首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
倾斜地层中的井孔声场研究   总被引:9,自引:2,他引:7       下载免费PDF全文
研究声波在倾斜充液井孔中的传播对于声波测井数据处理和解释具有重要意义.应用三维交错网格有限差分方法模拟了处于倾斜各向同性分层地层中的井孔声场.首先,针对均匀地层中单极子声源在裸眼井中激发的声场,将有限差分的结果和实轴积分法的结果进行对比验证.然后,采用单极子和偶极子两种声源,针对地层分界面和井轴间的不同倾角,计算了相应的声场分布和井轴上的接收波形.数值计算的结果表明,当声源处于倾斜分界面以下,即处于快速(下方)地层,接收器处于倾斜分界面以上(慢速)地层时,随着地层倾斜角度的加大,测得的慢度值从接近上方慢速地层值逐渐减小直至接近下方快速地层的值.任何源距情况下测得的首波慢度均小于上方地层实际的纵波慢度.并且,慢度与源距的关系曲线随源距的加大逐渐平缓.用偶极子声源激发得到的横波慢度与纵波结果相同,并表现得比纵波对倾角的改变更敏感.上述结论在本文中用声场快照和利用合成接收波列的慢度计算得以清楚显示,并且用射线声学理论验证.  相似文献   

2.
The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This unsuitability is because during horizontal and deviated well drilling, cuttings will splash on the well wall or fall into the borehole bottom and form a thin bed of cuttings. In addition, the high velocity layers at different depths and intrinsic anisotropy may affect acoustic logging measurements. In this study, we examine how these factors affect the acoustic wave slowness measured in horizontal and deviated wells that are surrounded by an anisotropic medium using numerical simulation. We use the staggered-grid finite difference method in time domain (FDTD) combined with hybrid-PML. First, we acquire the acoustic slowness using a simulated array logging system, and then, we analyze how various factors affect acoustic slowness measurements and the differences between the effects of these factors. The factors considered are high-velocity layers, thin beds of cuttings, dipping angle, formation thickness, and anisotropy. The simulation results show that these factors affect acoustic wave slowness measurements differently. We observe that when the wavelength is much smaller than the distance between the borehole wall and high velocity layer, the true slowness of the formation could be acquired. When the wavelengths are of the same order (i.e., in the near-field scenarios), the geometrical acoustics theory is no longer applicable. Furthermore, when a thin bed of cuttings exists at the bottom of the borehole, Fermat's principle is still applicable, and true slowness can be acquired. In anisotropic formations, the measured slowness changes with increments in the dipping angle. Finally, for a measurement system with specific spacing, the slowness of a thin target layer can be acquired when the distance covered by the logging tool is sufficiently long. Based on systematical simulations with different dipping angles and anisotropy in homogenous TI media, slowness estimation charts are established to quantitatively determine the slowness at any dipping angle and for any value of the anisotropic ratio. Synthetic examples with different acoustic logging tools and different elastic parameters demonstrate that the acoustic slowness estimation method can be conveniently applied to horizontal and deviated wells in TI formations with high accuracy.  相似文献   

3.
The significant development in acoustic full waveform logging during the last ten years has made it increasingly possible for log analysts to determine the physical properties of a rock formation in situ. Parallel to the methods applied to a single wavetrain during seismic processing, the new techniques, used for sets of wavetrains, have been successfully tested with acoustic full waveforms. Instantaneous characteristics analysis is included in this group of methods. This approach, leading to qualitative and quantitative interpretation, reveals the influence of small changes in physical properties on acoustic full wavetrains. Applications of complex acoustic waveform analysis for the determination of inhomogeneous zones are presented. Colour diagrams of instantaneous characteristics are used for the detection of fractured regions and slow formations with increased attenuation of acoustic waves. Results of the interpretation of individual acoustic full waveforms, based on cross-correlation and spectral analysis, using the IDNP and IDNS computer programs, e.g. velocities of compressional waves, shear and Stoneley waves, are presented. Since the bulk density of the rocks was known, it was possible, using the velocities of P- and S-waves obtained, to calculate the dynamic elastic moduli. We used the interpretation of acoustic full wavetrains to calculate porosity. The sonic porosity is compared to the porosity obtained from other logs and to that obtained from core sample analysis. The examples of acoustic full wavetrains were recorded in the Miocene sulphur-bearing limestones in central Poland. Field measurements were made using the domestic prototype equipment for well log recordings in shallow boreholes.  相似文献   

4.
The paper deals with the application of time-frequency methods, Continuous Wavelet Transform (CWT) and Matching Pursuit algorithm (MP), to acoustic full waveform processing. The goal of the research is to present possible ways of application of these methods, particularly for the precise identification of selected acoustic waves, waveform decomposition into separate waves, and determination of zones of different elastic parameters in the geological profiles. The simulations, developed methodology, and results of each method are discussed in detail. The Continuous Wavelet Transform is used to improve qualitative interpretation. Time-depth-frequency plots for a given frequency are constructed to distinguish the waves and identify gas-bearing zones. The Matching Pursuit has a better resolution in time-frequency space than CWT; thus, it is used to extract individual waves from the whole acoustic waveform, i.e., decompose the signal. For the extracted waves, the slowness is calculated. Results from MP methods are compared with their counterpart parameters obtained from the original waveforms. Additionally, time-frequency decompositions are used for the determination of the frequency content of each wave packet to get unique information about formation in situ.  相似文献   

5.
Determination of the ray vector (the unit vector specifying the direction of the group velocity vector) corresponding to a given wave normal (the unit vector parallel to the phase velocity vector or slowness vector) in an arbitrary anisotropic medium can be performed using the exact formula following from the ray tracing equations. The determination of the wave normal from the ray vector is, generally, a more complicated task, which is usually solved iteratively. We present a first-order perturbation formula for the approximate determination of the ray vector from a given wave normal and vice versa. The formula is applicable to qP as well as qS waves in directions, in which the waves can be dealt with separately (i.e. outside singular directions of qS waves). Performance of the approximate formulae is illustrated on models of transversely isotropic and orthorhombic symmetry. We show that the formula for the determination of the ray vector from the wave normal yields rather accurate results even for strong anisotropy. The formula for the determination of the wave normal from the ray vector works reasonably well in directions, in which the considered waves have convex slowness surfaces. Otherwise, it can yield, especially for stronger anisotropy, rather distorted results.  相似文献   

6.
The reflection/transmission laws (R/T laws) of plane waves at a plane interface between two homogeneous anisotropic viscoelastic (dissipative) halfspaces are discussed. Algorithms for determining the slowness vectors of reflected/transmitted plane waves from the known slowness vector of the incident wave are proposed. In viscoelastic media, the slowness vectors of plane waves are complex-valued, p = P + iA, where P is the propagation vector, and A the attenuation vector. The proposed algorithms may be applied to bulk plane waves (A = 0), homogeneous plane waves (A0, P and A parallel), and inhomogeneous plane waves (A0, P and A non-parallel). The manner, in which the slowness vector is specified, plays an important role in the algorithms. For unrestricted anisotropy and viscoelasticity, the algorithms require an algebraic equation of the sixth degree to be solved in each halfspace. The degree of the algebraic equation decreases to four or two for simpler cases (isotropic media, plane waves in symmetry planes of anisotropic media). The physical consequences of the proposed algorithms are discussed in detail. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

7.
8.
The thin-layer build of the Carpathian Foredeep Miocene formations and large petrophysical parameter variation cause seismic images of gas-saturated zones to be ambiguous, and the location of prospection wells on the basis of anomalous seismic record is risky. A method that assists reservoir interpretation of standard recorded seismic profiles (P waves) can be a converted wave recording (PS waves). This paper presents the results of application of a multicomponent seismic survey for the reservoir interpretation over the Chałupki Dębniańskie gas deposit, carried out for the first time in Poland by Geofizyka Kraków Ltd. for the Polish Oil and Gas Company. Seismic modeling was applied as the basic research tool, using the SeisMod program based on the finite-difference solution of the acoustic wave equation and equations of motion. Seismogeological models for P waves were developed using Acoustic Logs; S-wave model (records only from part of the well) was developed on the basis of theoretical curves calculated by means of the Estymacja program calibrated with average S-velocities, calculated by correlation of recorded P and PS wavefields with 1D modeling. The conformity between theoretical and recorded wavefields makes it possible to apply the criteria established on the basis of modeling for reservoir interpretation. Direct hydrocarbon indicators (bright spots, phase change, time sag) unambiguously identify gas-prone layers within the ChD-2 prospect. A partial range of the indicators observed in the SW part of the studied profile (bright spot that covers a single, anticlinally bent seismic horizon) points to saturation of the horizon. The proposed location is confirmed by criteria determined for converted waves (continuous seismic horizons with constant, high amplitude) despite poorer agreement between theoretical and recorded wavefields.  相似文献   

9.
本文首先制作了TI地层模型井,对模型井的速度、密度等物理参数进行了测量,通过快速模拟退火算法得到了该介质的五个TI刚性系数,然后采用缩尺的偶极子探头在HTI地层井孔内进行超声测量实验模拟了实际的偶极子声波测井,并结合数值模拟的结果,研究了不同偏振方向的声源在HTI地层井孔中进行偶极子声波测井的响应特征.模拟结果表明,弯曲波的幅度和速度随声源的偏振方向不同而不同.正交分量的波形幅度在声源偏振方向平行或垂直于快横波面方位时最小,在与快横波面方位呈一定夹角时较大;同向分量波形幅度随声源的偏振方向的变化规律同正交分量相反.弯曲波速度在声源的偏振方向与快横波面方位的夹角小于30°或者大于60°时,分别接近于快弯曲波和慢弯曲波的速度,对于夹角的变化不敏感;当夹角在30°和60°之间时,弯曲波的速度对该夹角变化非常敏感,由接近快弯曲波速度快速变化到接近慢弯曲波速度.  相似文献   

10.
Multiple vertical fracture sets, possibly combined with horizontal fine layering, produce an equivalent medium of monoclinic symmetry with a horizontal symmetry plane. Although monoclinic models may be rather common for fractured formations, they have hardly been used in seismic methods of fracture detection due to the large number of independent elements in the stiffness tensor. Here, we show that multicomponent wide-azimuth reflection data (combined with known vertical velocity or reflector depth) or multi-azimuth walkaway VSP surveys provide enough information to invert for all but one anisotropic parameters of monoclinic media. In order to facilitate the inversion procedure, we introduce a Thomsen-style parametrization for monoclinic media that includes the vertical velocities of the P-wave and one of the split S-waves and a set of dimensionless anisotropic coefficients. Our notation, defined for the coordinate frame associated with the polarization directions of the vertically propagating shear waves, captures the combinations of the stiffnesses responsible for the normal-moveout (NMO) ellipses of all three pure modes. The first group of the anisotropic parameters contains seven coefficients (ε(1,2), δ(1,2,3) and γ(1,2)) analogous to those defined by Tsvankin for the higher-symmetry orthorhombic model. The parameters ε(1,2), δ(1,2) and γ(1,2) are primarily responsible for the pure-mode NMO velocities along the coordinate axes x1 and x2 (i.e. in the shear-wave polarization directions). The remaining coefficient δ(3) is not constrained by conventional-spread reflection traveltimes in a horizontal monoclinic layer. The second parameter group consists of the newly introduced coefficients ζ(1,2,3) which control the rotation of the P-, S1- and S2-wave NMO ellipses with respect to the horizontal coordinate axes. Misalignment of the P-wave NMO ellipse and shear-wave polarization directions was recently observed on field data by Pérez et al. Our parameter-estimation algorithm, based on NMO equations valid for any strength of the anisotropy, is designed to obtain anisotropic parameters of monoclinic media by inverting the vertical velocities and NMO ellipses of the P-, S1- and S2-waves. A Dix-type representation of the NMO velocity of mode-converted waves makes it possible to replace the pure shear modes in reflection surveys with the PS1- and PS2-waves. Numerical tests show that our method yields stable estimates of all relevant parameters for both a single layer and a horizontally stratified monoclinic medium.  相似文献   

11.
Borehole radar velocity inversion using cokriging and cosimulation   总被引:4,自引:1,他引:4  
A new radar velocity tomography method is presented based on slowness covariance modeling and cokriging of the slowness field using only measured travel time data. The proposed approach is compared to the classical LSQR algorithm using various synthetic models and a real data set. In each case, the proposed method provides comparable to or better results than LSQR. One advantage of this approach is that it is self-regularized and requires less a priori information. The covariance model also allows stochastic imaging of slowness fields by geostatistical simulations. Stable characteristics and uncertain features of the inverted models can then be easily identified.  相似文献   

12.
We studied the applicability of two types of existing three-dimensional (3-D) basin velocity structure models of the Osaka basin, western Japan for long-period ground motion simulations. We synthesized long-period (3–20 s) ground motions in the Osaka basin during a M6.5 earthquake that occurred near the hypothetical Tonankai earthquake source area, approximately 200 km from Osaka. The simulations were performed using a 3-D finite-difference method with nonuniform staggered grids using the two basin velocity structure models. To study the ground motion characteristics inside the basin, we evaluated the wave field inside the basin using the transfer functions derived from the synthetics at the basin and a reference rock site outside the basin. The synthetic waveforms at the basin site were obtained by a convolution of the calculated transfer function and the observed waveform at the reference rock site. First, we estimated the appropriate Q values for the sediment layers. Assuming that the Q value depends on the S wave velocity V S and period T, it was set to Q = (1/3V S)(T 0/T) where V S is in m/s and the reference period T 0 is 3.0 s. Second, we compared the synthetics and the observations using waveforms and pseudovelocity response spectra, together with a comparison of the velocity structures of the two basin models. We also introduced a goodness-of-fit factor to the pseudovelocity response spectra as an objective index. The synthetics of both the models reproduced the observations reasonably well at most of the stations in the central part the basin. At some stations, however, especially where the bedrock depth varies sharply, there were noticeable discrepancies in the simulation results of the models, and the synthetics did not accurately reproduce the observation. Our results indicate that the superiority of one model over the other cannot be determined and that an improvement in the basin velocity structure models based on simulation studies is required, especially along the basin edges. We also conclude that our transfer function method can be used to examine the applicability of the basin velocity structure models for long-period ground motion simulations.  相似文献   

13.
The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece (M w  5.3) generated unusually strong long-period waves (periods 4–8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40–250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).  相似文献   

14.
Numerical investigations on one-dimensional nonlinear acoustic wave with third and fourth order nonlinearities are presented using high-order finite-difference (HFD) operators with a simple flux-limiter (SFL) algorithm. As shown by our numerical tests, the HFDSFL method is able to produce more stable, accurate and conservative solutions to the nonlinear acoustic waves than those computed by finite-difference combined with the flux-corrected-transport algorithm. Unlike the linear acoustic waves, the nonlinear acoustic waves have variable phase velocity and waveform both in time-space (t-x) domain and frequency-wavenumber (f-k) domain; of our special interest is the behaviour during the propagation of nonlinear acoustic waves: the waveforms are strongly linked to the type of medium nonlinearities, generation of harmonics, frequency and wavenumber peak shifts. In seismic sense, these characteristics of nonlinear wave will introduce new issues during such seismic processing as Normal Moveout and f-k filter. Moreover, as shown by our numerical experiment for a four-layer model, the nonlinearities of media will introduce extra velocity errors in seismic velocity inversion.  相似文献   

15.
An inclusion model, based on the Kuster–Toksöz effective medium theory along with Gassmann theory, is tested to forward model velocities for fluid-saturated rocks. A simulated annealing algorithm, along with the inclusion model, effectively inverts measured compressional velocity (VP) to achieve an effective pore aspect ratio at each depth in a depth variant manner, continuously along with depth. Early Cretaceous syn-rift clastic sediments at two different depth intervals from two wells [well A (2160–2274 m) and well B (5222–5303 m)], in the Krishna–Godavari basin, India, are used for this study. Shear velocity (VS) estimated using modelled pore aspect ratio offers a high correlation coefficient (>0.95 for both the wells) with measured data. The modelled pore aspect ratio distribution suggests the decrease in pore aspect ratio for the deeper interval, mainly due to increased effective vertical stress. The pore aspect ratio analysis in relation to total porosity and volume of clay reveals that the clay volume has insignificant influence in shaping the pore geometry in the studied intervals. An approach based on multiple linear regression method effectively predicts velocity as a linear function of total porosity, the volume of clay and the modelled pore-space aspect ratio of the rock. We achieved a significant match between measured and predicted velocities. The correlation coefficients between measured and modelled velocities are considerably high (approximately 0.85 and 0.8, for VP and VS, respectively). This process indicates the possible influence of pore geometry along with total porosity and volume of clay on velocity.  相似文献   

16.
用于低渗砂岩油气开发的压裂需要地层的纵横波时差参数;压裂形成的人工裂缝或砂泥岩中的自然裂缝是油气流入井中的主要通道.声波测井是测量地层的纵横波时差、探测连通裂缝的有效方法.本文给出了新设计的偶极子组合声波测井仪器在低渗砂泥岩地层所测量的波形.新仪器利用声波在井内传播的固有频率设计探头,利用探头阻抗随频率的变化曲线设计匹配电路,有效地提高了声发射功率,在井下采用16位A/D转换器提高了原始波形的采样精度.测量的波形比通常的声波测井波形所含的地层信息丰富.单极子长源距声波测井波形中除了通常的纵、横波和Stoneley波外,还发现了起始于纵波首波的反射波以及随深度改变其到达时间的后续波.通过与其它测井曲线综合对比发现:其反射波与井眼扩径有关,使测量的声波时差加大;后续波在显示地层特征的同时,与横波混叠在一起,使横波时差的提取变得困难.另外,在偶极子所测量的低频波形中也发现了明显的反映地层连通裂缝的反射波,该反射波可以用于指示低渗砂岩地层中的连通裂缝.  相似文献   

17.
Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation (QP and QS) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1?10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0?500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 MW4.9 Wen'an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average vP and vS of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high vP/vS ratio of 4.3. We also modeled surface reflected wave with propagating matrix method to constrain QS and the near surface velocity structure. Our modeling indicates that QS is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q (~10), but consistent with QS modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0?50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borehole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.  相似文献   

18.
In this paper, we developed a specialized method to locate small aftershocks using a small-aperture temporary seismic array. The array location technique uses the first P arrival times to determine the horizontal slowness vector of the incoming P wave, then combines it with SP times to determine the event location. In order to reduce the influence of lateral velocity variation on the location determinations, we generated slowness corrections using events well-located by the permanent broadband network as calibration events, then we applied the corrections to the estimated slownesses. Applications of slowness corrections significantly improved event locations. This method can be a useful tool to locate events recorded by temporary fault-zone arrays in the near field but unlocated by the regional permanent seismic network. As a test, we first applied this method to 64 well-located aftershocks of the 1992 Landers, California, earthquake, recorded by both the Caltech/USGS Southern California Seismic Network and a small-aperture, temporary seismic array. The average horizontal and vertical separations between our locations and the well-determined catalogue locations are 1.35 and 1.75 km, respectively. We then applied this method to 132 unlocated aftershocks recorded only by the temporary seismic array. The locations show a clear tendency to follow the surface traces of the mainshock rupture.  相似文献   

19.
Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear‐slip theory, we investigate seismic signatures of the effective medium produced by a single set of ‘general’ vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S1 and the semi‐major axis of the S1‐wave normal‐moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S1‐wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear‐wave velocity in the host rock. Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P‐waves and two split S‐waves, combined with a portion of the P‐wave slowness surface reconstructed from multi‐azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter‐estimation procedure is verified by performing non‐linear inversion based on the exact equations.  相似文献   

20.
—Within the "Integrated Seismics Oberpfalz 1989 (ISO89)" a three-component Moving Source Profiling (MSP) experiment, also named walk-away VSP, was carried out at the drilling site of the "Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland (KTB)" in Germany. Analysis of transmitted waves traveling from the source locations at the surface down to the receiver array in the borehole reveals velocity information about the illuminated part of the subsurface. Complementary to the widely used evaluation of travel-time perturbations to locate velocity inhomogeneities we suggest the use of the directivity of transmitted wave types down in the borehole. To determine the wave-field directivity we focus on transmitted arrivals by employing principles of "Controlled Directional Reception (CDR)." We calculate local slant-stacks for three different depth positions as a function of the source offset, thus obtaining the variation of the vertical slowness (vertical ray parameter) of incident waves along the horizontal source profile and the vertical receiver array. The slowness data combined with travel times are interpreted by forward modeling taking into account geological information of the survey area. Our findings confirm results from gravity measurements which suggest the existence of large amphibolite/metabasite complexes in the vicinity of the borehole. The described method is also used to identify P-to-S converted energy originating from fracture zones above the receiver array and to locate the region in which conversion occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号