首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Annualvariationrateofglobalsea-levelriseandthepredictionforthe21stcentury¥ZhengWenzhen;ChenZongyong;WangDeyuadandChenKuiying(...  相似文献   

2.
Assessments of current and expected climatic changes in the Arctic Basin are obtained, including ice-cover characteristics influencing the duration of the navigation season on the Northern Sea Route (NSR) along Eurasia and the Northwest Passage (NWP) along North America. The ability of modern climate models to simulate the average duration of the navigation season and its changes over recent decades is estimated. The duration of the navigation season for the NSR and NWP in the 21st century is estimated using an ensemble of climate models. The assessments differ significantly for the NSR and NWP. Unlike the NSR, the NWP reveals no large changes in the navigation season in the first 30 years of the 21st century. From the multimodel simulations, the expected duration of the navigation period by the late 21st century will be approximately 3 to 6 months for the NSR and 2 to 4 months for the NWP under the moderate anthropogenic SRES-A1B scenario.  相似文献   

3.
日本21世纪的海洋政策   总被引:1,自引:0,他引:1  
本文简要介绍了日本文部省、通商产业省、环境省、水产省等省厅的21世纪的海洋政策。  相似文献   

4.
Possible changes in the climate characteristics of the Northern Hemisphere in the 21st century are estimated using a climate model (developed at the Obukhov Institute of Atmospheric Physics (OIAP), Russian Academy of Sciences) under different scenarios of variations in the atmospheric contents of greenhouse gases and aerosols, including those formed at the OIAP on the basis of SRES emission scenarios (group I) and scenarios (group II) developed at the Moscow Power Engineering Institute (MPEI). Over the 21st century, the global annual mean warming at the surface amounts to 1.2?C2.6°C under scenarios I and 0.9?C1.2°C under scenarios II. For all scenarios II, starting from the 2060s, a decrease is observed in the rate of increase in the global mean annual near-surface air temperature. The spatial structures of variations in the mean annual near-surface air temperature in the 21st century, which have been obtained for both groups of scenarios (with smaller absolute values for scenarios II), are similar. Under scenarios I, within the extratropical latitudes, the mean annual surface air temperature increases by 3?C7°C in North America and by 3?C5°C in Eurasia in the 21st century. Under scenarios II, the near-surface air temperature increases by 2?C4°C in North America and by 2?C3°C in Eurasia. An increase in the total amount of precipitation by the end of the 21st century is noted for both groups of scenarios; the most significant increase in the precipitation rate is noted for the land of the Northern Hemisphere. By the late 21st century, the total area of the near-surface permafrost soils of the land of the Northern Hemisphere decreases to 3.9?C9.5 106 km2 for scenarios I and 9.7?C11.0 × 106 km2 for scenarios II. The decrease in the area of near-surface permafrost soils by 2091?C2100 (as compared to 2001?C2010) amounts to approximately 65% for scenarios I and 40% for scenarios II. By the end of the 21st century, in regions of eastern Siberia, in which near-surface permafrost soils are preserved, the characteristic depths of seasonal thawing amount to 0.5?C2.5 m for scenarios I and 1?C2 m for scenarios II. In western Siberia, the depth of seasonal thawing amounts to 1?C2 m under both scenarios I and II.  相似文献   

5.
Assessments of future changes in the climate of Northern Hemisphere extratropical land regions have been made with the IAP RAS climate model (CM) of intermediate complexity (which includes a detailed scheme of thermo- and hydrophysical soil processes) under prescribed greenhouse and sulfate anthropogenic forcing from observational data for the 19th and 20th centuries and from the SRES B1, A1B, and A2 scenarios for the 21st century. The annual mean warming of the extratropical land surface has been found to reach 2–5 K (3–10 K) by the middle (end) of the 21st century relative to 1961–1990, depending on the anthropogenic forcing scenario, with larger values in North America than in Europe. Winter warming is greater than summer warming. This is expressed in a decrease of 1–4 K (or more) in the amplitude of the annual harmonic of soil-surface temperature in the middle and high latitudes of Eurasia and North America. The total area extent of perennially frozen ground S p in the IAP RAS CM changes only slightly until the late 20th century, reaching about 21 million km2, and then decreases to 11–12 million km2 in 2036–2065 and 4–8 million km2 in 2071–2100. In the late 21st century, near-surface permafrost is expected to remain only in Tibet and in central and eastern Siberia. In these regions, depths of seasonal thaw exceed 1 m (2 m) under the SRES B1 (A1B or A2) scenario. The total land area with seasonal thaw or cooling is expected to decrease from the current value of 54–55 million km2 to 38–42 in the late 21st century. The area of Northern Hemisphere snow cover in February is also reduced from the current value of 45–49 million km2 to 31–37 million km2. For the basins of major rivers in the extratropical latitudes of the Northern Hemisphere, runoff is expected to increase in central and eastern Siberia. In European Russia and in southern Europe, runoff is projected to decrease. In western Siberia (the Ob watershed), runoff would increase under the SRES A1B and A2 scenarios until the 2050s–2070s, then it would decrease to values close to present-day ones; under the anthropogenic forcing scenario SRES B1, the increase in runoff will continue up to the late 21st century. Total runoff from Eurasian rivers into the Arctic Ocean in the IAP RAS CM in the 21st century will increase by 8–9% depending on the scenario. Runoff from the North American rivers into the Arctic Ocean has not changed much throughout numerical experiments with the IAP RAS CM.  相似文献   

6.
7.
Simulation of the atmospheric circulation on the seasonal scale with the new version of the global semi-Lagrangian model is considered. The new version includes land surface processes parameterization taking into account influence of the vegetation and also freezing and melting of soil moisture. The new version also includes improved parameterization for short and long wave radiation, cloudiness and atmospheric boundary layer.  相似文献   

8.
21世纪初我国海洋科学的展望   总被引:3,自引:0,他引:3  
大气、海洋和陆地对自然变异和人类活动的响应速率和规模,具有明显的区别:大气的响应速率快、规模大,全球效应突出;陆地的响应则较缓,且局域效应明显;海洋的响应速率和规模居于大气和陆地之间,但其具体表现则甚为复杂。海洋的板块构造保存了海底地壳的发展历史、而海底沉积物也  相似文献   

9.
10.
Annual mean fluxes of CO2 and oxygen across the sea surface are estimated with the use of numerical modeling for several regions located in the Gulf Stream and Kuroshio zones. The present-day climatic conditions and the climatic conditions expected in the middle and at the end of the 21st century are considered. Specific features of gas exchange under a strong wind that are associated with gas exchange by bubbles and with changes in the air-water difference of the gas concentrations were taken into account in the calculations. The estimates obtained differ substantially from the results based on the traditional approach, which disregards the above features. A considerable increase in the absorption of CO2 by the ocean, which is mainly caused by the continuing increase in the CO2 concentration in the air during its small changes in the ocean, is expected in the 21st century. At the same time, no trends are revealed in the annual mean fluxes of oxygen across the ocean surface. The conclusion is made that, in calculations of CO2 absorption by the world ocean, it is necessary to take into account both specific features of gas transfer under a strong wind and an increase in the atmospheric concentration of CO2.  相似文献   

11.
An analysis of the air-temperature and atmospheric-pressure fields in Western Siberia is performed based on observations in 1976–2014; a comparison of temperature and pressure variability in two temporal intervals, 1976–2005 and 1985–2014, is carried out. The estimation of contributions from such climate-forming factors as radiation and circulation is performed for the same intervals. It is revealed that an increase in the annual mean ground–air temperature in the investigated region of Western Siberia was still taking place in the period of 1985–2014; however, the warming process was less active than in the 1976–2005 period. Winter months play the largest role in decreasing the temperature growth rate; during these months, the warming process was replaced by a cooling one in the second time interval. It is shown that the circulation factors, that is, the mechanisms described by indices of global circulation, played the dominant role in the period from 1985 to 2014.  相似文献   

12.
The sensitivity of the characteristics of atmospheric centers of action (ACAs) in the Northern Hemisphere to global climate changes is analyzed on the basis of models of different complexity, including the climate model of intermediate complexity of the Institute of Atmospheric Physics, Russian Academy of Sciences and the ECHAM4/OPYC3 and HadCM3 general circulation models of the atmosphere and ocean. The emphasis is on the analysis of trends of the change in ACA characteristics in winter, when the long-term global warming is most considerable. The global climate models are shown to be able to describe not only the intermediate regimes of ACAs but also their dynamics. In particular, ECHAM4/OPYC3 is capable of reproducing the statistically significant connection of the characteristics of the North Pacific centers of action with El Niño/La Niña events, revealed from observational data. With the use of the results of the global climate models, the possible changes in the characteristics of centers of action in the 21st century are estimated for an increased content of greenhouse gases in the atmosphere.  相似文献   

13.
14.
Izvestiya, Atmospheric and Oceanic Physics - Climate changes in 2015–2100 have been simulated with the use of the INM-CM5 climate model following four scenarios: SSP1-2.6, SSP2-4.5, and...  相似文献   

15.
The results of measurements of the ozone concentration obtained during the first cruise of the R/VVladimir Parshin close to the European Atlantic coast and in the adjacent seas are analysed. A sharp (four-fold) decrease in the ozone concentration off the coast along 50° N was found. This effect is associated with ozone absorption by the ocean, which is conditioned by the interaction of ozone with surface-active substances in the surface microlayer of seawater. This assumption is supported by the local decrease of the ozone concentration when approaching the coast, observed in the Black Sea several times. It is shown that the correlation between the ozone concentration and carbon monoxide above the ocean agrees with the regularity observed.Translated by Mikhail M. Trufanov.  相似文献   

16.
The study focused on the evaluation of probable changes in the severity of sea ice conditions occurring in 3 selected areas of the Baltic Sea: the Gulf of Bothnia, Gulf of Finland and the Southern Baltic Sea up to the year 2100. The areas have been chosen due to the high intensity of marine traffic (the Gulfs??of Bothnia and of Finland) and due to differences in sea ice conditions; winters in the Gulf of Bothnia were characterized as the most severe, whereas in the Southern Baltic were classified as the mildest ones. Consequently, three scenarios were taken into account in the study: A2 (slow rate of global economic development, market scenario), A1B (regional scenario, rapid economic development, with ecological priorities), B1 (sustainable, median economic development with strong ecological priorities), all three constructed on the basis of Special Report on Emissions Scenarios (SRES models of greenhouse gas emission). The probable changes of sea ice conditions expressed as severity index S were calculated from these models. The main results of the investigation are as follows, the variety of sea ice conditions occurring in specific regions of the Baltic will remain stable (i.e. the most severe winter conditions will still occur in Gulf of Bothnia, while the mildest in the Southern Baltic Sea). The most significant changes are likely to occur in the Southern Baltic, where some winters without ice cover in the Vistula Lagoon may happen. Nonetheless, some extremely severe winters will occur and also within specific seasons more winters with a lower number of days with ice will occur.  相似文献   

17.
齐庆华  蔡榕硕 《海洋学报》2017,39(11):37-48
气候变暖背景下,全球平均海洋变暖和海平面上升显著,为人类社会的可持续发展带来巨大挑战。上层海洋热力状况是海平面变化的主导因子之一。本文围绕"21世纪海上丝绸之路"途经海区(文中简称为丝路海区)上层海洋热含量异常的区域性时空特征,分析探讨了丝路海区热比容海平面异常的时空变化、演变特征及可能影响,以期为"21世纪海上丝绸之路"海洋环境安全保障提供服务支撑。结果表明,自20世纪70年代中后期,丝路海区上层(0~700 m)海洋已明显变暖,尤其20世纪90年代中后期增暖幅度显著加大。近60年来,在丝路海区热带海洋中,西太平洋的北赤道流区及以北海域、东海黑潮流域以及南海北部和南部海区、阿拉伯海西北部海域、马来西亚西北部海域及南印度洋部分海域具有长期增暖趋势。热带西太平洋暖池区整体增暖不明显,主要与印度洋中部海域呈反位相变化,且明显受到季节和年际变化的调制。长江口附近沿岸、南海北部沿岸、中南半岛南部沿岸以及阿拉伯海西北部沿岸的近岸海域长期增暖明显,自20世纪90年代中后期,中南半岛东部和西部沿海、澳大利亚西部沿海以及我国东南沿海热比容海平面上升明显。近岸热比容海平面的季节演变对沿海地区社会和经济发展会造成一定影响。此外,东亚夏季风与东海、黄海和渤海热比容海平面的上升显著相关,同时,ENSO、太平洋年代际振荡和印度洋偶极子的发生也均与我国东南沿海和印度洋西部沿海热比容海平面上升明显关联。特别是,气候变暖情形下,各种区域性致灾因子和气候变率的协同影响会对丝路海区海岸带和沿海地区的防灾减灾与社会经济发展带来较大挑战,开展海岸带和沿海地区全球变化综合风险研究成为当前首要任务。  相似文献   

18.
本文利用大洋环流模式POP研究RCP4.5情景下21世纪格陵兰冰川不同的融化速率对全球及区域海平面变化的影响。结果显示:当格陵兰冰川的融化速率以每年1%增加时,全球大部分海域的动力和比容海平面变化基本不变,主要是由于格陵兰冰川在低速融化时并不会导致大西洋经向翻转流减弱。当格陵兰冰川的融化速率以每年3%和每年7%增加时,动力海平面在北大西洋副极地、大西洋热带、南大西洋副热带和北冰洋海域呈现出显著的上升趋势,这是因为格陵兰冰川快速融化导致大量的淡水输入附近海域,造成该上层海洋层化加强和深对流减弱,导致大西洋经向翻转流显著减弱;与此同时,热比容海平面在北冰洋、格陵兰岛南部海域和大西洋副热带海域显著下降,而在热带大西洋和湾流海域明显上升;此时盐比容海平面的变化与热比容海平面是反相的,这是由于大量的低温低盐水的输入,造成北大西洋副极地海域变冷变淡、大西洋经向翻转流和热盐环流显著减弱,引起了太平洋向北冰洋的热通量和淡水通量减少,导致了北冰洋海水变冷变淡,同时热带大西洋滞留了更多的高温高盐水,随着湾流被带到北大西洋,北大西洋副极地海域低温低盐的海水,被风生环流输运到副热带海域。  相似文献   

19.
The climate model of intermediate complexity developed at the Oboukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), has been supplemented by a zero-dimensional carbon cycle model. With the carbon dioxide emissions prescribed for the second half of the 19th century and for the 20th century, the model satisfactorily reproduces characteristics of the carbon cycle over this period. However, with continued anthropogenic CO2 emissions (SRES scenarios A1B, A2, B1, and B2), the climate-carbon cycle feedback in the model leads to an additional atmospheric CO2 increase (in comparison with the case where the influence of climate changes on the carbon exchange between the atmosphere and the underlying surface is disregarded). This additional increase is varied in the range 67–90 ppmv depending on the scenario and is mainly due to the dynamics of soil carbon storage. The climate-carbon cycle feedback parameter varies nonmonotonically with time. Positions of its extremes separate characteristic periods of the change in the intensity of anthropogenic emissions and of climate variations. By the end of the 21st century, depending on the emission scenario, the carbon dioxide concentration is expected to increase to 615–875 ppmv and the global temperature will rise by 2.4–3.4 K relative to the preindustrial value. In the 20th–21st centuries, a general growth of the buildup of carbon dioxide in the atmosphere and ocean and its reduction in terrestrial ecosystems can be expected. In general, by the end of the 21st century, the more aggressive emission scenarios are characterized by a smaller climate-carbon cycle feedback parameter, a lower sensitivity of climate to a single increase in the atmospheric concentration of carbon dioxide, a larger fraction of anthropogenic emissions stored in the atmosphere and the ocean, and a smaller fraction of emissions in terrestrial ecosystems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号