首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Geochimica et cosmochimica acta》1999,63(19-20):3407-3416
The apparent solubilities of schwertmannite and ferrihydrite were estimated from the H+, OH, Fe3+, and SO42− activities of the natural stream waters in Korea and mine drainage in Ohio, USA. Both chemical composition of the stream waters and the mineralogy of the precipitates were determined for samples from two streams polluted by coal mine drainage. This study combines these new results with previous data from Ohio, USA to redetermine solubilities. The activities of the dissolved species necessary for the solubility determinations were calculated from the chemical compositions of the waters with the WATEQ4F computer code.Laboratory analyses of precipitates indicated that the main minerals present in Imgok and Osheep creek were schwertmannite and ferrihydrite, respectively. The schwertmannite from Imgok creek had a variable chemical formula of Fe8O8(OH)8−2x(SO4)x· nH2O, where 1.74 ≤ x ≤ 1.86 and 8.17 ≤ n ≤ 8.62. The chemical formula of ferrihydrite was Fe2O3· 1.6H2O. With known mineralogy of the precipitates from each stream, the activities of H+, OH, Fe3+, and SO42− in the waters were plotted on logarithmic activity-activity diagrams to determine apparent solubilities of schwertmannite and ferrihydrite. The best estimate for the logarithm of the solubility product of schwertmannite, logKs, was 10.5 ± 2.5 around 15°C. This value of logKs constrains the logarithm of the solubility product of ferrihydrite, logKf, to be 4.3 ± 0.5 to maintain the stability boundary with schwertmannite observed in natural waters.  相似文献   

2.
The purpose of this study was to examine structural alterations of finely ground phlogopite, a trioctahedral mica, when exposed to acid, iron- and sulfate-rich solutions typical of bioleaching systems. Phlogopite suspensions were supplemented with ferrous sulfate and incubated with iron- and sulfur-oxidizing bacteria (Acidithiobacillus ferrooxidans) at 22 °C. As bacteria oxidized ferrous iron, ferric iron thus formed partially precipitated as K-jarosite. K-jarosite precipitation was contingent on the preceding ferrous iron oxidation by bacteria and the release of interlayer-K from phlogopite. This chemically and microbially induced weathering involved alteration of phlogopite to a mixed layer structure that included expansible vermiculite. The extent of phlogopite weathering and structure expansion varied with duration of the contact, concentration of ferrous iron and phlogopite, and the presence of monovalent cations (NH4+, K+, or Na+) in the culture solution. NH4+ and K+ ions (100 mM) added to culture suspensions precipitated as jarosite and thereby effectively prevented the loss of interlayer-K and structural alteration of phlogopite. Additional Na+ (100 mM) was insufficient to precipitate ferric iron as natrojarosite and therefore the precipitation was coupled with interlayer-K released from phlogopite. When ferrous iron was replaced with elemental sulfur as the substrate for A. ferrooxidans, the weathering of phlogopite was based on chemical dissolution without structural interstratification. The results demonstrate that iron oxidation and the concentration and composition of monovalent ions can have an effect on mineral weathering in leaching systems that involve contact of phlogopite and other mica minerals with acid leach solutions.  相似文献   

3.
普遍存在环境中的低分子有机酸盐对氧化亚铁硫杆菌的矿化产物(施氏矿和黄钾铁矾等铁矿物)会产生影响,从而导致环境中有毒重金属迁移转化发生变化。本文探讨了低分子有机酸钠盐对铁细菌HX3成长过程中代谢产物铁矿物的影响,并利用XRD、FTIR、FESEM和EDS对形成的铁矿物进行了表征与分析。研究结果表明,低浓度低分子有机酸钠盐的加入对细菌氧化Fe~(2+)的影响不明显,但可加速黄钾铁矾的形成;苹果酸钠的加入较柠檬酸钠和草酸钠更利于施氏矿向黄钾铁矾转变。高浓度低分子有机酸钠盐(苹果酸钠、柠檬酸钠和草酸钠依次为20、40和40mmol/L)的加入对细菌培养过程中Fe~(2+)的氧化有抑制作用;抑制影响从大到小的顺序为:苹果酸钠柠檬酸钠草酸钠。该研究结果可为含氧化亚铁硫杆菌等铁细菌的酸性矿山废水中铁矿物的形成转化和生物矿化机理提供理论参考。  相似文献   

4.
Mineral precipitates formed under conditions representative of acid mine drainage were prepared by oxidizing 0.1 M FeS04 · 7H20 solutions at 24°C and pH 2.3, 2.6, 3.0, 3.3 and 3.6 using a bioreactor and a strain ofThiobacillus ferrooxidans. The oxidation of dissolved Fe2+ was monitored colorimetrically and was completed within 90 to 120 h at all pHs. Schwertmannite, Fe8O8(OH)6SO4, was a major component of the precipitates and was the only phase formed at pH 3.0. Jarosite, (H,Na,K)Fe3(OH)6(SO4)2, increased in abundance with decreasing pH whereas goethite, α-FeOOH, appeared at pH 3.3 and 3.6. A similar relationship between pH and mineralogy has been reported in natural specimens of mine drainage ochres.  相似文献   

5.
Schwertmannite (ideal formula: Fe8O8(OH)6SO4) is typically found as a secondary iron mineral in pyrite oxidizing environments. In this study, geochemical constraints upon its formation are established and its role in the geochemical cycling of iron between reducing and oxidizing conditions are discussed. The composition of surface waters was analyzed and sediments characterized by X-ray diffraction, FTIR spectroscopy and determination of the Fe:S ratio in the oxalate extractable fraction from 18 acidic mining lakes. The lakes are exposed to a permanent supply of pyritegenous ferrous iron from adjacent ground water. In 3 of the lakes the suspended matter was fractionated using ultra filtration and analyzed with respect to their mineral composition. In addition, stability experiments with synthetic schwertmannite were performed. The examined lake surface waters were O2-saturated and have sulfate concentrations (10.3 ± 5.5 mM) and pH values (3.0 ± 0.6) that are characteristic for the stability window of schwertmannite. Geochemical modeling implied that i) the waters were saturated with respect to schwertmannite, which controlled the activity of Fe3+ and sulfate, and ii) a redox equilibrium exists between Fe2+ and schwertmannite. In the uppermost sediment layers (1 to 5 cm depth), schwertmannite was detectable in 16 lakes—in 5 of them by all three methods. FTIR spectroscopy also proved its occurrence in the colloidal fraction (1-10 kDa) in all of the 3 investigated lake surface waters. The stability of synthetic schwertmannite was examined as a function of pH (2-7) by a 1-yr experiment. The transformation rate into goethite increased with increasing pH. Our study suggests that schwertmannite is the first mineral formed after oxidation and hydrolysis of a slightly acidic (pH 5-6), Fe(II)-SO4 solution, a process that directly affects the pH of the receiving water. Its occurrence is transient and restricted to environments, such as acidic mining lakes, where the coordination chemistry of Fe3+ is controlled by the competition between sulfate and hydroxy ions (i.e. mildly acidic).  相似文献   

6.
主要研究了磷酸铝(Al PO4)的加入量对氧化亚铁硫杆菌HX3培养液中铁矿物形成的影响,并对相应沉淀产物进行了结构表征分析。结果表明,Al PO4的加入对细菌培养过程中Fe2+的氧化无明显影响,但可促进Fe3+的水解和初始铁矿物相的形成,也可加速黄钾铁矾的转化形成。Al/Fe(摩尔比)为0. 04~1的培养液中主要形成产物为施威特曼石和黄钾铁矾; Al/Fe为0. 4和1时另有磷酸铁矿形成。较高的Al/Fe比值和磷酸根含量有利于磷酸铁矿的形成。  相似文献   

7.
The investigation of the NH3 loss in the NH4+-vermiculite (Santa Olalla) by thermogravimetry, evolved gas analysis, chemical analysis, X-ray diffraction and IR spectroscopy is reported here. The mass loss during heating takes place in two steps at about 650 and 825 °C. Additionally, the releases of H2O and NH3 occurs simultaneously. The experimental results indicate that the protons remaining in the interlayer space after NH3 removal trigger the H2O release. X-ray diffraction shows that during the decomposition of NH4+-vermiculite there are two domains with different interlayer spaces at ~9 and ~10 Å. As the decomposition proceeds, the intensity of the 9 Å peak increases at the expense of the second one. The change in the IR-stretching modes of the structural OH groups during heating indicates that the OH groups surrounded by 3Mg2+ or 2Mg2+Fe2+ are released at lower temperatures than those with environments like 2Mg2+Fe3+, 2Mg2+Al3+ or more complex ones.  相似文献   

8.
 A synthesis technique is described which results in >99% pure NH4-phlogopite (NH4) (Mg3) [AlSi3O10] (OH)2 and its deuterium analogue ND4-phlogopite (ND4) (Mg3) [AlSi3O10] (OD)2. Both phases are characterised using both IR spectroscopy at 298 and 77 K as well as Rietveld refinement of their X-ray powder diffraction pattern. Both NH4 + and ND4 + are found to occupy the interlayer site in the phlogopite structure. Absorption bands in the IR caused by either NH4 + or ND4 + can be explained to a good approximation using Td symmetry as a basis. Rietveld refinement indicates that either phlogopite synthesis contains several mica polytypes. The principle polytype is the one-layer monoclinic polytype (1M), which possesses the space group symmetry C2/m. The next most common polytype is the two-layer polytype (2M 1 ) with space group symmetry C2/c. Minor amounts of the trigonal polytype 3T with the space group symmetry P3112 were found only in the synthesis run for the ND4-phlogopite. Electron microprobe analyses indicate that NH4-phlogopite deviates from the ideal phlogopite composition with respect to variable Si/Al and Mg/Al on both the tetrahedral and octahedral sites, respectively, due to the Tschermaks substitution VIMg2++IVSi4+VIAl3++IVAl3+ and with respect to vacancies on the interlayer site due to the exchange vector XII(NH4)++IVAl3+XII□+IVSi4+. Received: 30 August 1999 / Accepted: 2 October 2000  相似文献   

9.
We examined the transformations of Fe and S associated with schwertmannite (Fe8O8(OH)6SO4) reduction in acidified coastal lowlands. This was achieved by conducting a 91 day diffusive-flux column experiment, which involved waterlogging of natural schwertmannite- and organic-rich soil material. This experiment was complemented by short-term batch experiments utilizing synthetic schwertmannite. Waterlogging readily induced bacterial reduction of schwertmannite-derived Fe(III), producing abundant pore-water FeII, SO4 and alkalinity. Production of alkalinity increased pH from pH 3.4 to pH ∼6.5 within the initial 14 days, facilitating the precipitation of siderite (FeCO3). Interactions between schwertmannite and FeII at pH ∼6.5 were found, for the first time, to catalyse the transformation of schwertmannite to goethite (αFeOOH). Thermodynamic calculations indicate that this FeII-catalysed transformation shifted the biogeochemical regime from an initial dominance of Fe(III)-reduction to a subsequent co-occurrence of both Fe(III)- and SO4-reduction. This lead firstly to the formation of elemental S via H2S oxidation by goethite, and later also to formation of nanoparticulate mackinawite (FeS) via H2S precipitation with FeII. Pyrite (FeS2) was a quantitatively insignificant product of reductive Fe and S mineralization. This study provides important new insights into Fe and S geochemistry in settings where schwertmannite is subjected to reducing conditions.  相似文献   

10.
The concentrations and isotopic compositions of the various forms of nitrogen in silty clay sediments from the Bay of Quinte (Lake Ontario) have been determined. The total organic-N content is high throughout the sediment profiles and generally decreases with depth. On the contrary, exchangeable NH+4-N concentration is quite low and tends to increase with depth in two out of three sediment cores examined. The concentration of non-exchangeable NH+4-N and the 6 N HCl hydrolyzable NH+4-N are relatively constant with depth. Among the N fractions analyzed, the exchangeable NH+4-is most enriched in 15N. In most cases, the δ 15 N values of the N fractions remain relatively constant with sediment depth. There is no apparent correlation of δ 15 N values with the N concentration for any of the individual N fractions. The observed ranges in the δ 15 N values are: exchangeable NH+4, + 5–+10‰; 6 N HCl hydrolyzable total N and 6 N HCl hydrolyzable NH+4-N, + 3.5–+5.5‰.  相似文献   

11.
《Applied Geochemistry》2007,22(4):760-777
Ochreous precipitate and water samples were collected from the surroundings of seven closed sulphide mines in Finland. In the Hammaslahti Zn–Cu–Au mine, Otravaara pyrite mine and Paroistenjärvi Cu–W–As mine, the collection was repeated in different seasons to study mineralogical and geochemical variations of precipitates. The sampling was done in 1999–2002 from the ditches and drainage ponds of the tailings and waste rock piles that are susceptible to seasonal changes. Mineralogy of the precipitates was evaluated by X-ray diffraction (XRD) and infrared spectroscopy (IR), and precipitate geochemistry was examined by selective extractions. Schwertmannite (Fe8O8(OH)6SO4) was the most typical Fe hydroxide mineral found. Goethite was almost as common as schwertmannite, was often poorly ordered, and contained up to 10 wt.% of SO4. Goethite and schwertmannite were commonly found as mixtures, and they occurred in similar pH and SO4 concentrations. Ferrihydrite (nominally Fe5HO8 · 4H2O) was typically found in areas not influenced by acid mine drainage, and also in acid mine waters with high organic matter or As content. Jarosite (KFe3(SO4)2(OH)6) was found only in one site. In addition, some gypsum (CaSO4 · 2H2O) and aluminous sulphate precipitates (presumably basaluminite, Al4(SO4)(OH)10 · 5H2O) were identified. Selective extractions showed that acid extracts Fetot/Stot-ratios of schwertmannite and goethite samples were similar, but the ratio of oxalate-extractable to total Fe, Feox/Fetot, of goethite samples were lower than those of the schwertmannite samples. Only Al, Si and As were bound to precipitates in substantial amounts, up to several wt.%. In schwertmannites and goethites, Al, Cu, Co, Mn and Zn were mostly structural, substituting for Fe in an Fe oxyhydroxide structure or bound to surface adsorption sites in pores limited by diffusion. In ferrihydrites, heavy metals were also partly bound in adsorbed form dissolving in acid ammonium acetate. Ferrihydrites and goethites were more enriched in Co, Mn and Zn than schwertmannites, but schwertmannites and ferrihydrites were more enriched in As than goethites. Mineralogical and geochemical evidence showed that in the spring, after the snowmelt, the acid mine drainage precipitates were predominantly schwertmannite, and were partly transformed during warm summer months to goethite. The phase transformation of precipitates was followed by a decrease in pH values and increase in SO4 concentrations of waters. Adsorbed As retarded the phase transformation.  相似文献   

12.
Preparation of strontium ferrite from strontium residue   总被引:1,自引:0,他引:1  
Strontium ferrite was prepared from Strontium Waste Residue (SWR) as a material. Strontium chloride was obtained by leaching SWR with ammonia chloride, and then SrCl2 was converted to SrCO3. Strontium ferrite (SrFe12O19) was formed by roasting the mixture of SrCO3 and FeCl3 in a proper proportion. The structure and magnetic susceptibility of strontium ferrite were investi-gated. The results showed that strontium conversion ratio increased with decreasing SWR grain diameter. The largest ratio was pre-sented when n(NH4Cl/Sr) was 3.6. What is more, the conversion process coincided with the kinetic characteristics of fractal reaction. The magnetic susceptibility of strontium ferrite decreased with increasing Fe3+/Sr2+ mole ratio and pH. SrFe12O19 exhibited face-centered and cubic closely-packed hexagonal structures. There were the strong diffraction peaks of Fe2O3 in the X-ray diffracto-gram of strontium ferrite. Strontium recovery ratio was 87.0%.  相似文献   

13.
Geochemical modeling of coal mine drainage, Summit County, Ohio   总被引:4,自引:1,他引:4  
A. Foos 《Environmental Geology》1997,31(3-4):205-210
 Geochemical modeling was used to investigate downstream changes in coal mine drainage at Silver Creek Metro-park, Summit County, Ohio. A simple mixing model identified the components that are undergoing conservative transport (Cl, PO4 3–, Ca2+, K+, Mg2+ and Na+) and those undergoing reactive transport (DO, HCO3 , SO4 2–, Fe2+, Mn2+ and Si). Fe2+ is removed by precipitation of amorphous iron-hydroxide. Mn2+ are removed along with Fe2+ by adsorption onto surfaces of iron-hydroxides. DO increases downstream due to absorption from the atmosphere. The HCO3 concentration increases downstream as a result of oxidation of organic material. The rate of Fe2+ removal from the mine drainage was estimated from the linear relationship between Fe+2 concentration and downstream distance to be 0.126 mg/s. Results of this study can be used to improve the design of aerobic wetlands used to treat acid mine drainage. Received: 4 June 1996 · Accepted: 17 September 1996  相似文献   

14.
We measured fluxes of NH4+ and NO3 and δ15N of NH4+, sediment, and porewater NH4+ from incubated sediment cores along a nitrate gradient and in different seasons from Childs River, MA. NH4+ flux was low at the downstream site with the lowest concentration of organic matter (high salinity) but otherwise did not differ along the estuary. The δ15N of regenerated NH4+ ranged from +6.1‰ to +15.3‰ but did not vary significantly with season or salinity; the mean for the entire estuary was +10.4 ± 0.5‰. Based on differences between the δ15N of regenerated NH4+ and sediment, and expected isotopic fractionation due to remineralization, we concluded that nitrification occurred after remineralization of NH4+. Differences between the δ15N of regenerated NH4+ and the δ15N of porewater NH4+ provided further evidence of nitrification. We estimated that 11% to 48% of remineralized NH4+ underwent coupled nitrification–denitrification before release into the water column. In spite of losses to denitrification, NH4+ flux released 1.4 mol N m−2 year−1 to the water column and could provide 42% of phytoplankton nitrogen requirements.  相似文献   

15.
Fe-Li云母化学成分的解释和分类   总被引:3,自引:0,他引:3       下载免费PDF全文
孙世华 《地质科学》1988,(3):213-228
用置换矢量概念解释了115个天然 Fe-Li 云母化学成分的变化。Fe-Li 云母是三八面体 Li-Fe-Al 云母,其基本置换是四锂云母置换。由于 Al-Li 白云母置换和白云母置换的影响,其化学组成变化的基本趋势呈明显的非线性,因而 Fe-Li 云母不是真正的二元系。作为 Fe-Li 云母,富铁黑云母和铁叶云母都是最富铁的成员,因而建议称 Fe-Li 云母为黑云母-锂云母系列。根据化学成分,晶胞参数和折光率的异常变化还提出了该系列自然分类的方案。  相似文献   

16.
Examination of schorlomite from ijolite at Magnet Cove (USA) and silicocarbonatite at Afrikanda (Russia), using electron-microprobe and hydrogen analyses, X-ray diffraction and Mössbauer spectroscopy, shows the complexity of substitution mechanisms operating in Ti-rich garnets. These substitutions involve incorporation of Na in the eightfold-coordinated X site, Fe2+ and Mg in the octahedrally coordinated Y site, and Fe3+, Al and Fe2+ in the tetrahedrally coordinated Z site. Substitutions Ti4+Fe3+Fe3+–1Si–1 and Ti4+Al3+Fe3+–1Si–1 are of major significance to the crystal chemistry of schorlomite, whereas Fe2+ enters the Z site in relatively minor quantities (<3% Fe). There is no evidence (either structural or indirect, such as discrepancies between the measured and calculated Fe2+ contents) for the presence of [6]Ti3+ or [4]Ti4+ in schorlomite. The simplified general formula of schorlomite can be written as Ca3Ti4+2[Si3-x(Fe3+,Al,Fe2+)xO12], keeping in mind that the notion of end-member composition is inapplicable to this mineral. In the published analyses of schorlomite with low to moderate Zr contents, x ranges from 0.6 to 1.0, i.e. Ti4+ in the Y site is <2 and accompanied by appreciable amounts of lower-charged cations (in particular, Fe3+, Fe2+ and Mg). For classification purposes, the mole percentage of schorlomite can be determined as the amount of [6]Ti4+, balanced by substitutions in the Z site, relative to the total occupancy in the Y site: ([6]Ti4+[6]Fe2+[6]Mg2+[8]Na+)/2. In addition to the predominant schorlomite component, the crystals examined in this work contain significant (>15 mol.%) proportions of andradite (Ca3Fe3+2Si3O12), morimotoite (Ca3Fe2+TiSi3O12), and Ca3MgTiSi3O12. The importance of accurate quantitative determination and assignment of Fe, Ti and other cations to the crystallographic sites for petrogenetic studies is discussed.
A. R. ChakhmouradianEmail: Phone: +1-204-4747278Fax: +1-204-4747623
  相似文献   

17.
 In order to develop a model for simulating naturally occurring chromian spinel compositions, we have processed published experimental data on chromian spinel-melt equilibrium. Out of 259 co-existing spinel-melt experiments reported in the literature, we have selected 118 compositions on the basis of run time, melt composition and experimental technique. These data cover a range of temperatures 1150–1500° C, oxygen fugacities of −13<log f O2< −0.7, and bulk compositions ranging from basalt and norite, to komatiite. Six major spinel components with Cr3+, Al3+, Ti4+, Mg2+, Fe3+ and Fe2+-bearing end-members were considered for the purpose of describing chromite saturation as a function of melt composition, temperature and oxygen fugacity at 1 atmosphere pressure (0.101 MPa). The empirically calibrated mineral-melt expression based on multiple linear regressions is: K Sp i =A/T(K)+B log f O2+C ln (Fe3+/Fe2+)L+D ln R L +E, where K Sp i is an equilibrium constant and R L is a melt structure-chemical parameter (MSCP). Twenty-eight forms of equilibrium constants were considered, including single distribution coefficients, exchange equilibrium constants, formation constants for AB2O4 components, as well as simple “spinel cation ratios”. For each form of the equilibrium constants, a set of 16 combinations of the MSCPs have been investigated. The MSCP is present in the form of composite ratios [e.g., Si/O, NBO/T,(Al+Si)/Si, or (Na+K)/Al] or as simple cation ratios (e.g., Mg/Fe2+). For the calculation of Fe3+ and Fe2+ species in silicate melts, we used existing equations, whereas the Fe3+/Fe2+ ratio of spinels was calculated from the spinel stoichiometry. The regression parameters that best repoduce the experimental data were for the following constants: (Fe3+/Fe2+) Sp , (Mg/Fe2+) Sp /(Mg/Fe2+) L , (Cr/Al) Sp / (Cr/Al) L , K FeCr2O4, and Ti Sp /Ti L . These expressions have been combined into a single program called SPINMELT, which calculates chromite crystallization temperature and composition at a given f O2 with an average accuracy of ∼10° C and 1–2 mol%. An example of the use of SPINMELT is presented for a magma parental to the Bushveld Complex. Received: 30 May 1995/Accepted: 1 November 1995  相似文献   

18.
Summary The crystal structure of metavoltine from Sierra Gorda, Chile, has been solved from photographic X-ray data by the heavy atom method. The space group used wasP3 witha=9.575(5) andc=18.17(1)Å; cell content: K2Na6 (Fe 2+, Cu, Zn)Fe 6 3+ (SO4)12O2·18H2O. From the relatively small number and the somewhat poor quality of the X-ray data, the least squares refinement did not give very satisfactory results-especially so for the light atoms. Therefore, steric considerations and information from the Fourier maps were also used when choosing the final atomic coordinates. The salient features of the structure are clusters of Fe 3 3+ O(H2O)3(SO4)6 with Fe3+ in octahedral coordination, and Fe2+(H2O)6 octahedra. The Na+ ions show octahedral coordination, the K+ ions irregular nine coordination.
Ein Kristallstrukturmodell für den Metavoltin von Sierra Gorda
Zusammenfassung Die Kristallstruktur des Metavoltins von Sierra Gorda (Chile) wurde aus photographischen Röntgendaten mit der Schweratommethode gelöst. Als Raumgruppe wurdeP3 mita 09,575(5) undc 0=18,17(1) Å verwendet; Zellinhalt K2Na6 (Fe 2+, Cu, Zn) Fe 6 3+ (SO4)12O2·18H2O.Wegen der relativ kleinen Zahl und der nicht sehr guten Qualität der Röntgendaten gab die Verfeinerung nach der Methode der kleinsten Quadrate keine sehr guten Ergebnissebesonders nicht für die leichten Atome. Deshalb wurden zur Festlegung der endgültigen Atomkoordinaten auch sterische Überlegungen und Informationen aus Fouriersynthesen herangezogen. Hervorstechende Züge der Struktur sind Gruppen Fe 3 3+ O(H2O)3(SO4)6 mit Fe3+ in oktaedrischer Koordination sowie Fe2+(H2O)6-Oktaeder. Die Na+-Ionen zeigen oktaedrische Koordination, die K+-Ionen unregelmäßige 9-Koordination.


With 4 Figures  相似文献   

19.
Tochilinite represents a mineral group of ordered mixed-layer structures containing alternating Fe1−xS layers with mackinawite-like structure and metal hydroxide layers with Mg(OH)2-like structure. In this article, we report the preparation of a series of tochilinite-originated (or Fe1−xS-based) intercalation compounds (ICs). According to their preparation procedures, these ICs can be divided into four kinds. The first kind of IC was sodium tochilinite (Na-tochilinite), which was prepared by the hydrothermal reaction of metallic Fe particles with concentrated Na2S·9H2O aqueous solutions. The hydroxide layer of the Na-tochilinite was a mixed hydroxide of Na+ ions along with a certain amount of Fe2+ ions. When the hydroxide layer of the Na-tochilinite completely dissolved in aqueous solutions, a Fe-deficient mackinawite-like phase Fe1−xS was obtained, which was probably an electron-deficient p-type conductor. The second kind of ICs was prepared by ‘low-temperature direct intercalation in aqueous solutions, using Na-tochilinite as a parental precursor. When the Na-tochilinite was ultrasonicated in aqueous solutions containing Lewis basic complexing agents (like NH3, N2H4, 2,2′-bipyridine (bipy), and 1,10-phenanthroline (phen)), the Na+ ions of the Na-tochilinite were removed and the Lewis basic complexing agents entered the hydroxide layer of the Na-tochilinite and became coordinated with the Fe2+ ions, and the second kind of ICs was thus produced. The second kind of ICs includes NH3 IC, N2H4 IC, N2H4-NH3 IC, [Fe(bipy)3]2+-containing IC and [Fe(phen)3]2+-containing IC. The third kind of ICs, which includes NH3 IC, N2H4-NH3 IC and N2H4-LiOH (NaOH) IC, was prepared by the hydrothermal reaction of metallic Fe particles with (NH4)2S aqueous solution, S (elemental) + N2H4·H2O aqueous solution, and S + N2H4·H2O + LiOH (NaOH) aqueous solution, respectively. The third kind of ICs has a close relationship with the second kind of ICs both in composition and structure. The fourth kind of ICs was prepared by the oxidation and reduction of some of the N2H4-containing ICs mentioned above, which include N2H2 (diazene or diimide) IC, N2 (dinitrogen) IC and NH3 IC. The N2H2 IC was prepared by mild air oxidation of the N2H4-LiOH IC. The N2 IC was prepared by strong air oxidation of the N2H4-LiOH IC, however, we have not been able to separate the pure phase N2 IC. Hydrothermal reduction of the N2H4 IC made by the direct intercalation method in strong reducing environment by H2S + Fe (metal) led to the production of the NH3 IC of the fourth kind of ICs. The NH3 ICs prepared by the three methods had similar compositions and structures. As almost all the ICs reported in this paper were extremely sensitive both to air and to the electron beam, they were mainly characterized by XRD.The properties and interrelationships (or mutual transformations) of the Fe1−xS-based ICs revealed novel chemistry occurring in the sub-nanoscopic space between the micrometer- to nanometer-sized electron-deficient Fe1−xS layers. An important finding of this novel chemistry was that the Fe1−xS-based ICs tended to oxidize or reduce the intercalated species when the redox state of their environments varied. The results of our experiments potentially have many cosmochemical implications. The most important implication is that our experimental results, along with previous studies, strongly suggested that some of the ammonium salts, ammonia and carbonates existing in the matrix of the CM carbonaceous chondrites may have been formed by abiotic reactions employing molecular nitrogen as the nitrogen source and carbon monoxide as the carbon source and iron sulfide and/or iron hydroxide as catalysts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号