首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The results of the first ground-based spectroscopic measurements in Russia of the total content (TC) of nitric acid in the atmosphere near St. Petersburg over the period April 2009–October 2011 are presented. These measurements show a substantial seasonal trend of the HNO3 TC with maximal values in the winter period and early in the spring and minimal values in the summer time. The seasonal trends and variations in the daily mean values of HNO3 TC near St. Petersburg in the winter and spring periods agree well with observations at the Kiruna station of the international NDACC network.  相似文献   

2.
Ozone total column (OTC) measurements made in 2009–2012 near St. Petersburg by a Fourier Transform Infrared (FTIR) spectrometer (Peterhof, St. Petersburg State University (SPbSU)), an M-124 filter ozonometer, and a Dobson spectrophotometer (Voeikovo, MGO), as well as measurements made by a spectrometer ozone monitoring instrument (OMI) (onboard the AURA satellite) have been analyzed and compared. Comparisons have been performed both between ensembles of ground-based measurement data, as well as between ground-based and satellite data. It has been shown that the standard deviation for all devices is 2.5–4.5%; here, the FTIR and Dobson instruments measuring the direct sun are in better agreement with OMI than the M-124 ozonometer measuring the zenith-scattered solar radiation as well. A seasonal cycle in discrepancy with amplitude of 1.5% has been detected between two series of OTC measurements made by M-124 and OMI instruments for a total of 850 days. In fall and winter, the ground-based measurements underestimate the OTC values in comparison with satellite data; in spring and summer, the situation is reversed: ground-based data overestimate the OTC values. Also, it has been revealed that FTIR measurements systematically overestimate the OTC values in comparison with other instruments: from 1.4% (for Dobson) to 3.4% (for OMI). Taking into account the spatial and temporal discrepancy of independent ensembles of measurements and an analysis of standard deviations between ground-based and satellite measurement data, the FTIR spectrometer (SPbSU) can be recommended for OTC satellite data validation.  相似文献   

3.
In 2003, measurements of the total ozone content (TOC) in the central Arctic Basin were resumed after a long-term break at the NP-32 and NP-33 drifting research stations. This paper presents the first results of analyses of the observational data obtained at the NP-32 and NP-33 stations and aboard the R/V Akademik Fedorov. An approach allowing comparison fo the mean ozone-content values measured in different time periods from moving platforms, such as drifting stations and research vessels, is used. The TOC variability over the central Arctic Basin in 2003–2005 is described, and results of comparison of these data with the data of both long-term TOC measurements at a number of stationary Arctic stations in 1973–2002 and measurements at the NP-22 station in 1976–1977 are presented.  相似文献   

4.
We present ground-based spectroscopic measurements of the total hydrogen chloride in the atmosphere of Peterhof near St. Petersburg from April 2009 to March 2012. The well-known computer code SFIT-2 (Zephyr-2) was used to interpret the spectra of the solar IR radiation. The random and systematic errors of total column (TC) HCl measurements did not exceed 3.8 and 4.5%. The seasonal behavior of TC HCl in Peterhof is characterized by the presence of a maximum in March–April and a minimum in October–November. There are also extremely small TC HCl values in January–February. The time behavior obtained for Peterhof agrees well with data from nearest stations in the NDACC international network. The ground-based measurements of the TC HCl were compared with satellite measurements with the help of ACE-FTS and MLS instruments. The direct comparisons of coincident (within a day) and collocated (within 500 km) satellite and ground-based measurements showed a correspondence of results within their total errors.  相似文献   

5.
Examples of retrieval of the total ozone content (TOC) from the spectra of outgoing thermal radiation measured by the IRFS-2 device on the Meteor-M no. 2 meteorological satellite are presented. The technique, developed by the authors and based on an artificial neural network (ANN) approach with the use of TOC measurements by the satellite OMI device, is applied. A comparison of the results with the data of independent TOC measurements has shown their agreement within 2–5% for global ensemble and within 3–6% for separate latitudes and seasons. The errors estimated for IRFS-2 TOC measurements are close to the errors in measurements by a similar IASI device from the MetOp (EUMETSAT) satellite.  相似文献   

6.
The possibility of remotely monitoring the total atmospheric ozone content (TAOC) using data from the multichannel geostationary scanning instrument (MGSI) aboard the Elektro-L no. 1 Russian meteorological satellite is explored. In addition to the MGSI measurements in three channels (8.2–9.2, 9.2–10.2, and 10.2–11.2 μm), data on the vertical temperature distributions in the ozone layer and the temperature and pressure at the underlying terrain level (satellite sensing results or forecast data) are used as additional predictors in the process of TAOC estimation. The TAOC estimates are constructed with the use of a regularized regression algorithm (ridge regression). The learning and check samples are formed using independent TAOC estimates based on the data gathered by the OMI instrument aboard the EOS Aura satellite. Numerical experiments in processing the actual MGSI data gathered over certain periods within the interval from November 2011 to August 2012 reveal the possibility of arranging regular monitoring of the TAOC fields with high spatial and temporal resolutions and an acceptable precision: the absolute value of relative mean deviations and the relative root-mean-square deviations of the estimates based on the MGSI data from the estimates based on the OMI data lie within intervals of 1–2% and 5–7%, respectively, depending on the underlying terrain type.  相似文献   

7.
On the basis of ground-based measurements of total ozone content (TOC) over Russia and a number of neighboring states during 1973–2002, the amplitudes and phases of TOC variations caused by the quasi-biennial oscillation (QBO) of wind in the equatorial stratosphere are estimated for different regions and for the whole area. The seasonal dependence of the QBO effect in the TOC is analyzed. It is shown that the magnitude and even the sign of the effect depend on the relation between the equatorial QBO phase and the season. The regional empirical models of seasonally dependent QBO effects are constructed. It is found that the seasonal dependence of regional effects accounts for 4% (in the north of the area) to 20% (in the south) of the interannual variability of the TOC. The relation between the QBO effect and the 11-year cycle of solar activity is analyzed. Significant differences are revealed in the effects under the conditions of maximum and minimum solar activity. The QBO effects obtained from observations at Russian stations, satellite measurements with a TOMS instrument, and spectrometric observations of the TOC at western European stations are compared, and their satisfactory agreement is shown. An analysis of the results suggests that the QBO effects in the TOC over Russia are caused by several interacting factors and apparently reflect their regional properties.  相似文献   

8.
A method for determining the total ozone (TO) with high spatial (3×3 km2) and temporal (15 min) resolutions by using measurements of the Earth’s outgoing thermal radiation from Meteosat geostationary satellites is proposed. The method is based on measurements with a SEVIRI instrument (eight IR channels) and involves additional information on the three-dimensional field of the atmospheric temperature and on the surface temperature obtained from polar satellites (AIRS instrument). The inverse problem of TO determination is solved by the method of neural networks. TO measurements with the AIRS instrument are also used for training the neural networks. Ground-based TO measurements at the international ozonometric network are used for controlling the quality of AIRS data and detecting the errors of the proposed method of TO determination from SEVIRI data. The mean and rms differences between TO values obtained with the use of the proposed method and from the results of measurements at the international ozonometric network are shown to be 1.5 and 6.5%, respectively. Examples of TO distributions reconstructed with high spatial and temporal resolutions are presented. These examples show that the elaborated method for solving various scientific and applied problems and, in particular, for investigating stratospheric dynamics is promising.  相似文献   

9.
利用设立于厦门岛西南部沿海的气溶胶地基观测站点2008年1月7日至2009年4月30日的观测资料,对厦门海域气溶胶光学厚度的每日逐时变化、逐日变化、逐月变化进行了分析研究,并利用观测结果对MODIS L2级气溶胶光学厚度(AOT)产品进行检验。结果表明,厦门海域气溶胶光学厚度每日逐时变化和逐月变化有一定的季节规律,而逐日变化随气象条件的不同有很大差异。一年中气溶胶光学厚度月平均值呈现春秋季双峰分布趋势,4月份最大,超过0.9,空气较为混浊;6月份呈现谷值,AOT小于0.3,空气相对清洁。夏季气溶胶主控粒子的粒径较大,而其余各月份的波长指数在平均值1.21附近波动,混浊系数年平均值为0.25。利用该地基观测资料对MODIS L2级AOD产品进行检验,MODIS反演的厦门海域气溶胶光学厚度逐月变化趋势和地基观测结果完全一致,表明MODIS卫星遥感气溶胶光学厚度能比较好地反映厦门海域的气溶胶季节变化特征。  相似文献   

10.
We present the results of the analysis of the phase relationships between the quasi-decadal variations (QDVs) (in the range from 8 to 13 years) in the total ozone content (TOC) at the Arosa station for 1932–2012 and a number of meteorological parameters: monthly mean values of temperature, meridional and zonal components of wind velocity, and geopotential heights for isobaric surfaces in the layer of 10–925 hPa over the Arosa station using the Fourier methods and composite and cross-wavelet analysis. It has been shown that the phase relationships of the QDVs in the TOC and meteorological parameters with an 11-year cycle of solar activity change in time and height; starting with cycle 24 of solar activity (2008–2010), the variations in the TOC and a number of meteorological parameters occur in almost counter phase with the variations in solar activity. The periods of the maximum growth rate of the temperature at isobaric surfaces 50–100 hPa nearly correspond to the TOC’s maximum periods, and the periods of the maximum temperature correspond the periods of the decrease of the peak TOC rate. The highest correlation coefficients between the meridional wind velocity and temperature are observed at 50 hPa at positive and negative delays of ~27 months. The times of the maxima (minima) of the QDVs in the meridional wind velocity nearly correspond to the periods of the maximum amplification (attenuation) rate of the temperature of the QDVs. The QDVs in the geopotential heights of isobaric surfaces fall behind the variations in the TOC by an average of 1.5 years everywhere except in the lower troposphere. In general, the periods of variations in the TOC and meteorological parameters in the range of 8–13 years are smaller than the period of variations in the level of solar activity.  相似文献   

11.
The results of long-term (1980–2003) systematic measurements of the total ozone content at the Issyk Kul station (42.6° N, 77.0° E; 1650 m above sea level) are presented. The statistical characteristics and spectral structure of variations in the total ozone and the main tendencies of its temporal variability are determined. It is found that the total ozone content decreased in 1980–2003 at an average rate of (?1.29±0.08) DU/yr. The results of Fourier and wavelet analyses have shown that only oscillations with periods of 12, 27–29, and 102–105 months are rather stable and can be represented as harmonic oscillations. Oscillations with periods shorter than six months have the character of periodically arising pulsations. Among these, oscillations with periods of 27–29 and 34–37 days can be distinguished. It is noted that the spectral-temporal structure of variations in the total ozone content obtained from ground-based measurements at the Issyk Kul station is in good agreement with the corresponding structure obtained from TOMS satellite measurements.  相似文献   

12.
The requirements imposed on the spectral characteristics of optical filters for portable optical ozonometers are analyzed; when satisfied, they make it possible to determine the total atmospheric ozone to an accuracy no lower than the accuracy achieved by complex spectral slit instruments. Considered is the dependence of the calculated ozone absorption coefficients on the spectral characteristic of the filters and total ozone for the nonmonochromatic radiation measured with two optical filters. Estimates of the role of contrast and permissible values of the background transmittance of filters in the range of 294.8–400 nm are presented. With these estimates taken into account, it is recommended in two-filter ozonometers to use interference filters with a transmission maxima at 305.5–307 and 326–330 nm with a spectral width of their bands at half of the height of the maximum transmission of 2–5 nm.  相似文献   

13.
A review of contemporary methods for determining integrated parameters of the water content in the atmosphere―atmospheric water-vapor content and cloud liquid-water content―is presented. Fields of these parameters can only be mapped spatially on the basis of using data of satellite measurements. The least errors of the retrieval of atmospheric water-vapor content and cloud liquid-water content is provided by methods based on using measurements of the satellite-borne scanning multichannel microwave radiometers over the ice-free ocean areas in the absence of precipitation. Most methods for retrieving the atmospheric water-vapor content and cloud liquid-water content from the data of microwave radiometers are based on results of numerical simulation of brightness temperatures of the upwelling microwave radiation of the ocean–atmosphere system. The evolution of satellite-borne microwave radiometers and methods for the retrieval of integrated parameters of water content is presented.  相似文献   

14.
New prognostic estimates are obtained for the potential variability of the atmospheric ozone content in the first half of the 21st century. The calculations are based on models of gas composition and general circulation in the lower and middle atmosphere and on the scenarios of the World Meteorological Organization (WMO). It is shown that the rate of ozone content increase will be controlled to a considerable extent by variations in stratospheric temperature. Even though the contents of atmospheric chlorine and bromine are not reduced, contrary to the WMO prediction, and remain at the present-day levels, the continuation of stratospheric cooling will lead to a rapid recovery of the ozone content to its level characteristic of the 1980s. Model experiments on variations in the stratospheric aerosol content have shown that an increase in the aerosol concentration will not affect the rate of ozone recovery in the atmosphere during reduced emissions of chlorine and bromine gases if the stratospheric temperature remains lowered. Numerical experiments have also shown that the simultaneous anthropogenic action on the contents of halogen gases and on the lower-stratosphere temperature can reduce the adverse effects of Freons and halons on the ozone layer.  相似文献   

15.
The results of the carbon monoxide total content measurements over Moscow and Zvenigorod for 2005–2008 are compared with the same data sets for Moscow 1986–2005 and Beijing, 1992–2007. Two identical medium resolution diffraction spectrometers (resolution 0.2 cm?1) with solar tracking system were used. The CO total content measured simultaneously over the city and over Zvenigorod Scientific Station (ZSS) of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (60 km west from Moscow). This method allows to isolate an urban part of CO content. The acoustic locator SODAR LATAN-3 measurements permitted us to study the influence of the carbon monoxide ventilation conditions upon level of pollution. Correlation coefficients between the urban part of CO content and average wind speed for cold and warm seasons were obtained. The data sets analysis showed a preeminent effect of the wind within boundary layer (up to 300 m) over the CO ventilation. The urban part of the CO content hasn’t increased in spite of more than quintuple increase of the motor-vehicles number in Moscow. An increase of the rural CO total column for the 1970–1985 has transformed into its virtually stable amount in between of 1986 to 2000, changed then to a decrease for 2001–2008. We noted the 2008 as “the year of the CO total column minimum” over the past decade. The effect of urban CO sources influence on the CO total column in rural area is small, i.e. on a level of 3% of the total number of measurements. The number of extremal daily values for Moscow is estimated as 5%, and 20% for Beijing.  相似文献   

16.
The goal of the paper is an analysis of changes in the amplitude and phase characteristics of the annual variation (AC) of total ozone (TO) from ground-based and satellite (TOMS) measurements and their interpretation with a two-dimensional photochemical model. According to ground-based TO measurements, two characteristic types of quasi-decadal variations in the phase of the annual harmonic (AH) of total ozone have been noted: variations in phase and antiphase with solar activity (SA). Changes in the TO AH phase opposite to solar activity variation are noted the high latitudes of the North Atlantic region and in the tropical belt, and in-phase changes are observed in the middle and subtropical latitudes of both hemispheres. Variations in the TO AH amplitude (hence, in the TO AV amplitude) and in the annual mean TO usually coincide in phase with the SA cycle. Analysis of satellite data shows that the 0-phase of the AV and the phase of the AH of the zonal mean TO at middle latitudes vary synchronously with the 11-year solar cycle. Model simulations have shown that the stratospheric ozone influx to the middle latitudes increases in the fall and winter period during a period of maximum solar activity. This dynamic mechanism accounts for up to 30% of the winter ozone increase in the ozone maximum layer in the Southern Hemisphere midlatitudes during the solar maximum as compared with the solar minimum. In the northern midlatitudes, the dynamic mechanism makes the main contribution to ozone changes during the latter half of winter under SA variations. The stratospheric ozone inflow change induced by SA variations affects the annual variation of ozone.  相似文献   

17.
The results of ground-based measurements of the total content (TC) of hydrogen fluoride in the atmosphere in Peterhof near St. Petersburg for one year (from April 2009 through April 2010) using a Bruker IFS125 Fourier spectrometer with a high spectral resolution (0.005 cm?1) are presented. The well-known computer code SFIT2 (Zephyr-2) was used for the radiation data inversion. Random measurement errors were 1–5% and the systematic error was 5–10%. The seasonal trend of the HF TC in Peterhof is characterized by a minimum in summer and a maximum in winter through early spring and is very close to the seasonal HF TC trend obtained at the Harestua Network for the Detection of Atmospheric Composition Change (NDACC) station located at about the same latitude. A comparison of the St. Petersburg State University (SPbSU) ground-based measurements with the data of satellite HF TC measurements (with an ACE-FTS instrument) showed a good quantitative agreement of the results for the entire period of observations. According to our ground-based measurements and the satellite measurements with the ACE-FTS instrument, the mean values of the HF TC and its rms variations during the period under investigation are 1.77 × 1015 and 1.80 × 1015 cm?2 (difference 1.5%) and 21 and 18%, respectively.  相似文献   

18.
19.
As follows from the statement of the Third Official Solar Cycle 24 Prediction Panel created by the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the International Space Environment Service (ISES) based on the results of an analysis of many solar cycle 24 predictions, there has been no consensus on the amplitude and time of the maximum. There are two different scenarios: 90 units and August 2012 or 140 units and October 2011. The aim of our study is to revise the solar cycle 24 predictions by a comparative analysis of data obtained by three different methods: the singular spectral method, the nonlinear neural-based method, and the precursor method. As a precursor for solar cycle 24, we used the dynamics of the solar magnetic fields forming solar spots with Wolf numbers Rz. According to the prediction on the basis of the neural-based approach, it was established that the maximum of solar cycle 24 is expected to be 70. The precursor method predicted 50 units for the amplitude and April of 2012 for the time of the maximum. In view of the fact that the data used in the precursor method were averaged over 4.4 years, the amplitude of the maximum can be 20–30% larger (i.e., around 60–70 units), which is close to the values predicted by the neural-based method. The protracted minimum of solar cycle 23 and predicted low values of the maximum of solar cycle 24 are reminiscent of the historical Dalton minimum.  相似文献   

20.
Satellite and ground-based measurements of the hydrogen fluoride (HF) total content (TC) are analyzed and compared. The HF profiles measured with an FTS device on the ACE satellite are used to calculate the TC and compare it with the ground-based measurements near St. Petersburg in 2009–2011. A comparison indicated that the seasonal variations in HF TC based on two independent measurements are in good qualitative agreement. Rare (nine) cases of direct comparison between two measurement types coordinated with respect to time (during the day) and site (no farther than 500 km) gave the following characteristics: the average difference is 8% and satellite data predominate over ground data; the standard deviation of a difference is 7%. In two cases of close measurement pairs (closer than 200 km), a comparison gave differences of 1 and 7%. The statistical characteristics of differences between two measurement types are in good agreement with the independent comparison of the ACE-FTS HF TC measurements with the NDACC network data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号