首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
This paper presents results from a simulation of climate changes in the 19th–21st centuries with the Institute of Numerical Mathematics Climate Model Version 4 (INMCM4) in the framework of the Coupled Model Intercomparison Project, phase 5 (CMIP5). Like the previous INMCM3 version, this model has a low sensitivity of 4.0 K to a quadrupling of CO2 concentration. Global warming in the model by the end of the 21st century is 1.9 K for the RCP4.5 scenario and 3.4 K for RCP8.5. The spatial distribution of temperature and precipitation changes driven by the enhanced greenhouse effect is similar to that derived from the INMCM3 model data. In the INMCM4 model, however, the heat flux to the ocean and sea-level rise caused by thermal expansion are roughly 1.5 times as large as those in the INMCM3 model under the same scenario. A decrease in sea-ice extent and a change in heat fluxes and meridional circulation in the ocean under global warming, as well as some aspects of natural climate variability in the model, are considered.  相似文献   

2.
Over the next 5–10 years, the WOCE hydrographic program will generate reliable hydrographic data for the world oceans. The resultant conductivity salinity, temperature, and pressure data will generate calculated densities that will be used to examine mixing along constant density surfaces. Changes in the composition of deep waters due to the breakdown of plant material can effect the calculated densities at a given conductivity salinity. The increases in SiO2, nitrate, alkalinity, and TCO2 (or pH) can change the density of seawater as well as the conductivity. For studies of the salinity and density fields over small spatial scales, these changes will be small, but for large scale and ocean to ocean studies the differences can be significant. The density calculations based on the salinity determined from conductivity need to be adjusted for the offsets due to changes in the composition of seawater. This report describes how this correction should be made using existing information.  相似文献   

3.
Sea-ice retreat processes are examined in the Sea of Okhotsk. A heat budget analysis in the sea-ice zone shows that net heat flux from the atmosphere at the water surface is about 77 W m−2 on average in the active ice melt season (April) due to large solar heating, while that at the ice surface is about 12 W m−2 because of the difference in surface albedo. The temporal variation of the heat input into the upper ocean through the open water fraction corresponds well to that of the latent heat required for ice retreat. These results suggest that heat input into the ice–upper ocean system from the atmosphere mainly occurs at the open water fraction, and this heat input into the upper ocean is an important heat source for ice melting. The decrease in ice area in the active melt season (April) and the geostrophic wind just before the melt season (March) show a correlation: the decrease is large when the offshoreward wind is strong. This relationship can be explained by the following process. Once ice concentration is decreased (increased) by the offshoreward (onshoreward) wind just before the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration. This positive feedback is regarded as the ice–ocean albedo feedback, and explains in part the large interannual variability of the ice cover in the ice melt season.  相似文献   

4.
《Ocean Modelling》2007,16(3-4):236-249
Observational studies of the Pacific basin since the 1950s have demonstrated that a decrease (increase) in tropical Pacific sea surface temperatures (SSTs) is significantly correlated with a spin-up (slow-down) of the Pacific Subtropical Cells (STCs). STCs are shallow wind-driven overturning circulations that provide a pathway by which extratropical atmospheric variability can impact the equatorial Pacific thermocline and, through upwelling in the eastern equatorial Pacific, tropical Pacific SSTs. Recent studies have shown that this observed relationship between SSTs and STCs is absent in coupled climate model simulations of the late 19th–20th centuries. In this paper we investigate what causes this relationship to breakdown and to what extent this limits the models’ ability to simulate observed climate change in the equatorial Pacific since the late 19th century. To provide insight into these questions we first show that the NCAR Community Climate System Model’s simulation of observed climate change since the 1970s has a robust signal in the equatorial Pacific that bears a close resemblance to observations. Strikingly, absent is a robust signal in the equatorial thermocline. Our results suggest that the coupled model may be reproducing the observed local ocean response to changes in forcing but inadequately reproducing the remote STC-forcing of the tropical Pacific due to the underestimate of extratropical winds that force these ocean circulations. These conclusions are found to be valid in five different coupled climate model simulations of the late 19th–20th centuries (CCSM3, GISS EH, GFDL CM2.1, CSIRO-Mk3, and HadCM3).  相似文献   

5.
With the observational wind data and the Zebiak-Cane model, the impact of Madden-Julian Oscillation(MJO) as external forcing on El Nino–Southern Oscillation(ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform(CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation(CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nino 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation.  相似文献   

6.
The formation of the fields of surface winds over the Black Sea occurs under the action of numerous physical factors. One of the most important factors is the monsoon mechanism connected with the seasonal variations of buoyancy contrasts over the sea and surrounding land. To separate the effects caused by this mechanism, we performed and described the numerical experiments aimed at the evaluation of the sensitivity of the regional model of atmospheric circulation to the variations of land–sea temperature contrasts. It is shown that the influence of these effects is restricted to the lower part of the atmosphere. The presented estimates of the climatic fields of disturbances enable us to describe the monsoon mechanism specifying the seasonal variability of the field of vorticity of the wind velocities and, as a consequence, the seasonal variability of the large-scale circulation of waters in the Black Sea.  相似文献   

7.
Izvestiya, Atmospheric and Oceanic Physics - Results are presented from assessing forest ecosystem disturbances in the forest–steppe zone of Russia’s Central Chernozem region in the...  相似文献   

8.
A study of coccolith assemblages from a box core from the central South Yellow Sea(SYS) was performed revealing fluctuations on their relative abundance(%) that can be related to climatic and hydrographic changes over the last 230 years(1780–2011). Total coccolith abundances ranged from 7.0 to 55.1×10~6 coccoliths·g~(-1)sediment. Although the abundance of different species varied widely throughout the core, seven taxa dominated the assemblage. Among these species, Gephyrocapsa oceanica was the most dominant species, and it showed an average percentage of 50.1%. The pattern of G. oceanica(eutrophic species) was opposite to that of the combined percentage of Braarudosphaera bigelowii and Umbilicosphaera sibogae(both oligotrophic species), indicating that in the Yellow Sea(YS), the distribution pattern of G. oceanica might be characteristic of nutrient availability.Similar patterns between G. oceanica and the Siberian High were observed on an inter-decadal time scale,indicating that the East Asian Winter Monsoon(EAWM) may be an important driver of ecological changes in the YS. When the EAWM prevails, both the Yellow Sea Coastal Current(YSCC) and Yellow Sea Warm Current(YSWC)strengthen, and the increasing nutrient availability and warmer water brought by the strengthened YSWC favor eutrophic and warm-water coccolithophore species, such as G. oceanica. This likely mechanism demonstrates that coccolith assemblages can be used as benign and reliable proxy for climate change and surface oceanography.  相似文献   

9.
Melting icebergs are a mobile source of fresh water as well as a sink of latent heat. In most global climate models, the spatio-temporal redistribution of fresh water and latent heat fluxes related to icebergs is parameterized by an instantaneous more or less arbitrary flux distribution over some parts of the oceans. It is uncertain if such a parameterization provides a realistic representation of the role of icebergs in the coupled climate system. However, icebergs could have a significant climate role, in particular during past abrupt climate change events which have been associated with armada’s of icebergs. We therefore present the interactive coupling of a global climate model to a dynamic thermodynamic iceberg model, leading to a more plausible spatio-temporal redistribution of fresh water and heat fluxes. We show first that our model is able to reproduce a reasonable iceberg distribution in both hemispheres when compared to recent data. Second, in a series of sensitivity experiments we explore cooling and freshening effects of dynamical icebergs on the upper Southern Ocean and we compare these dynamic iceberg results to the effects of an equivalent parameterized iceberg flux.In our model without interactive icebergs, the parameterized fluxes are distributed homogeneously South of 55°S, whereas dynamic icebergs are found to be concentrated closer to shore except for a plume of icebergs floating North–East from the tip of the Antarctic Peninsula. Compared to homogeneous fluxes, the dynamic icebergs lead to a 10% greater net production of Antarctic bottom water (AABW). This increased bottom water production involves open ocean convection, which is enhanced by a less efficient stratification of the ocean when comparing to a homogeneous flux distribution.Icebergs facilitate the formation of sea-ice. In the sensitivity experiments, both the fresh water and the cooling flux lead to a significant increase in sea-ice area of 12% and 6%, respectively, directly affecting the highly coupled and interactive air/sea/ice system. The consequences are most pronounced along the sea-ice edge, where this sea-ice facilitation has the greatest potential to affect ocean stratification, for example by heat insulation and wind shielding, which further amplifies the cooling and freshening of the surface waters.  相似文献   

10.
11.
12.
13.
Oceanology - The study examines changes in the abundance (density) and distribution of European Sprattus sprattus (Linnaeus, 1758) eggs and larvae, as well as the phenology of its spawning...  相似文献   

14.
Following the first International Conference on Gas in Marine Sediments in Edinburgh, UK (1990), another eight successful conferences have provided a continuous forum for scientists from a variety of disciplines, organisations and countries. The 9th meeting of the Shallow Gas Group was held in September 2008 in Bremen, a hanseatic city more than 1,200 years old in northern Germany. The Shallow Gas Group was joined for this conference by participants of the HERMES EU-funded project and by members of an industry-funded project. Volume 30 (3/4) of Geo-Marine Letters is a double issue containing 25 selected papers from the 9th conference in Bremen, guest edited by G. Bohrmann and B.B. Jørgensen. The papers represent the broad spectrum of oral and poster contributions from the conference, covering a wide range of aspects of gas in marine sediments from many parts of the world. The next conference of the Shallow Gas Group is planned to be held in Listvyanka at Lake Baikal, Russia, in September 2010.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号