首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
v--vThe phenomenon of "Lg blockage," where Lg is strongly attenuated by crustal heterogeneities, poses a serious problem to CTBT monitoring because Lg is an important seismic phase for discrimination. This paper examines blockage in three continental regions where the Lg blockages may be caused by large, enclosed sedimentary basins along the propagation path. The Barents Sea Basin blocks Lg propagation across the Barents Sea from the Russian nuclear test sites at Novaya Zemlya to Scandinavian stations. Also, "early Lg" waves are observed in Sn codas on NORSAR, NORESS, and ARCESS recordings of Novaya Zemlya explosions where direct Lg is blocked. Early Lg waves may have resulted from Sn-to-Lg mode conversion at the contact between the Barents Basin and the Kola Peninsula. The Northern and Southern Caspian Sea Basins also block Lg waves from PNEs and earthquakes, perhaps due to thick, low-velocity, low-Q sediments replacing the granitic layer rocks in the crust. Lg blockage has also been observed in the Western Mediterranean/Levantine Basin due to low-Q sediments and crustal thinning. A "basin capture" model is proposed to explain Lg blockage in sedimentary basins. In this model, shear waves that reverberate in the crust and constitute the Lg wave train are captured, delayed, and attenuated by thick, low-velocity sediments that replace the "granitic" layer rocks of the upper crust along part of the propagation path. Sn waves, which propagate below the basin, would not be blocked and in fact, the blocked Lg waves may be diverted downward into Sn waves by the low velocity sediments in the basin.  相似文献   

2.
Tomographic Imaging of Lg and Sn Propagation in the Middle East   总被引:1,自引:0,他引:1  
?—?Observations based on relatively limited data recorded by sparsely distributed stations have indicated that regional seismic phase propagation (Lg and Sn) is very complex in the Middle East. Accurate characterization of regional seismic wave propagation in this region necessitates the use of a large number of seismic stations. We have compiled a large data set of regional and local seismograms recorded in the Middle East. This data set comprises approximately four years of data from national short-period networks in Turkey and Syria, data from temporary broadband arrays in Saudi Arabia and the Caspian Sea region, and data from GSN, MEDNET, and GEOFON stations in the Middle East. We have used this data set to decipher the character and pattern of regional seismic wave propagation. We have mapped zones of blockage as well as inefficient and efficient propagation for Lg, Pg, and Sn throughout the Middle East. Two tomographic techniques have been developed in order to objectively determine regions of lithospheric attenuation in the Middle East.¶We observe evidence of major increase in Lg attenuation, relative to Pg, across the Bitlis suture and the Zagros fold and thrust belt, corresponding to the boundary between the Arabian and Eurasian plates. We also observe a zone of inefficient Sn propagation along the Dead Sea fault system which coincides with low Pn velocities along most of the Dead Sea fault system and with previous observations of poor Sn propagation in western Jordan. Our observations indicate that in the northern portion of the Arabian plate (south of the Bitlis suture) there is also a zone of inefficient Sn propagation that would not have been predicted from prior measurements of relatively low Pn velocities. Mapped high attenuation of Sn correlates well with regions of Cenozoic and Holocene basaltic volcanism. These regions of uppermost mantle shear-wave attenuation most probably have anomously hot and possibly thin lithosphere.  相似文献   

3.
—?We present a hybrid boundary-element (BE) and generalized screen propagator (GSP) method for the 2-D SH problem to model the combined effects of arbitrarily irregular topography, large-scale crustal variation, and the associated small-scale heterogeneities on regional wave propagation. We develop a boundary connection technique to couple the wave fields calculated by the BE method with those of the GSP method. Its validity is tested by numerical experiments. For a long crustal waveguide, the relatively short sections with severe surface topography can be modeled by the time-consuming BE method to high frequencies, and the exterior field in the relatively weak heterogeneous media of large volume can be calculated by the GSP method. For the waveguide with severe topography, the BE method can be used section by section via the boundary connection technique to model the combined effects of rough topography and large-scale structural variation on Lg wave propagation at extended regional distances.¶Numerical comparisons with independent methods showed that the hybrid method is relatively accurate for Lg simulation. We apply the hybrid method to Lg wave propagation in two real crustal waveguides in the Tibet region; one with Lg blockage and another without blockage. We found that the most characteristic effect from the irregular topography is the strong scattering by the topographic structures. The scattering by local irregular topographies leads to anomalous near-receive effects and tends to remove energy from the guided waves, which causes decay of amplitude and waveform distortion. It can be expected that rough surface topography and random heterogeneities with scale length close to the dominant wavelength will be very efficient in attenuating regional waves. The dramatic lateral variation of the topography-Moho large-scale structure combined with the small-scale rough topography and random heterogeneities could be the cause of Lg anomalous attenuation and blockage observed in this region. More quantitative assessment of the topographic effects must be conducted in the future.  相似文献   

4.
—?Rayleigh wave group velocity dispersion measurements from 10?s to 160?s periods have been made for paths traversing Northern Africa. Data were accumulated from the IRIS DMC, GEOSCOPE, and MEDNET seismic networks covering the years 1991–1997. The group velocity measurements are made including the effects of debiasing for instantaneous period and a single-iteration, mode-isolation (phase match) filter. The curves are grouped by tectonic province and compared to tomographic model-based curves in an effort to test and validate the tomographic models. Within each tectonic category (rift, orogenic zone, or craton) group velocity curves from various provinces are similar. Between tectonic categories, however, there are marked differences. The rift related paths exhibit the lowest group velocities observed, and cratonic paths the fastest. One-dimensional shear velocity inversions are performed, and while highly nonunique, the ranges of models show significant differences in upper mantle velocities between the tectonic provinces.¶This work is part of a larger project to determine group velocity maps for North Africa and the Middle East. The work presented here provides important tools for the validation of tomographic group velocity models. This is accomplished by comparing group velocity curves calculated from the tomographic models with carefully selected high-quality group velocity measurements. The final group velocity models will be used in M s measurements, which will contribute to the m b :M s discriminant important to the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The improved shear wave velocity models provided by this study also contribute to the detection, location, and identification of seismic sources.  相似文献   

5.
TheLg wave consists of the superposition ofS waves supercritically reflected, and thus trapped, in the crust. This mode of propagation explains the strong amplitude of this phase and the large distance range in which it is observed. The numerical simulation leads to successful comparison between observed seismograms in stable continental areas and synthetics computed for simple standard crustal models. In regions with strong lateral variations, the influence of large-scale heterogeneities on theLg amplitude is not yet clearly established in terms of the geometrical characteristics of the crustal structure.The analysis of the decay of amplitude ofLg with epicentral distance allows the evaluation of the quality factor ofS waves in the crust. The results obtained show the same trends as codaQ: a clear correlation with the tectonic activity of the region considered, both for the value ofQ at 1 Hz and for its frequency dependence, suggesting that scattering plays a prominent part among the processes that cause the attenuation.The coda ofLg is made up of scatteredS waves. The study of the spatial attenuation of the coda indicated that a large part of the arrivals that compose the coda propagate asLg. The relative amplitude of the coda is larger at sites located on sediments because, in these conditions, a part ofLg energy can be converted locally into lower order surface modes.  相似文献   

6.
—Observed velocities and attenuation of fundamental-mode Rayleigh waves in the period range 7–82 sec were inverted for shear-wave velocity and shear-wave Q structure in the Middle East using a two-station method. Additional information on Q structure variation within each region was obtained by studying amplitude spectra of fundamental-mode and higher-mode Rayleigh waves. We obtained models for the Turkish and Iranian Plateaus (Region 1), areas surrounding and including the Black and Caspian Seas (Region 2), and the Arabian Peninsula (Region 3). The effect of continent-ocean boundaries and mixed paths in Region 2 may lead to unrealistic features in the models obtained there. At lower crustal and upper-mantle depths, shear velocities are similar in all three regions. Shear velocities vary significantly in the uppermost 10 km of the crust, being 3.21, 2.85, and 3.39 km/s for Regions 1, 2, and 3, respectively. Q models obtained from an inversion of interstation attenuation data show that crustal shear-wave Q is highest in Region 3 and lowest in Region 1. Q’s for the upper 10 km of the crust are 63, 71, and 201 for Regions 1, 2, and 3, respectively. Crustal Q’s at 30 km depth for the three regions are about 51, 71, and 134. The lower crustal Q values contrast sharply with results from stable continental regions where shear-wave Q may reach one thousand or more. These low values may indicate that fluids reside in faults, cracks, and permeable rock at lower crustal, as well as upper crustal depths due to convergence and intense deformation at all depths in the Middle Eastern crust.  相似文献   

7.
Regional body-wave magnitude scalings are essential for quantification of small and moderate-size earthquakes that are observed only up to regional distances. Crustally-guided shear waves, Lg, develop stably at regional distances in continental crusts and are minimally influenced by the source radiation patterns. Lg body-wave magnitude scalings, mb(Lg),m_b(Lg), are widely used for assessment of sizes of regional crustal events. The mb(Lg)m_b(Lg) scaling has rarely been tested in continental margins where Lg waves are significantly attenuated due to abrupt lateral variation of crustal structures. We test the applicability of mb(Lg)m_b(Lg) scaling to the eastern margin of the Eurasian plate around the Korean Peninsula and Japanese islands. Both third-peak and root-mean-square (rms) amplitudes of Lg vary significantly according to the crustal structures along raypaths, causing apparent underestimation of mb(Lg).m_b(Lg). Implementation of raypath-dependent quality factors (Q) allows accurate estimation of mb(Lg),m_b(Lg), retaining the transportability of mb(Lg)m_b(Lg) in the continental margin around Korea and Japan. The calibration constants for an rms-amplitude-based mb(Lg)m_b(Lg) scaling are not determined to vary by region in the continental margin due to complicated crustal structures. The calibration constants are determined to be distance-dependent. Both the third-peak-amplitude-based and rms-amplitude-based mb(Lg)m_b(Lg) scalings yield accurate magnitude estimates when raypath-dependent quality factors are implemented.  相似文献   

8.
We propose a novel Lg attenuation tomography model (QLg tomography) for the state of Gujarat, Western India, using earthquake data recorded by the Gujarat Seismic Network, operated by the Institute of Seismological Research in Gandhinagar. The waveform dataset consist of 400 3-component recordings, produced by 60 earthquakes with magnitude (ML) spanning from 3.6 to 5.1, recorded at 60 seismic stations having epicentral distances spanning between 200 and 500 km. Spectral amplitude decays for Lg wave displacement were obtained by generalized inversion at 17 frequencies spanning between 0.9 and 9 Hz. Lg wave propagation efficiency was measured by Lg/Pn spectral ratio categorizing as efficient ratio ≥6 for 86%, intermediate ratio of 3–6 for 10% and inefficient ratio <3 for 4% paths of total 400 ray paths. The earthquake size and quality of waveform recorded at dense network found sufficient to resolve lateral variation of QLg in Gujarat.Average power-law attenuation relationship obtained for Gujarat as QLg(f) = 234f0.64, which corresponds to high attenuation in comparison to peninsular India shield region and other several regions around the world. QLg tomography resolves the highly attenuating crust of extremely fractured Saurashtra region and tectonically active Kachchh region. The Gujarat average attenuation is also lying in between them. The low attenuation in Cambay and Narmada rift basins and extremely low attenuation in patch of Surendranagar area is identified. This study is the first attempt and can be utilized as pivotal criteria for scenario hazard assessment, as maximum hazard has been reported in highly attenuating tectonically active Kachchh region and in low attenuating Cambay, Narmada and Surendranagar regions. The site and source terms are also obtained along with the QLg inversion. The estimated site responses are comparable with observed local geological condition and agree with the previously reported site amplifications at the same sites. The source terms are comparable with local magnitude estimated from Network. The Mw (Lg) is nearly equivalent to ML (GSN) and the slight differences are noted for larger magnitude events.  相似文献   

9.
—?A crustal velocity model has been developed for Fennoscandia, the Baltic shield and adjacent areas. This model represents a simplified average of various models developed for parts of this region. We show that P-wave travel times calculated with this model provide an excellent fit to observations at the Fennoscandian, KRSC and IRIS station networks for a set of seismic events with known or very well-constrained locations. The station-event paths cover large parts of Western Russia and the Barents Sea, thus indicating that this model, which we denote the Barents model, is appropriate for this entire region. We show by examples that significant improvements in event location precision can be achieved compared to using the IASPEI model. We finally use the Barents model to calculate locations of recent small seismic events in the Novaya Zemlya region of interest in a CTBT monitoring context.  相似文献   

10.
—Tomographic maps of Lg coda Q (Q c Lg) variation are now available for nearly the entire African, Eurasian, South American, and Australian continents, as well as for the United States. Q c Lg at 1 Hz (Q 0) varies from less than 200 to more than 1000 and Q c Lg frequency dependence (<eta>) varies between 0.0 and nearly 1.0. Q 0 appears to increase in proportion to the length of time that has elapsed since the most recent major episode of tectonic or orogenic activity in any region. A plot of Q 0 versus time since that activity indicates that a single Q 0-time relation approximates most mean Q 0 values. Those that deviate most from the trend lay in Australia, the Arabian Peninsula, and the East African rift. The increase in Q 0 with time may be due to a continual increase in crustal shear wave Q (Q ) caused by the loss of crustal fluids and reduction of crustal permeability following tectonic or orogenic activity. Extrapolated values of Q c Lg at 5 Hz (using Q 0 and <eta> values measured at 1 Hz and assuming that <eta> is constant in all regions between 1 and 5 Hz) show a similar percentage-wise increase with times that has elapsed since the most recent activity. Other factors that can reduce Q 0 in continental regions include thick accumulations of sediment (especially sandstone and shale of Mesozoic age and younger), severe velocity gradients at the crust-mantle transition and, possibly, lateral variations in the depth, thickness, and severity of those gradients. Severe and large increases of Q in the mid-crust of some regions can cause relatively large values of <eta>, even if the frequency dependence of Q is small.  相似文献   

11.
—?Improving the performance of short-period regional seismic discriminants by applying propagation corrections is explored using observations from two seismic monitoring stations in Asia. Frequency-dependent regional phase amplitude ratio measurements at stations NIL and ZAL for earthquakes and underground nuclear explosions were obtained from the prototype-International Data Center (pIDC) that has been established for developing monitoring capabilities of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The pIDC discriminant measurements have large scatter, much of which is attributed to wave propagation effects in the heterogeneous crustal waveguide. Linear regressions indicate that the phase ratios are correlated with topographic characteristics along the individual paths, providing an empirical means for correcting for path effects beyond conventional distance corrections. Kriging, a spatial multiple regression algorithm, also reveals coherent spatial patterns in the data indicative of regional path effects. Using available high-resolution topography data, correction of regional P/S ratios for the best models obtained from multivariate regressions systematically reduces the data variance relative to distance corrections alone, as has been observed for other data sets. The reduced scatter in the measurements increases the separation between earthquake and explosion populations in most cases, enhancing the regional discriminant performance. The path-corrected discriminants isolate explosions better for NIL than for ZAL, even though some of the explosion sources are located in a common source area. Kriging achieves comparable or superior variance reduction for the discriminant measures, without requiring knowledge of the path structure, although this may not result in improved discriminant performance. While always desirable, corrections for heterogeneous path effects may prove inadequate in some cases, notably when phase blockage occurs or when strong attenuation eliminates the diagnostic high-frequency energy.  相似文献   

12.
A multi-event and multi-station inverse method is presented in the paper to simultaneously estimate the seismic moments (M 0) and source corner frequencies (f c) of several Jiashi (Xinjiang, China) earthquakes, as well as the apparent Lg Q models for the paths from Jiashi to eight seismic stations (WMQ, AAK, TLG, MAKZ, KUR, VOS, ZRN and CHK) in Central Asia. The resultant seismic moments correlate well with the M 0 values obtained by Harvard University using the centroid moment tensor (CMT) inversion and the surface-wave magnitudes as well. After the correction by a typical value of average radiation coefficient for regional SV waves, the M 0 values from Lg spectral inversion are still close to the corresponding values obtained from CMT inversion. The obtained apparent Q 0Lg values (Lg Q at 1 Hz) are consistent with the tectonic features of corresponding propagation paths. The Q 0Lg values are 351±87, 349±86 and 300±27 for the paths from Jiashi to AAK, TLG and MAKZ, respectively. They are smaller than Q 0Lg values for the paths to KUR, VOS, ZRN and CHK, which are 553±72, 569±58, 550±57 and 603±65, respectively. These results agree with the condition that the paths to AAK, TLG and MAKZ mainly propagate through the mountainous Tianshan area where relatively strong seismic activities and large variations of topography are exhibited, while the paths to KUR, VOS, ZRN and CHK mainly propagate through the stable area of Kazak platform. The Q 0Lg value for the path to WMQ is 462±56. This is also in agreement with the condition that the path to WMQ is basically along the border area between Tianshan Mountain and Tarim Basin, and along this path the variations of topography and crustal thickness are moderate in comparison with that along the path to MAKZ.  相似文献   

13.
—?We present results from a large-scale study of surface-wave group velocity dispersion across the Middle East, North Africa, southern Eurasia and the Mediterranean. Our database for the region is populated with seismic data from regional events recorded at permanent and portable broadband, three-component digital stations. We have measured the group velocity using a multiple narrow-band filter on deconvolved displacement data. Overall, we have examined more than 13,500 seismograms and made good quality dispersion measurements for 6817 Rayleigh- and 3806 Love-wave paths. We use a conjugate gradient method to perform a group-velocity tomography. Our current results include both Love- and Rayleigh-wave inversions across the region for periods from 10 to 60 seconds. Our findings indicate that short-period structure is sensitive to slow velocities associated with large sedimentary features such as the Mediterranean Sea and Persian Gulf. We find our long-period Rayleigh-wave inversion is sensitive to crustal thickness, such as fast velocities under the oceans and slow along the relatively thick Zagros Mts. and Turkish-Iranian Plateau. We also find slow upper mantle velocities along known rift systems. Accurate group velocity maps can be used to construct phase-matched filters along any given path. The filters can improve weak surface wave signals by compressing the dispersed signal. The signals can then be used to calculate regionally determined M S measurements, which we hope can be used to extend the threshold of m b :M S discriminants down to lower magnitude levels. Other applications include using the group velocities in the creation of a suitable background model for forming station calibration maps, and using the group velocities to model the velocity structure of the crust and upper mantle.  相似文献   

14.
—Regional seismograms were collected to image the lateral variations of Lg coda Q at 1 Hz (Q 0?) and its frequency dependence <(eta)> in the Middle East using a back-projection method. The data include 124 vertical-component traces recorded at 10 stations during the period 1986–1996. The resulting images reveal lateral variations in both Q 0 and <eta>. In the Turkish and Iranian Plateaus, a highly deformed and tectonically active region, Q 0 ranges between about 150 and 300, with the lowest values occurring in western Anatolia where extremely high heat flow has been measured. The low Q 0 values found in this region agree with those found in other tectonically active regions of the world. Throughout most of the Arabian Peninsula, a relatively stable region, Q 0 varies between 350 and 450, being highest in the shield area and lowest in the eastern basins. All values are considerably lower than those found in most other stable regions. Low Q values throughout the Middle East may be caused by interstitial fluids that have migrated to the crust from the upper mantle, where they were probably generated by hydrothermal reactions at elevated temperatures known to occur there. Low Q 0 values (about 250) are also found in the Oman folded zone, a region with thick sedimentary deposits. <eta> varies inversely with Q 0 throughout most of the Middle East, with lower values (0.4–0.5) in the Arabian Peninsula and higher values (0.6–0.8) in Iran and Turkey. Q 0 and <eta> are both low in the Oman folded zone and western Anatolia.  相似文献   

15.
v—vAt the German NDC initial work on seismic event identification has focused on the application of spectral amplitude ratios for Lg in order to discriminate naturally occurring seismic events from other events associated with mining and quarry activities. Only about 10% of all seismic events occurring in Germany and adjacent areas are due to natural seismicity and are mostly constrained to the Alpine regions and areas along the Rhinegraben, Rhenish massif, Swabian Jura, and the Bohemian massif (Vogtland region). Using data from the broadband GRSN network, spectral amplitude ratios are calculated from maximum trace amplitudes in the 1–2uHz and 6–8uHz frequency bands, which are within the passbands of the deployed STS-2 instruments and the recorded 20uHz data streams. These amplitude ratios then must be corrected with an appropriate attenuation model in order to remove propagation paths effects. For event identification, a scoring scheme is applied across the GRSN network, based on station-dependent scoring thresholds. In a case study aimed at testing the identification scheme, events are investigated from a quarry in southern Germany that provided ground-truth information for six events in 1997 to demonstrate the suitability of this identification approach. Except for one event with a rather strong earthquake signature, i.e., a low spectral Lg ratio, these events could be screened out from the earthquake population by their large Lg ratios. In a second step, aimed at applying the identification scheme, all events in Germany and neighboring areas that occurred in 1995 were processed, with approximately 800 out of more than 1200 events showing explosion-type Lg ratios, while only 10% remain in the earthquake population. However, specific mining areas appear to consistently produce earthquake-type spectral ratios indicative of particular blasting practices.  相似文献   

16.
A multi-event and multi-station inverse method is presented in the paper to simultaneously estimate the seismic moments (M 0) and source corner frequencies (f c) of several Jiashi (Xinjiang, China) earthquakes, as well as the apparent Lg Q models for the paths from Jiashi to eight seismic stations (WMQ, AAK, TLG, MAKZ, KUR, VOS, ZRN and CHK) in Central Asia. The resultant seismic moments correlate well with the M 0 values obtained by Harvard University using the centroid moment tensor (CMT) inversion and the surface-wave magnitudes as well. After the correction by a typical value of average radiation coefficient for regional SV waves, the M 0 values from Lg spectral inversion are still close to the corresponding values obtained from CMT inversion. The obtained apparent Q 0Lg values (Lg Q at 1 Hz) are consistent with the tectonic features of corresponding propagation paths. The Q 0Lg values are 351±87, 349±86 and 300±27 for the paths from Jiashi to AAK, TLG and MAKZ, respectively. They are smaller than Q 0Lg values for the paths to KUR, VOS, ZRN and CHK, which are 553±72, 569±58, 550±57 and 603±65, respectively. These results agree with the condition that the paths to AAK, TLG and MAKZ mainly propagate through the mountainous Tianshan area where relatively strong seismic activities and large variations of topography are exhibited, while the paths to KUR, VOS, ZRN and CHK mainly propagate through the stable area of Kazak platform. The Q 0Lg value for the path to WMQ is 462±56. This is also in agreement with the condition that the path to WMQ is basically along the border area between Tianshan Mountain and Tarim Basin, and along this path the variations of topography and crustal thickness are moderate in comparison with that along the path to MAKZ. Foundation item: Foundation of Verification Researches for Army Control Technology (413290102).  相似文献   

17.
Rayleigh wave group velocity data from paths crossing the Levantine Sea are presented. We have derived a suite of models for the crustal structure of the Levantine Sea for extreme values of data errors and of the data corrections which were applied in order to account for lateral heterogeneity.We conclude that models with a crustal thickness less than 30 km are not consistent with the data. Our preferred models are characterized by a crustal thickness of 35–40 km. These results and the presence of an extremely thick sedimentary sequence point to a passive continental margin type of structure underlying the Levantine Sea. Additional data from the path Sicily-Jerusalem suggest that this type of structure is representative of the whole of the eastern Mediterranean (Levantine Sea and Ionian Sea).  相似文献   

18.
The Pn travel time relative residuals, in respect to a crustal model of the Aegean area, have been determined for 103 permanent seismological stations in southeastern Europe, western Turkey and the Middle East. The values of these residuals are considered to depend mainly on the crustal thickness beneath the seismological stations. Based on these values seven regions with different crustal thickness, varying between 31 Km and 42 Km, have been defined. The crust in these regions is continental. A region with very high negative residuals has been defined in the Middle East (Egypt, Israel, Lebanon). These negative residuals are attributed to different crustal structure of the eastern Mediterranean (oceanic crust with an extra thick sedimentary layer) and not the crustal thickness at the station sites.Independently from the interpretation, these Pn residuals can be used successfully to considerably improve (up to 2 Km) the determination of the earthquake foci locations.  相似文献   

19.
—?Data sets of m b (Pn) and m b (Lg) measurements are presented for three continental regions in order to investigate scaling relationships with moment magnitude M w and event discrimination at small magnitudes. Compilations of published measurements are provided for eastern North American and central Asian earthquakes, and new measurements are reported for earthquakes located in western United States. Statistical tests on M w :m b relationships show that the m b (Lg) scale of Nuttli (1973) is transportable between tectonic regions, and a single, unified M w :m b (Lg) relationship satisfies observations for M w ~4.2–6.5 in all regions. A unified relationship is also developed for nuclear explosions detonated at the Nevada Test Site and test sites of the former Soviet Union. Regional m b for explosions scale at higher rates than for earthquakes, and of significance is the finding that m b (Pn) for explosions scales at a higher rate than m b (Lg). A model is proposed where differences in scaling rates are related to effects of spectral overshoot and near-field Rg scattering on the generation of Pn and Lg waves by explosions. For earthquakes, m b (Pn) and m b (Lg) scale similarly, showing rates near 1.0 or 2/3?·?log10 M o (seismic moment).¶M w :m b (Lg) scaling results are converted to unified M s :m b (Lg) relationships using scaling laws between log M o and M s . For earthquakes with M s greater than 3.0, the scaling rate is 0.69?·?M s , which is the same as it is for nuclear explosions if M s is proportional to 1.12?·?log M o, as determined by NTS observations. Thus, earthquake and explosion populations are parallel and separated by 0.68 m b units for large events. For small events (M s ?M s :m b (Lg) plots for stable and tectonic regions, respectively. While the scaling rate for explosions is ~0.69, this value is uncertain due to paucity of M o observations at small yields. Measurements of [m b (P)???m b (Lg)] for earthquakes in the western United States have an average value of ?0.33?±?.03 m b units, in good agreement with Nuttli's estimate of m b bias for NTS. This result suggests that Nuttli's method for estimating test site bias can be extended to earthquakes to make estimates of bias on regional scales. In addition, a new approach for quick assessments of regional bias is proposed where M s :m b (P) observations are compared with M s :m b (Lg) relationships. Catalog M s :m b (P) data suggest that m b bias is significant for tectonic regions of southern Asia, averaging about ?0.4 m b units.  相似文献   

20.
—Records from broadband digital stations have allowed us to map regional variations of Lg coda Q across almost the entire United States. Using a stacked ratio method we obtained estimates of Q 0 (Lg coda Q at 1 Hz) and its frequency dependence, <eta>, for 218 event-station pairs. Those sets of estimates were inverted using a back-projection method to obtain tomographic images showing regional variations of Q 0 and <eta>. Q 0 is lowest (250–300) in the California coastal regions and the western part of the Basin and Range province, and highest (650–750) in the northern Appalachians and a portion of the Central Lowlands. Intermediate values occur in the Colorado Plateau (300–500), the Columbia Plateau (300–400), the Rocky Mountains (450–550), the Great Plains (500–650), the Gulf Coastal Plain and the southern portion of Atlantic Coastal Plain (400–500), and the portions of the Central Lowlands surrounding the high-Q region (500–550). The pattern of Q 0 variations suggests that the United States can be divided into two large Q provinces. One province spans the area from the Rocky Mountains to the Atlantic coast, is tectonically stable, and exhibits relatively high Q 0?. The other extends westward from the approximate western margin of the Rocky Mountains to the Pacific coast, is tectonically active, and exhibits low Q 0?. The transition from high to low Lg coda Q in the western United States lies further to the west than does an upper mantle transition for Q and electrical resistivity found in earlier studies. The difference in Q 0 between the western and eastern United States can be attributed to a greater amount of interstitial crustal fluids in the west. Regions of moderately reduced Q within the stable platform often occur where there are accumulations of Mesozoic and younger sediments. Reduced Q 0 in the southeastern United States may not be due to anelasticity but may rather be explained by a gradational velocity increase at the crust-mantle boundary that causes shear energy to leak into the mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号