首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessments of future changes in the climate of Northern Hemisphere extratropical land regions have been made with the IAP RAS climate model (CM) of intermediate complexity (which includes a detailed scheme of thermo- and hydrophysical soil processes) under prescribed greenhouse and sulfate anthropogenic forcing from observational data for the 19th and 20th centuries and from the SRES B1, A1B, and A2 scenarios for the 21st century. The annual mean warming of the extratropical land surface has been found to reach 2–5 K (3–10 K) by the middle (end) of the 21st century relative to 1961–1990, depending on the anthropogenic forcing scenario, with larger values in North America than in Europe. Winter warming is greater than summer warming. This is expressed in a decrease of 1–4 K (or more) in the amplitude of the annual harmonic of soil-surface temperature in the middle and high latitudes of Eurasia and North America. The total area extent of perennially frozen ground S p in the IAP RAS CM changes only slightly until the late 20th century, reaching about 21 million km2, and then decreases to 11–12 million km2 in 2036–2065 and 4–8 million km2 in 2071–2100. In the late 21st century, near-surface permafrost is expected to remain only in Tibet and in central and eastern Siberia. In these regions, depths of seasonal thaw exceed 1 m (2 m) under the SRES B1 (A1B or A2) scenario. The total land area with seasonal thaw or cooling is expected to decrease from the current value of 54–55 million km2 to 38–42 in the late 21st century. The area of Northern Hemisphere snow cover in February is also reduced from the current value of 45–49 million km2 to 31–37 million km2. For the basins of major rivers in the extratropical latitudes of the Northern Hemisphere, runoff is expected to increase in central and eastern Siberia. In European Russia and in southern Europe, runoff is projected to decrease. In western Siberia (the Ob watershed), runoff would increase under the SRES A1B and A2 scenarios until the 2050s–2070s, then it would decrease to values close to present-day ones; under the anthropogenic forcing scenario SRES B1, the increase in runoff will continue up to the late 21st century. Total runoff from Eurasian rivers into the Arctic Ocean in the IAP RAS CM in the 21st century will increase by 8–9% depending on the scenario. Runoff from the North American rivers into the Arctic Ocean has not changed much throughout numerical experiments with the IAP RAS CM.  相似文献   

2.
New prognostic estimates are obtained for the potential variability of the atmospheric ozone content in the first half of the 21st century. The calculations are based on models of gas composition and general circulation in the lower and middle atmosphere and on the scenarios of the World Meteorological Organization (WMO). It is shown that the rate of ozone content increase will be controlled to a considerable extent by variations in stratospheric temperature. Even though the contents of atmospheric chlorine and bromine are not reduced, contrary to the WMO prediction, and remain at the present-day levels, the continuation of stratospheric cooling will lead to a rapid recovery of the ozone content to its level characteristic of the 1980s. Model experiments on variations in the stratospheric aerosol content have shown that an increase in the aerosol concentration will not affect the rate of ozone recovery in the atmosphere during reduced emissions of chlorine and bromine gases if the stratospheric temperature remains lowered. Numerical experiments have also shown that the simultaneous anthropogenic action on the contents of halogen gases and on the lower-stratosphere temperature can reduce the adverse effects of Freons and halons on the ozone layer.  相似文献   

3.
The atmosphere-ocean general circulation model with the carbon cycle is coupled to a model of methane evolution, in which methane sources in the soil of wetlands and methane evolution in the atmosphere are calculated. A numerical experiment on the simulation of climate and methane-cycle changes in 1860–2100 has been conducted with the model forced by methane emissions prescribed from scenario A1B. The distribution of the sources of methane from soil agrees with the available estimates and amounts to about 240 Mt/year in the 20th century. The methane flux from soil increases to 340 Mt/year by the end of the 21st century. The model adequately reproduces an increase in the atmospheric methane concentration from 800 ppb in 1860 to about 1800 ppb in 2000, but does not produce the observed stabilization of methane concentration in the early 21st century. By 2060, the methane concentration in the model attains 2700 ppb. The increase in atmospheric methane concentration is due mainly to anthropogenic emissions. A similar numerical experiment with fixed sources of methane from soil at the 1860–1900 level suggests that the maximum methane concentration in the model in this case could amount to 2400 ppb. A temperature increase at the end of the 21st century relative to the 19th century is 3.5° for a simulated change in the methane flux from soil and 0.25° less for a fixed methane flux.  相似文献   

4.
The climate model of intermediate complexity developed at the Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) is extended by a block for the direct anthropogenic sulfate-aerosol (SA) radiative forcing. Numerical experiments have been performed with prescribed scenarios of the greenhouse and anthropogenic sulfate radiative forcings from observational estimates for the 19th and 20th centuries and from SRES scenarios A1B, A2, and B1 for the 21st century. The globally averaged direct anthropogenic SA radiative forcing F ASA by the end of the 20th century relative to the preindustrial state is ?0.34 W/m2, lying within the uncertainty range of the corresponding present-day estimates. The absolute value of F ASA is the largest in Europe, North America, and southeastern Asia. A general increase in direct radiative forcing in the numerical experiments that have been performed continues until the mid-21st century. With both the greenhouse and the sulfate loadings included, the global climate warming in the model is 1.5–2.8 K by the end of the 21st century relative to the late 20th century, depending on the scenario, and 2.1–3.4 K relative to the preindustrial period. The sulfate aerosol reduces global warming by 0.1–0.4 K in different periods depending on the scenario. The largest slowdown (>1.5 K) occurs over land at middle and high latitudes in the Northern Hemisphere in the mid-21st century for scenario A2. The IAP RAS CM response to the greenhouse and the aerosol forcing is not additive.  相似文献   

5.
基于中国沿海10个验潮站资料,利用皮尔森Ⅲ型(P-Ⅲ)模型探讨了典型浓度路径(Representative Concentration Pathway,RCP)情景下21世纪海平面上升对中国沿海地区极值水位重现期的影响。结果表明:海平面上升将显著缩短极值水位的重现期。在RCP8.5情景下极值水位的重现期缩短最为显著。预估到2050年,在RCP8.5情景下,所研究的中国沿海地区潮位站的百年一遇极值水位将变为9~43 a一遇。到2100年,在RCP8.5情景下,百年一遇极值水位变为1~18 a一遇。当前极值水位的低概率事件将在2100年变得普遍,在RCP8.5情景下,到2100年千年一遇的几乎每两百年发生一次。由于极值水位的重现期会随着气候变化而缩短,未来沿海地区将会面临更严峻的风险与挑战。  相似文献   

6.
The climate model of the Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) has been supplemented with a module of soil thermal physics and the methane cycle, which takes into account the response of methane emissions from wetland ecosystems to climate changes. Methane emissions are allowed only from unfrozen top layers of the soil, with an additional constraint in the depth of the simulated layer. All wetland ecosystems are assumed to be water-saturated. The molar amount of the methane oxidized in the atmosphere is added to the simulated atmospheric concentration of CO2. A control preindustrial experiment and a series of numerical experiments for the 17th–21st centuries were conducted with the model forced by greenhouse gases and tropospheric sulfate aerosols. It is shown that the IAP RAS CM generally reproduces preindustrial and current characteristics of both seasonal thawing/freezing of the soil and the methane cycle. During global warming in the 21st century, the permafrost area is reduced by four million square kilometers. By the end of the 21st century, methane emissions from wetland ecosystems amount to 130–140 Mt CH4/year for the preindustrial and current period increase to 170–200 MtCH4/year. In the aggressive anthropogenic forcing scenario A2, the atmospheric methane concentration grows steadily to ≈3900 ppb. In more moderate scenarios A1B and B1, the methane concentration increases until the mid-21st century, reaching ≈2100–2400 ppb, and then decreases. Methane oxidation in air results in a slight additional growth of the atmospheric concentration of carbon dioxide. Allowance for the interaction between processes in wetland ecosystems and the methane cycle in the IAP RAS CM leads to an additional atmospheric methane increase of 10–20% depending on the anthropogenic forcing scenario and the time. The causes of this additional increase are the temperature dependence of integral methane production and the longer duration of a warm period in the soil. However, the resulting enhancement of the instantaneous greenhouse radiative forcing of atmospheric methane and an increase in the mean surface air temperature are small (globally < 0.1 W/m2 and 0.05 K, respectively).  相似文献   

7.
The results of numerical experiments with a coupled atmosphere-ocean general circulation model on the reproduction of climate changes during the 20th century and on the simulation of possible climate changes during the 21st–22nd centuries according to three IPCC scenarios of variations in the concentrations of greenhouse and other gases, as well as the results of the experiments with the doubled and quadruple concentrations of CO2, are considered. An increase in the near-surface air temperature during the 20th century and the features of the observed climate changes, such as warming in 1940–1950 and its slowing down in 1960–1970, are adequately reproduced in the model. According to the model, the air-temperature increase during the 22nd century (as compared to the end of the 20th century) varies from 2 K for the most moderate scenario to 5 K for the warmest scenario. This estimate is somewhat lower than the expected warming averaged over the data of all models presented in the third IPCC report. According to model data, in the 22nd century, under all scenarios, at the end of summer, a complete or almost complete sea-ice melting will occur in the Arctic. According to the model, by the year 2200, the sea level will vary by 20 to 45 cm as compared to the level at the end of the 20th century.  相似文献   

8.
Results from numerical experiments with an atmosphere-ocean general circulation model coupled to the carbon evolution cycle are analyzed. The model is used to carry out an experiment on the simulation of the climate and carbon cycle change in 1861–2100 under a specified scenario of the carbon dioxide emission from fossil fuel and land use. The spatial distribution of vegetation, soil, and oceanic carbon in the 20th century is generally close to available estimates from observational data. The model adequately reproduces the observed growth of atmospheric CO2 in the 20th century and the uptake of excess carbon by land ecosystems and by the ocean in the 1980s and 1990s. By 2100, the atmospheric CO2 concentration is calculated to reach 742 ppmv under emission and land-use scenario A1B. The feedback between climate change and the carbon cycle in the model is positive, with a coefficient close to the mean of all the current models. The ocean and land uptakes of the CO2 emission by 2100 in the model are 25 and 19%, which are also close to the mean over all models.  相似文献   

9.
Ensemble numerical experiments with the climate model of intermediate complexity developed at the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) are conducted to estimate the efficiency of controlled climate forcing (geoengineering) due to stratospheric sulfate aerosol (SSA) emissions in order to compensate for global warming under the SRES A1B anthropogenic emission scenario. Full (or even excessive) compensation for the expected anthropogenic warming in the model is possible with sufficiently intense geoengineering. For ensemble members with values of the governing parameters corresponding to those obtained for the Mt. Pinatubo eruption, global warming is reduced by no more than 0.46 K in the second half of the 21st century, with a residual rise in the global surface temperature T g comparative to 1961–1990 of 1.0–1.2 K by 2050 and 1.9–2.2 K by 2100. The largest reduction in global warming (with the other parameters of the numerical experiment being equal) is found not for a meridional distribution of SSA concentration peaked at low latitudes (despite the largest (in magnitude) global compensation instantaneous radiative forcing), but for a uniform horizontal aerosol distribution and for a distribution with the SSA concentration maximum in the middle and subpolar latitudes of the Northern Hemisphere. The efficiency of geoengineering in terms of T g in the second half of the 21st century between the most efficient and the least efficient meridional distributions of stratospheric aerosols differs by as much as one-third, depending on the values of other governing parameters. For meridional distributions of SSA concentration, which produce the largest deceleration of global warming, such a deceleration is regionally most pronounced over high- and subpolarlatitude land areas and in the Arctic. In particular, this is expressed in the smallest reduction in the sea-ice extent and permafrost area under climate warming in the model. The compensation forcing also decelerates a general increase in global annual precipitation P g during warming. The relative deceleration in precipitation increase is most pronounced in land regions outside the tropics, where a significant deficit in precipitation is currently observed. After the theoretical completion of geoengineering in the first or second decade, its temperature effect vanishes with an abrupt acceleration of global and regional surface warming. For individual members of the ensemble experiment, the global temperature change in this period is five times as large as that in the experiment without geoengineering and ten times as large regionally (in northeastern Siberia).  相似文献   

10.
ensemble simulations with the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS) climate model (CM) for the 21st century are analyzed taking into account anthropogenic forcings in accordance with the Special Report on Emission Scenarios (SRES) A2, A1B, and B1, whereas agricultural land areas were assumed to change in accordance with the Land Use Harmonization project scenarios. Different realizations within these ensemble experiments were constructed by varying two governing parameters of the terrestrial carbon cycle. The ensemble simulations were analyzed with the use of Bayesian statistics, which makes it possible to suppress the influence of unrealistic members of these experiments on their results. It is established that, for global values of the main characteristics of the terrestrial carbon cycle, the SRES scenarios used do not differ statistically from each other, so within the framework of the model, the primary productivity of terrestrial vegetation will increase in the 21st century from 74 ± 1 to 102 ± 13 PgC yr−1 and the carbon storage in terrestrial vegetation will increase from 511 ± 8 to 611 ± 8 PgC (here and below, we indicate the mean ± standard deviations). The mutual compensation of changes in the soil carbon stock in different regions will make global changes in the soil carbon storage in the 21st century statistically insignificant. The global CO2 uptake by terrestrial ecosystems will increase in the first half of the 21st century, whereupon it will decrease. The uncertainty interval of this variable in the middle (end) of the 21st century will be from 1.3 to 3.4 PgC yr−1 (from 0.3 to 3.1 PgC yr−1). In most regions, an increase in the net productivity of terrestrial vegetation (especially outside the tropics), the accumulation of carbon in this vegetation, and changes in the amount of soil carbon stock (with the total carbon accumulation in soils of the tropics and subtropics and the regions of both accumulation and loss of soil carbon at higher latitudes) will be robust within the ensemble in the 21st century, as will the CO2 uptake from the atmosphere only by terrestrial ecosystems located at extratropical latitudes of Eurasia, first and foremost by the Siberian taiga. However, substantial differences in anthropogenic emissions between the SRES scenarios in the 21st century lead to statistically significant differences between these scenarios in the carbon dioxide uptake by the ocean, the carbon dioxide content in the atmosphere, and changes in the surface air temperature. In particular, according to the SRES A2 (A1B, B1) scenario, in 2071–2100 the carbon flux from the atmosphere to the ocean will be 10.6 ± 0.6 PgC yr−1 (8.3 ± 0.5, 5.6 ± 0.3 PgC yr−1), and the carbon dioxide concentration in the atmosphere will reach 773 ± 28 ppmv (662 ± 24, 534 ± 16 ppmv) by 2100. The annual mean warming in 2071–2100 relatively to 1961–1990 will be 3.19 ± 0.09 K (2.52 ± 0.08, 1.84 ± 0.06 K).  相似文献   

11.
An interactive three-dimensional chemistry-climate model combining models of the gas composition and general circulation of the lower and middle atmosphere is used to study the impact of changes in extra-atmospheric solar radiative fluxes induced by solar activity on the stratospheric heating and subsequent temperature and ozone variations in the stratosphere and troposphere. The results have shown that a change in the atmospheric radiative heating resulting from variations in solar activity has a direct effect on the temperature and circulation of the atmosphere. Atmospheric temperature variations affect the rates of temperature-dependent chemical reactions, and this is considered the first type of indirect impact of solar activity on the atmospheric gas composition. On the other hand, as a result of the variation in atmospheric heating, its circulation changes, thus affecting the transport of minor gases into the atmosphere. This effect is considered the second type of indirect impact of solar activity on atmospheric gases. The results of our calculations have shown that both types of indirect impact of the variation in solar activity on the atmospheric gas composition are comparable in order of magnitude to the direct impact of solar activity on atmospheric gases.  相似文献   

12.
The goal of the paper is an analysis of changes in the amplitude and phase characteristics of the annual variation (AC) of total ozone (TO) from ground-based and satellite (TOMS) measurements and their interpretation with a two-dimensional photochemical model. According to ground-based TO measurements, two characteristic types of quasi-decadal variations in the phase of the annual harmonic (AH) of total ozone have been noted: variations in phase and antiphase with solar activity (SA). Changes in the TO AH phase opposite to solar activity variation are noted the high latitudes of the North Atlantic region and in the tropical belt, and in-phase changes are observed in the middle and subtropical latitudes of both hemispheres. Variations in the TO AH amplitude (hence, in the TO AV amplitude) and in the annual mean TO usually coincide in phase with the SA cycle. Analysis of satellite data shows that the 0-phase of the AV and the phase of the AH of the zonal mean TO at middle latitudes vary synchronously with the 11-year solar cycle. Model simulations have shown that the stratospheric ozone influx to the middle latitudes increases in the fall and winter period during a period of maximum solar activity. This dynamic mechanism accounts for up to 30% of the winter ozone increase in the ozone maximum layer in the Southern Hemisphere midlatitudes during the solar maximum as compared with the solar minimum. In the northern midlatitudes, the dynamic mechanism makes the main contribution to ozone changes during the latter half of winter under SA variations. The stratospheric ozone inflow change induced by SA variations affects the annual variation of ozone.  相似文献   

13.
A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.  相似文献   

14.
This paper presents results from a simulation of climate changes in the 19th–21st centuries with the Institute of Numerical Mathematics Climate Model Version 4 (INMCM4) in the framework of the Coupled Model Intercomparison Project, phase 5 (CMIP5). Like the previous INMCM3 version, this model has a low sensitivity of 4.0 K to a quadrupling of CO2 concentration. Global warming in the model by the end of the 21st century is 1.9 K for the RCP4.5 scenario and 3.4 K for RCP8.5. The spatial distribution of temperature and precipitation changes driven by the enhanced greenhouse effect is similar to that derived from the INMCM3 model data. In the INMCM4 model, however, the heat flux to the ocean and sea-level rise caused by thermal expansion are roughly 1.5 times as large as those in the INMCM3 model under the same scenario. A decrease in sea-ice extent and a change in heat fluxes and meridional circulation in the ocean under global warming, as well as some aspects of natural climate variability in the model, are considered.  相似文献   

15.
A technique for the estimation of changes in components of the water and carbon budgets of coniferous ecosystems as a result of possible anthropogenic climate changes has been developed. The technique is based on the SWAP model of heat, water, and carbon exchanges in coniferous ecosystems, which was previously developed by the authors, and the MAGICC/SCENGEN generator of climatic scenarios for various regions of the Earth. The technique is used for estimating changes in the evapotranspiration and carbon budget of the developing coniferous forest ecosystem in the Loobos experimental site (the Netherlands) in the 21st century in connection with an increase in the anthropogenic emission of greenhouse gases into the atmosphere expected in accordance with the IPCC IS92a scenario of the economic, technological, political, and demographic development of human civilization up to 2100.  相似文献   

16.
The proposed algorithm comprises three main steps. The first step is the evaluation of the sediment transport and budget. It was shown that the root segment of the Vistula Spit is dominated by eastward longshore sediment transport (up to 50 thousand m3/year). Over the rest of the spit, the shoreline??s orientation causes westward sediment transport (more than 100 thousand m3/year). The gradients of the longshore and cross shore sediment transport become the major contributors to the overall sediment balance. The only exception is the northeastern tip of the spit due to the appreciable imbalance of the sediment budget (13 m3m?1 yr?1). The second step in the prediction modeling is the estimation of the potential sea-level changes during the 21st century. The third step involves modeling of the shoreline??s behavior using the SPELT model [6, 7, 8]. In the most likely scenario, the rate of the recession is predicted to be about 0.3 m/year in 2010?C2050 and will increase to 0.4 m/year in 2050?C2100. The sand deficit, other than the sea-level rise, will be a key factor in the control of the shoreline??s evolution at the northeastern tip of the spit, and the amount of recession will range from 160 to 200 m in 2010?C2100.  相似文献   

17.
Possible changes in the climate characteristics of the Northern Hemisphere in the 21st century are estimated using a climate model (developed at the Obukhov Institute of Atmospheric Physics (OIAP), Russian Academy of Sciences) under different scenarios of variations in the atmospheric contents of greenhouse gases and aerosols, including those formed at the OIAP on the basis of SRES emission scenarios (group I) and scenarios (group II) developed at the Moscow Power Engineering Institute (MPEI). Over the 21st century, the global annual mean warming at the surface amounts to 1.2?C2.6°C under scenarios I and 0.9?C1.2°C under scenarios II. For all scenarios II, starting from the 2060s, a decrease is observed in the rate of increase in the global mean annual near-surface air temperature. The spatial structures of variations in the mean annual near-surface air temperature in the 21st century, which have been obtained for both groups of scenarios (with smaller absolute values for scenarios II), are similar. Under scenarios I, within the extratropical latitudes, the mean annual surface air temperature increases by 3?C7°C in North America and by 3?C5°C in Eurasia in the 21st century. Under scenarios II, the near-surface air temperature increases by 2?C4°C in North America and by 2?C3°C in Eurasia. An increase in the total amount of precipitation by the end of the 21st century is noted for both groups of scenarios; the most significant increase in the precipitation rate is noted for the land of the Northern Hemisphere. By the late 21st century, the total area of the near-surface permafrost soils of the land of the Northern Hemisphere decreases to 3.9?C9.5 106 km2 for scenarios I and 9.7?C11.0 × 106 km2 for scenarios II. The decrease in the area of near-surface permafrost soils by 2091?C2100 (as compared to 2001?C2010) amounts to approximately 65% for scenarios I and 40% for scenarios II. By the end of the 21st century, in regions of eastern Siberia, in which near-surface permafrost soils are preserved, the characteristic depths of seasonal thawing amount to 0.5?C2.5 m for scenarios I and 1?C2 m for scenarios II. In western Siberia, the depth of seasonal thawing amounts to 1?C2 m under both scenarios I and II.  相似文献   

18.
Izvestiya, Atmospheric and Oceanic Physics - Data on the effect of global warming on the ozone layer and the intensity of near-surface near-noon UVB radiation in 2100 compared to the year 2000 are...  相似文献   

19.
An ensemble experiment with the IAP RAS CM was performed to estimate future changes in the atmospheric concentration of carbon dioxide, its radiative forcing, and characteristics of the climate-carbon cycle feedback. Different ensemble members were obtained by varying the governing parameters of the terrestrial carbon cycle of the model. For 1860–2100, anthropogenic CO2 emissions due to fossil-fuel burning and land use were prescribed from observational estimates for the 19th and 20th centuries. For the 21st century, emissions were taken from the SRES A2 scenario. The ensemble of numerical experiments was analyzed via Bayesian statistics, which made the uncertainty range of estimates much narrower. To distinguish between realistic and unrealistic ensemble members, the observational characteristics of the carbon cycle for the 20th century were used as a criterion. For the given emission scenario, the carbon dioxide concentration expected by the end of the 21st century falls into the range 818 ± 46 ppm (an average plus or minus standard deviation). The corresponding global instantaneous radiative forcing at the top of the atmosphere (relative to the preindustrial state) lies in the uncertainty range 6.8 ± 0.4 W m?2. The uncertainty range of the strength of the climate-carbon cycle feedback by the end of the 21st century reaches 59 ± 98 ppm in terms of the atmospheric carbon dioxide concentration and 0.4 ± 0.7 W m?2 in terms of the radiative forcing.  相似文献   

20.
A two-zone model of the atmospheric circulation over the hemisphere is considered. The geographic latitude φ of the boundary between the Rossby circulation regime zone at middle and high latitudes and the Hadley circulation regime zone at low latitudes serves as a model variable. The closeness between the actual and reference (exponential) air-mass distribution over the hemisphere, with respect to Ertel’s modified potential vorticity (MPV), is accounted for. The informational entropy of the statistical MPV distribution in the hemispheric atmosphere and the informational entropy of the eddy regime in the basic storm-track zone are used to determine a statistically (climatically) equilibrium value of φ. The question of atmospheric blocking over the hemisphere is considered using the proposed statistical–dynamical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号