial melting of a tonalite or diorite source with granulite-facies mineralogy in the lower crust. Granites have a similar origin to felsic volcanics although requiring an inhomogeneous source with the presence of residual hornblende or garnet.The calc-alkaline igneous rocks in the Gold Hill-Wheeler Peak area suggest the presence of an arc system in northern New Mexico during the Early Proterozoic. The fact that these rocks interfinger with and are overlain by mature clastic sediments favors a model in which a continental arc system is uplited, eroded and buried by cratonic sediments from the north.  相似文献   

13.
Records of Earth's primitive crust are scarce. Eoarchean (older than 3.6 Ga) banded mafic to felsic gneisses have been discovered in the São Francisco Craton, Brazil, pushing back by over 100 million years the oldest gneisses known to date in South America (3.5 Ga). Zircon U‐Pb data yield rock ages from 3,598 to 3,642 Ma with a few ca. 3.65–3.69 Ga grains suggesting even older rocks in the area. Zircon grains show significantly negative to nearly chondritic initial εHf values and two‐stage model ages from 3.82 to 4.33 Ga, which may indicate the existence of a recycled Hadean to early Eoarchean crust in the region. The felsic gneisses are chemically similar to the low‐pressure Tonalite‐Trondhjemite‐Granodiorite association whereas the mafic gneisses have geochemical signatures that resemble within‐plate basaltic andesite to andesite of Iceland (icelandites). The results are relevant to constrain the composition of Earth's first continental crust.  相似文献   

14.
A deep-level crustal section of the Cretaceous Kohistan arc is exposed in the northern part of the Jijal complex. The occurrence of mafic to ultramafic granulite-facies rocks exhibits the nature and metamorphic evolution of the lower crust. Mafic granulites are divided into two rock types: two-pyroxene granulite (orthopyroxene+clinopyroxene+plagioclase±quartz [1]); and garnet–clinopyroxene granulite (garnet+clinopyroxene+plagioclase+quartz [2]). Two-pyroxene granulite occurs in the northeastern part of the Jijal complex as a relict host rock of garnet–clinopyroxene granulite, where the orthopyroxene-rich host is transected by elongated patches and bands of garnet–clinopyroxene granulite. Garnet–clinopyroxene granulite, together with two-pyroxene granulite, has been partly replaced by amphibolite (hornblende±garnet+plagioclase+quartz [3]). The garnet-bearing assemblage [2] is expressed by a compression–dehydration reaction: hornblende+orthopyroxene+plagioclase=garnet+clinopyroxene+quartz+H2O↑. Subsequent amphibolitization to form the assemblage [3] is expressed by two hydration reactions: garnet+clinopyroxene+plagioclase+H2O=hornblende+quartz and plagioclase+hornblende+H2O=zoisite+chlorite+quartz. The mafic granulites include pod- and lens-shaped bodies of ultramafic granulites which consist of garnet hornblendite (garnet+hornblende+clinopyroxene [4]) associated with garnet clinopyroxenite, garnetite, and hornblendite. Field relation and comparisons in modal–chemical compositions between the mafic and ultramafic granulites indicate that the ultramafic granulites were originally intrusive rocks which dissected the protoliths of the mafic granulites and then have been metamorphosed simultaneously with the formation of garnet–clinopyroxene granulite. The results combined with isotopic ages reported elsewhere give the following tectonic constraints: (1) crustal thickening through the development of the Kohistan arc and the subsequent Kohistan–Asia collision caused the high-pressure granulite-facies metamorphism in the Jijal complex; (2) local amphibolitization of the mafic granulites occurred after the collision.  相似文献   

15.
The auriferous lode in the Hira-Buddini deposit is confined to the sheared contact of amphibolite and felsic metavolcanic rock. Gold mineralization in the deposit is associated with sub-horizontal, sub–vertical, irregular and with few conjugate veins. These veins were emplaced during deformation in a ductile-brittle regime as inferred from the megascopic features and microstructures of the vein minerals. Fluid pressure was higher than the sum of the minimum principal stress and lithostatic load as well as the tensile strength of the shear zone. Crack-seal process appears to be the mechanism of vein formation. The microstructures of the vein minerals indicate a temperature of ~500ºC during the vein emplacement. In the auriferous lode, amphibolite and felsic metavolcanic rock have been subjected to intense alteration by the ore fluid with development of biotite-chlorite-tourmaline-calcite and muscovite (sericite)-chlorite-calcite-feldspar-biotite assemblages, respectively. Both the altered rocks contain significant amount of pyrite and chalcopyrite with native grains of gold and silver. Post-dating the fluid activity associated with gold mineralization, there is another stage of fluid activity manifested by the calcite veins and micro-veinlets.  相似文献   

16.
The basement complex in the Ilesha area consists of two distinct units — the gneisses and the schists. The Ilesha Schist Belt is a back-arc basin where there has been a subduction of an ocean slab into the mantle. This was followed by partial melting of mantle and ocean sediments to generate a wet basaltic magma, as revealed by spidergrams and REE fractionation patterns for the rocks in this belt. In this environment, differentiation of the wet basaltic magma led to the emplacement of a set of rocks, which formed a proto-continent. These rocks were then eroded to generate a sedimentary sequence which was metamorphosed into banded gneiss from which the granite gneisses were derived. The banded gneiss, characterised by alternation of felsic and mafic bands, is composed of medium to very coarse plagioclase, hornblende, quartz and biotite. The granite gneiss, composed of biotite, K--feldspars, quartz and minor garnet, occurs in close association with the banded gneiss.Chemical evidence revealed that elements that are depleted in the banded gneiss are concentrated in the granite gneiss and vice-versa; suggesting a petrogenetic link between these rocks.The schists were deposited as sediments composed of quartz, muscovite, biotite and Fe oxides. These sediments were metamorphosed to form quartzite schists which were folded into the gneisses. After the emplacement of these rocks, there was transpressive tectonic activity in this schist belt, causing deformation of these rocks, and emplacement of the northeast-southwest Ifewara-Zungeru Fault System, which separates the Ilesha Schist Belt into two halves.  相似文献   

17.
Various types of mafic inclusions up to 30 cm in size occur in lapilli tuff of alkali basalt at Itinome-gata crater, northeastern Japan. They are divided into the following four groups: amphibolite, hornblendite—hornblende gabbro, leucogabbro, and pyroxene gabbro. Also occurring with the mafic inclusions are lherzolite and websterite inclusions and megacrysts of Mg-rich olivine and chromian diopside. New analyses are presented for twenty five representative mafic inclusions, eight clinopyroxenes, six orthopyroxenes, and fifteen brown hornblendes. There are conspicuous chemical differences between the mafic inclusions and lherzolite and websterite inclusions: the former have higher TiO2, Al2O3, total FeO, CaO, Na2O, and K2O, and lower MgO than the lherzolites and higher TiO2, Al2O3, total FeO, and alkalis, and lower MgO than the websterites. The petrographic and chemical gradations among these three are not easily recognized. It is indicated that the Moho in this region is a boundary between mafic and ultramafic phases. The mineral assemblages of the mafic inclusions and the compositions of their essential minerals show that all of them recrystallized or crystallized under approximately the same temperature — pressure conditions, within the range of 600–1000° C and 6–9 kb. The following is hypothetically considered. The old and thick tholeiites or high-alumina basalts (may be pre-Silurian) making up the basement of the Japanese Islands had been subjected to the high T/P type metamorphism during Cretaceous time, and changed to amphibolites. In the cataclastic stage, complete melting of the lower part of the amphibolites occured locally and formed a gabbro magma. This gabbro magma moved upward slightly and produced hornblendite, hornblende gabbro and leucogabbro magmas by differentiation under wet conditions and a pyroxene gabbro magma under less wet conditions. Namely, the mafic inclusions are thought to be of fragments of the lower crust.  相似文献   

18.
Gold bearing metavolcanics of Gadag Gold Field (GGF) are represented by mafic (metabasalt, metabasaltic andesite), intermediate (metaandesite) and felsic (metadacite, metarhyolite) rocks. Mafic metavolcanic rocks are low-K Fe-rich tholeiites and were derived by partial melting of the upper mantle sources with high Fe/Mg ratios and low M values. Intermediate and felsic metavolcanics were formed by remelting of these tholeiites mainly in crustal regimes. Although a complete sequence of metavolcanic rocks from mafic to intermediate to felsic fractions occurs, these products were not the result of differentiation from a single magma, crustal contamination was involved in the formation of intermediate and felsic rocks. A clear gap in the chemical composition as well as index of differentiation among the mafic, intermediate and felsic fractions indicate that these metavolcanics constitute a typical bimodal character. It is suggested that these metavolcanics were emplaced in an active continental margin or a continental island arc setting. The petrogenetic processes of formation of Fe-rich tholeiites that evolved in an active continental margin or a continental island arc setting could have provided a favourable geochemical environment for gold mineralisation under the conditions of deformation and metamorphism.  相似文献   

19.
工作中重点对河北平山小觉地区阜平岩群两类角闪质岩石深熔作用的地球化学进行了研究。一类为厚层状斜长角闪岩,相邻新生浅色体常量元素组成上向TTG花岗质岩石方向转化,稀土和高场强元素含量明显降低,轻重稀土分离程度增高,tDM减小,εNd(t0)增大。另一类为与黑云变粒岩-片麻岩互层的条带状、石香肠状斜长角闪岩,相邻新生浅色体与之存在不同的地球化学关系:(1)稀土总量相对增高,轻重稀土分离程度有所降低;(2)稀土总量和轻重稀土分离程度都有明显增高。后者Nd同位素组成与斜长角闪岩也存在很大区别。这些现象可用熔融母岩、形成条件等差异得到合理的解释。  相似文献   

20.
Recently, a huge ultrahigh‐pressure (UHP) metamorphic belt of oceanic‐type has been recognized in southwestern (SW) Tianshan, China. Petrological studies show that the UHP metamorphic rocks of SW Tianshan orogenic belt include mafic eclogites and blueschists, felsic garnet phengite schists, marbles and serpentinites. The well‐preserved coesite inclusions were commonly found in eclogites, garnet phengite schists and marbles. Ti‐clinohumite and Ti‐chondrodite have been identified in UHP metamorphic serpentinites. Based on the PT pseudosection calculation and combined U‐Pb zircon dating, the P‐T‐t path has been outlined as four stages: cold subduction to UHP conditions before ~320 Ma whose peak ultrahigh pressure is about 30 kbar at 500oC, heating decompression from the Pmax to the Tmax stage before 305 Ma whose peak temperature is about 600oC at 22kbar, then the early cold exhumation from amphibolite eclogite facies to epidote‐amphibolite facies metamorphism characterized by ITD PT path before 220 Ma and the last tectonic exhumation from epidote amphibolite facies to greenschist facies metamorphism. Combining with the syn‐subduction arc‐like 333‐326 Ma granitic rocks and 280‐260 Ma S‐type granites in the coeval low‐pressure and high‐temperature (LP‐HT) metamorphic belt, the tectonic evolution of Tianshan UHP metamorphic belt during late Cambrian to early Triassic has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号