首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We observed 25143 Itokawa, the target of Japan's Hayabusa (MUSES‐C) sample‐return mission, during its 2001 close approach at Arecibo on twelve dates during March 18‐April 9 and at Goldstone on nine dates during March 20‐April 2. We obtained delay‐Doppler images with range resolutions of 100 ns (15 m) at Arecibo and 125 ns (19 m) at Goldstone. Itokawa's average circular polarization ratio at 13 cm, 0.26 ± 0.04, is comparable to that of Eros, so its cm‐to‐m surface roughness probably is comparable to that on Eros. Itokawa's radar reflectivity and polarization properties indicate a near‐surface bulk density within 20% of 2.5 g cm?3. We present a preliminary estimate of Itokawa's shape, reconstructed from images with rather limited rotation‐phase coverage, using the method of Hudson (1993) and assuming the lightcurve‐derived spin period (12.132 hr) and pole direction (ecliptic long., lat. = 355°, ?84°) of Kaasalainen et al. (2003). The model can be described as a slightly asymmetrical, slightly flattened ellipsoid with extents along its principal axes of 548 times 312 times 276 m ± 10%. Itokawa's topography is very subdued compared to that of other asteroids for which spacecraft images or radar reconstructions are available. Similarly, gravitational slopes on our Itokawa model average only 9° and everywhere are less than 27°. The radar‐refined orbit allows accurate identification of Itokawa's close planetary approaches through 2170. If radar ranging planned for Itokawa's 2004 apparition succeeds, then tracking of Hayabusa during its 2005 rendezvous should reveal Yarkovsky perturbation of the asteroid's orbit.  相似文献   

2.
Abstract— We obtained color images of near‐Earth asteroid 25143 Itokawa by the Hayabusa multiband imaging camera to characterize the regional color properties. Images were obtained for the whole disk from the gate position (GP) and home position (HP) at a spatial resolution of 0.8–3.7 m/pixel. Whole‐disk spectra are adjusted to the telescopic data obtained by the University of Hawai'i's 88‐inch telescope using the Eight Color Asteroid Survey (ECAS) system. The disk‐resolved measurements show large variations in the three visible channels. We present a map of an index related to the degree of space weathering, which has been newly developed based on laboratory measurements. We find large variations in the degree of space weathering on Itokawa. Fresh materials are observed in regions of steep slopes and craters, whereas mature materials are ubiquitously distributed. This result suggests that pristine ordinary chondrite‐like materials have been exposed through weathered layers by excavation. By also examining close‐up images obtained during touchdown rehearsal, we find that most rocks in Itokawa's rough terrains are weathered. Instead of a regolith blanket, the surface of this small asteroid is covered with weathered rocks and gravels.  相似文献   

3.
We observed cross sectional ultra‐thin sections near the surface of 12 particles recovered from the S‐type asteroid Itokawa by the Hayabusa spacecraft in 2010, using spherical aberration–corrected STEM and conventional TEM. Although their mineralogy is almost identical to the equilibrated LL chondrites and therefore basically anhydrous, micrometer‐to‐submicrometer‐sized sylvite was identified on the surface of Itokawa particle RA‐QD02‐0034. Separately, micrometer‐sized halite was also identified on the surface of Itokawa particle RA‐QD02‐0129. Detailed inspection of the sample processing procedures at the JAXA's Planetary Materials Sample Curation Facility and textural observation of the sylvite and halite indicate that they were clearly present on two Itokawa particles before they were removed from Clean Chamber #2 at JAXA. However, there is no direct evidence for their extraterrestrial origin at present. If the sylvite and halite are extraterrestrial, their presence suggests that they may be more abundant on the surface of S‐type asteroids than previously thought.  相似文献   

4.
On the sub-kilometer S-type asteroid, 25143 Itokawa, some boulders on rough terrains seem to be exposed without any powdery material covering. Based on surface morphological features, there are two major types of boulders: one has rounded edges and corners (rounded boulders), while the other has angular edges and corners (angular boulders). The surface features of the rounded boulders suggest that they have hardness heterogeneity and that some may be breccias. The angular boulders appear to be more resistant to impact disruption than the rounded ones, which may be due to a difference in lithology. The major constituents of Itokawa may be LL chondrite-like brecciated lithology (rounded boulders) along with a remarkable number of boulders suggesting that lithology is atypical among LL chondrites (angular boulders). Some of both types of boulders contain intersecting and stepped planar foliations. Comparison with meteorite ALH76009 suggests that the planar foliations may be marks where rocks were torn apart. As lithified breccias cannot be formed on present-day sub-kilometer-sized Itokawa, it is reasonable that boulders with various lithologies on Itokawa were formed on its large ancestor(s). The rubble-pile structure of Itokawa suggested by its low density (∼1.9 g/cm3) indicates that boulders on Itokawa are reassembled fragments formed by catastrophic disruption of large ancestor(s).  相似文献   

5.
Abstract— –In March 2001, asteroid (25143) Itokawa, the target of the Japanese Hayabusa spacecraft mission, was in a favorable viewing geometry for ground‐based telescopic study. Visible/near‐infrared (VNIR) spectra (~~0.48 to 0.9 μm) obtained on March 24, 26, and 27 UT, and near‐infrared (NIR) spectra (~~0.75 to 2.5 μm) obtained on March 10, 11, 12, 23, and 24 UT collectively show absorption features centered near 1.0 and 2.0 μm, which are indicative of olivine and pyroxene. Analyses of these absorption features indicate an abundance ratio of olivine to pyroxene of approximately 75:25 ± 5, respectively, with no significant variation in the relative abundance of these minerals across its surface on a regional scale. The band center positions indicate that the mean pyroxene chemistry is ~~Wo14 ± 5Fs43 ± 5. There appear to be at least two pyroxene components: primarily a low‐Ca orthopyroxene accompanied by a spectrally significant (~~15–20%) high Fe‐rich pigeonite phase. The mean pyroxene composition is significantly more Fe‐rich than the Fs14–26 range found in ordinary chondrites. These pyroxene compositions are suggestive of phases crystallized from partial melts. This would indicate that the parent body of (25143) Itokawa reached temperatures sufficient to initiate partial melting (~~1050 to 1250 °C), but that it did not attain the degree of melting required for significant melt mobilization and efficient segregation of the basaltic melt component from the unmelted residual olivine portion. Itokawa's spectral band parameters place it near the S(III)/S(IV) boundary, but within the S(III) taxonomic field. In meteoritic nomenclature, Itokawa would be most analogous to an olivine‐rich primitive achondrite. Alternatively, if the high Fs value is not related to partial melting, then Itokawa could also represent a rare atypical LL chondrite, or a previously unsampled oxidized Fe‐rich chondritic‐like assemblage.  相似文献   

6.
Laboratory impact experiments have found that the shape of fragments over a broad size range is distributed around the mean value of the axial ratio 2:√2:1, which is independent of a wide range of experimental conditions. We report the shape statistics of boulders with size of 0.1-30 m on the surface of Asteroid 25143 Itokawa based on high-resolution images obtained by the Hayabusa spacecraft in order to investigate whether their shape distribution is similar to the distribution obtained for fragments (smaller than 0.1 m) in laboratory impact experiments. We also investigated the shapes of boulders with size of 0.1-150 m on Asteroid 433 Eros using a few arbitrary selected images by the NEAR spacecraft, in order to compare those with the shapes on Asteroid Itokawa. In addition, the shapes of small- and fast-rotating asteroids (diameter <200 m and rotation period <1 h), which are natural fragments from past impact events among asteroids, were inferred from archived light curve data taken by ground-based telescopes. The results show that the shape distributions of laboratory fragments are similar to those of the boulders on Eros and of the small- and fast-rotating asteroids, but are different from those on Itokawa. However, we propose that the apparent difference between the boulders of Itokawa and the laboratory fragments is due to the migration of boulders. Therefore, we suggest that the shape distributions of the boulders ranging from 0.1 to 150 m in size and the small- and fast-rotating asteroids are similar to those obtained for the fragments generated in laboratory impact experiments.  相似文献   

7.
In this study, the three‐dimensional (3‐D) microstructure of 48 Itokawa regolith particles was examined by synchrotron microtomography at SPring‐8 during the preliminary examination of Hayabusa samples. Moreover, the 3‐D microstructure of particles collected from two LL6 chondrites (Ensisheim and Kilabo meteorites) and an LL5 chondrite (Tuxtuac meteorite) was investigated by the same method for comparison. The modal abundances of minerals, especially olivine, bulk density, porosity, and grain size are similar in all samples, including voids and cracks. These results show that the Itokawa particles, which are surface materials from the S‐type asteroid Itokawa, are consistent with the LL chondrite materials in terms of not only elemental and isotopic composition of the minerals but also 3‐D microstructure. However, we could not determine whether the Itokawa particles are purely LL5, LL6, or a mixture of the two. No difference between the particles collected from Rooms A and B of the sample chamber, corresponding to the sampling sequence of the spacecraft's second and first touchdowns, respectively, was detected because of the statistically small amount of particles from Room B.  相似文献   

8.
Abstract— We present results from an observing campaign of 25143 Itokawa performed with the 2.2 m telescope of the University of Hawai'i between November 2000 and September 2001. The main goal of this paper is to determine the absolute magnitude H and the slope parameter G of the phase function with high accuracy for use in determining the geometric albedo of Itokawa. We found a value of H = 19.40 and a value of G = 0.21.  相似文献   

9.
We report the B abundances and isotopic ratios of two olivine grains from the S‐type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic‐ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic‐ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.  相似文献   

10.
In March 2001, the Hayabusa spacecraft target, Asteroid 25143 Itokawa, made its final close approach to Earth prior to the spacecraft's launch. We carried out an extensive observing campaign from January to September 2001 to better characterize this near-Earth asteroid. Global physical properties of the surface of Itokawa were characterized by analyzing its photometric properties and behavior. Results included here capitalize on analysis of broadband photometric observations taken with a number of telescopes, instruments, and observers. We employed a Hapke model to estimate the surface roughness, single particle scattering albedo, single particle scattering characteristics, phase integral, and geometric and bond albedo. We find that this asteroid has a higher geometric albedo than average main belt S-class asteroids; this is consistent with results from other observers. The broadband colors of Itokawa further support evidence that this is an atypical S-class asteroid. Broadband colors show spectral characteristics more typically found on large-diameter main-belt asteroids believed to be space-weathered, suggesting the surface of this small diameter, near-Earth asteroid could likewise be space-weathered.  相似文献   

11.
The Hayabusa mission to asteroid 25143, Itokawa, brought back 2000 small particles, which most closely resemble material found in LL4‐6 chondrites. We report an 40Ar/39Ar age of 1.3 ± 0.3 Ga for a sample of Itokawa consisting of three grains with a total mass of ~2 μg. This age is lower than the >4.0 Ga ages measured for 75% of LL chondrites but close to one for Y‐790964 and its pairs. The flat 40Ar/39Ar release spectrum of the sample suggests complete degassing 1.3 Ga ago. Recent solar heating in Itokawa's current orbit does not appear likely to have reset that age. Solar or impact heating 1.3 Ga ago could have done so. If impact heating was responsible, then the 1.3 Ga age sets an upper bound on the time at which the Itokawa rubble pile was assembled and suggests that rubble pile creation was an ongoing process in the inner solar system for at least the first 3 billion years of solar system history.  相似文献   

12.
Hayabusa‐returned samples offer a unique perspective for understanding the link between asteroids and cosmomaterials available in the laboratory, and provide insights on the early stages of surface space weathering. This study characterizes the mineralogy and the extent of space weathering of the three Itokawa particles RA‐QD02‐0163, RA‐QD02‐0174, and RA‐QD02‐0213 provided by JAXA to our consortium. We report here a series of results based on nondestructive analyses through visible‐near‐infrared reflectance and Raman spectroscopy. Results were obtained on the raw particles, both in their original containers and deposited on diamond windows. Identification of the minerals, characterization of their elemental compositions, and measurements of their relative abundances were led through Raman spectroscopy in punctual and automatic mode. Reflectance spectra in the visible and near‐IR wavelengths constrain the mineralogy of the grains and allow direct comparison with the surface of Itokawa. The spectra reflect the extent of space weathering experienced by the three particles. Particle RA‐QD02‐0163 consists of a heterogeneous mixture of minerals: olivine (Fo76) dominates an assemblage with both Ca‐rich (En50, Wo50) and Ca‐poor (En85) pyroxenes. The elemental compositions of the silicates are consistent with those previously reported for distinct Hayabusa particles. Particles RA‐QD‐0174 and RA‐QD02‐0213 are solely composed of olivine, whose chemical composition is similar to that observed in RA‐QD02‐0163. It has been previously shown that the S‐type asteroid 25143 Itokawa is a breccia of poorly equilibrated LL4 and highly equilibrated LL5 and LL6 materials. The three particles studied here can be related to the least metamorphosed lithology (LL4) based on the high forsterite content of the olivine. Neither carbonaceous matter nor hydrated minerals were detected through Raman on the three allocated particles. The NIR‐VIS reflectance (incidence = 45°, light collection at e = 0°) spectra of the three particles, in particular the 1 μm band, are consistent with the presence of both olivine and pyroxene detected via Raman. The spectra of particles RA‐QD02‐0163 and RA‐QD02‐0213 are also fully compatible with the ground‐based observations of asteroid (25143) Itokawa in terms of both spectral features and slope. By contrast, particle RA‐QD02‐0174 has a similar 1 μm band depth but higher (redder) spectral slope than the surface of Itokawa. This probably reveals a variable extent of space weathering among the regolith particles. RA‐QD02‐0174 may contain a higher amount of nanophase metallic iron and nanophase FeS. Such phases are products by space weathering induced by solar wind, previously detected on other Itokawa particles.  相似文献   

13.
Abstract— Goldstone and Arecibo delay‐Doppler radar imaging of asteroid 1998 ML 14 shortly after its discovery reveals a 1 km diameter spheroid with prominent topography on one side and subdued topography on the other. The object's radar and optical properties are typical for S‐class near‐Earth asteroids. The gravitational slopes of a shape model derived from the images and assumed to have a uniform density are shallow, exceeding 30° over only 4% of the surface. If 1998 ML14's density distribution is uniform, then its orbital environment is similar to a planetary body with a spheroidal gravitational field and is relatively stable. Integration of a radar‐refined orbit reveals that the 1998 apparition was the asteroid's closest approach to Earth since at least 1100 and until 2283, when it approaches to within 2.4 lunar distances. Outside of that time interval, orbit uncertainties based on the present set of observations preclude reliable prediction.  相似文献   

14.
The first statistical results in sunspot distributions in 1996–2004 obtained from the Solar Feature Catalogues (SFC) are presented. A novel robust technique is developed for automated identification of sunspots on SOHO/MDI white-light (WL) full-disk solar images. The technique applies image standardization procedures for elimination of the limb darkening and non-circular image shape, uses edge-detection methods to find the sunspot candidates and their edges and morphological operations to smooth the features and fill in gaps. The detected sunspots are verified with the SOHO/MDI magnetograms by strong magnetic fields being present in sunspots. A number of physical and geometrical parameters of the detected sunspot features are extracted and stored in the relational SFC database including umbra/penumbra masks in the form of run-length data encoding of sunspot bounding rectangles. The detection results are verified by comparison with the manual daily detection results in Meudon and Locarno Observatories in 2002 and by correlation (about 96%) with the 4 year sunspot areas produced manually at NOAA. Using the SFC data, sunspot area distributions are presented in different phases of the solar cycle and hemispheres which reveals a periodicity of the north–south asymmetry with a period of about 7–8 years. The number of sunspots increases exponentially with the area decrease with the index slightly increasing from −1.15 (1997) to −1.34 (2001).  相似文献   

15.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   

16.
D.J. Scheeres  R.W. Gaskell 《Icarus》2008,198(1):125-129
The effect of density inhomogeneity on the YORP effect for a given shape model is investigated. A density inhomogeneity will cause an offset between the center of figure and the center of mass and a re-orientation of the principal axes away from those associated with the shape alone. Both of these effects can alter the predicted YORP rate of change in angular velocity and obliquity. We apply these corrections to the Itokawa shape model and find that its YORP angular velocity rate is sensitive to offsets between its center of mass and center of figure, with a shift on the order of 15 m being able to change the sign of the YORP effect for that asteroid. Given the non-detection of YORP for Itokawa as of 2008, this can shed light on the density distribution within that body. The theory supports a shift of the asteroid center of mass towards Itokawa's neck region, where there is an accumulation of finer gravels, or towards the asteroid's “Head” region. Detection of the YORP effect for Itokawa should provide some strong constraints on its density distribution. This theory could also be applied to asteroids visited by future spacecraft to constrain density inhomogeneities.  相似文献   

17.
The outcomes of asteroid collisional evolution are presently unclear: are most asteroids larger than 1 km size gravitational aggregates reaccreted from fragments of a parent body that was collisionally disrupted, while much smaller asteroids are collisional shards that were never completely disrupted? The 16 km mean diameter S-type asteroid 433 Eros, visited by the NEAR mission, has surface geology consistent with being a fractured shard. A ubiquitous fabric of linear structural features is found on the surface of Eros and probably indicates a globally consolidated structure beneath its regolith cover. Despite the differences in absolute scale and in lighting conditions for NEAR and Hayabusa, similar features should have been found on 25143 Itokawa if present. This much smaller, 320 m diameter S-asteroid was visited by the Hayabusa spacecraft. Comparative analyses of Itokawa and Eros geology reveal fundamental differences, and interpretation of Eros geology is illuminated by comparison with Itokawa. Itokawa lacks a global lineament fabric, and its blocks, craters, and regolith may be inconsistent with formation and evolution as a fractured shard, unlike Eros. An object as small as Itokawa can form as a rubble pile, while much larger Eros formed as a fractured shard. Itokawa is not a scaled-down Eros, but formed by catastrophic disruption and reaccumulation.  相似文献   

18.
The effect of solar radiation on the near-term rotation rate of Asteroid Itokawa via the YORP effect is predicted using the detailed shape model, rotation pole, mass estimate, and optical properties derived from the Hayabusa mission to Itokawa. Based on these estimates Itokawa is decelerating at a rate which will halve its rotation rate in only 50-90 thousand years, a large deceleration that should be detectable in a future appartion. The implications of such a large deceleration for Itokawa's past history are discussed and related to possible seismic shaking.  相似文献   

19.
A photometric analysis of the S-type Asteroid 25143 Itokawa is performed over multiple wavelengths ranging from 0.85 to 2.10 μm based on disk-resolved reflectance spectra obtained with the Hayabusa near-infrared spectrometer (NIRS). We derive the global photometric properties of Itokawa in terms of Hapke's photometric model. We find that Itokawa has a single-scatter albedo that is 35-40% less than that of Asteroid 433 Eros. Itokawa also has a single-particle phase function that is more strongly back-scattering than that of Eros. Despite its hummocky surface strewn with large boulders, Itokawa exhibits an opposition effect. However, the total amplitude of the opposition surge for Itokawa was estimated to be less than unity while Eros and other S-type asteroids have been found to have model values exceeding unity. The wavelength dependence of the opposition surge width reveals that coherent backscatter contributes to the opposition effect on Itokawa's surface. The photometric roughness of Itokawa is well constrained to a value of 26° ± 1° which is similar to Eros, suggesting that photometric roughness models the smallest surface roughness scale for which shadows exist.  相似文献   

20.
Hercules X‐1 is an x‐ray binary with a 1.7 day orbit and which exhibits a regular 35‐day intensity cycle, which comes in two types: 0.2 orbital phase turn‐on and 0.7 phase turn‐on. The cycle is well measured by the RXTE/ASM and is caused by a sequence of occultations by the inner and outer edges of the accretion disk. In addition to the 35‐day x‐ray cycle, the accretion disk shadows the companion star HZ Her to give the regular and well known optical modulation, and gives a modulation of the EUV emission from the system. The x‐ray modulation is most precisely measured and best for determination of the disk shape. Here disk and emission region models are used to derived the disk shape from the 0.2 turn‐on cycles and compared to a previous derivation based on 0.7 turn‐on cycles. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号