首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of single-type optical observations, analysis, and comparison of dynamic characteristics of the effects in the surface atmosphere that accompanied four partial solar eclipses (August 11, 1999; May 31, 2003; October 3, 2005; March 29, 2006) near the city of Kharkiv (Ukraine) are presented. The effects observed in the morning, near-noon, and afternoon hours differed markedly. During the solar eclipses, the temperature of the surface atmosphere decreased by 1.3–7.3°. It was detected that, when the maximum value of the occultation function changed from 0.24 to 0.73, the standard deviation of solar-limb displacement σ S decreased by 0.14″ and 0.68″, respectively. The time of convection development was found to be 15–16 min. The parameters of dynamic processes in the surface atmosphere have been calculated and the parameters of mechanical and thermal turbulence have been estimated from the results of measurements of the statistical characteristics of the level of solar-limb tremor with invocation of theoretical relations. The solar eclipses were accompanied by quasi-periodic processes in the atmosphere, which were most likely associated with the generation and propagation of internal gravity waves.  相似文献   

2.
Abstract. Seasonal variation of temperature effects on photosynthesis and respiration of Cymodorea nodosa (Ucria) Ascherson was investigated in a 1 m depth meadow in the Mar Menor lagoon (SE Spain). Light-saturated net photosynthesis (Pmax)and dark respiration (R) rates were linearly correlated with water temperature between 10 and 30°C. and 10 and 35°C, respectively, during the year. Water temperature had a similar effect on R rates in August, November, and February, but increased Pmax rates in August vs. those in February, thus promoting a shift of the maximum Pmax/R ratio values from 15°C in February to 30°C in August. P-I curves had higher Pmax values in May and August than in November or February, while Ic values remained relatively constant throughout the year. Whole-plant carbon balances suggested that C. nodosa might not be able to survive in the central basin of the lagoon and that the spatial distribution of this seagrass in the Mar Menor might be controlled by light availability.  相似文献   

3.
In this work the procedure of replacing the inhomogeneous atmosphere with homogeneous layers is discussed. The absorption and emission functions of a layer in a selected spectral region are the same as they are for the inhomogeneous layer. The dependence of the effective brightness temperature of a layer on its thickness is shown in the methane absorption band 1220–1260 cm–1. Negative values of luminosity spectral density of a homogenous atmospheric layer with a width of over 3200 m indicate an increase in the weakening role of the layer for the outgoing radiation in the considered atmospheric model. The application of the method of gas optical filter correlation for a measurement of the methane content in the near-ground atmospheric layer from an aerospace platform is considered.  相似文献   

4.
An interactive three-dimensional chemistry-climate model combining models of the gas composition and general circulation of the lower and middle atmosphere is used to study the impact of changes in extra-atmospheric solar radiative fluxes induced by solar activity on the stratospheric heating and subsequent temperature and ozone variations in the stratosphere and troposphere. The results have shown that a change in the atmospheric radiative heating resulting from variations in solar activity has a direct effect on the temperature and circulation of the atmosphere. Atmospheric temperature variations affect the rates of temperature-dependent chemical reactions, and this is considered the first type of indirect impact of solar activity on the atmospheric gas composition. On the other hand, as a result of the variation in atmospheric heating, its circulation changes, thus affecting the transport of minor gases into the atmosphere. This effect is considered the second type of indirect impact of solar activity on atmospheric gases. The results of our calculations have shown that both types of indirect impact of the variation in solar activity on the atmospheric gas composition are comparable in order of magnitude to the direct impact of solar activity on atmospheric gases.  相似文献   

5.
Based on satellite and in situ data, we quantitatively estimated the penetration of PAR (photosynthetically available solar radiation in the visible spectral range of 400–700 nm) into waters of the central Barents Sea in the summer seasons of 2014–2016. The effects of cloudiness and coccolithophore blooms on the incidence and penetration of PAR was examined. These blooms occur in the Barents Sea almost every year. We estimated the impact of visible solar radiation on the SST against a background of incoming warmer waters of the Norwegian Current and established that the PAR impact is the most pronounced under clear sky conditions in July and August.  相似文献   

6.
The evolution of smoke plume over European Russia (ER) during the massive forest and peatbog fires of summer 2010 has been studied using observations of aerosol optical depth (AOD) from MODIS instruments (both Aqua and Terra platforms), objective analysis of meteorological fields performed at the Russian Hydrometeorological Research Center, NCEP/NCAR reanalysis, as well as upper air data. A relation between the structure inhomogeneities of the AOD field and regional atmospheric circulation has been found. It is shown that, on August 5–9, 2010, the maximum of smoke pollution did complete turn around Moscow, while remaining at a distance of 200 to 650 km from the megacity. Both regionally averaged shortwave aerosol radiative forcings (ARFs) at the top and the bottom of the atmosphere are estimated for the period of extreme smoke pollution over ER. The spatial distributions of ARF values over the territory of the region and the estimates of the local and spatially distributed thermal effects of smoke aerosol are given. It is shown that, on August 5–9, 2010, the spatial distribution of AOD and the calculated thermal effects of smoke aerosol were in agreement with the spatial distributions of air-temperature anomalies observed in the lower 1.5-km layer of the atmosphere. MODIS’s AOD data obtained during the wildfires were validated by AOD observations from the CIMEL sun photometer operated at the AERONET station Zvenigorod.  相似文献   

7.
We examined the effect of solar ultraviolet radiation B (UVB, 280–315 nm) on photosynthesis of natural phytoplankton assemblages in the temperate Changjiang River Estuary (CRE) in the East China Sea (ECS), and the subtropical Zhujiang River Estuary (ZRE) in the South China Sea (SCS) from August 2002 to April 2003. The short-term effect of UVB was assessed by exposing samples in quartz tubes/bottles to solar radiation under three treatments: (1) natural sunlight (NS) with UVB (NS-UVB); (2) photosynthetically active radiation (PAR, NS cut off UVB); and (3) NS with additional artificial UVB (NS + A-UVB). Solar UVB apparently inhibited phytoplankton photosynthesis rates. In the temperate CRE-ECS, solar UVB reduced surface phytoplankton photosynthesis by about 28% in August and February, while in the subtropical ZRE-SCS the inhibition was only 22% in September and October. In the CRE-ECS, phytoplankton in the stratified water column displayed stronger UVB inhibition when deeper water samples were exposed to surface UVB. Phytoplankton in the mixed water column did not show strong UVB inhibition, while light shift exposure of deeper phytoplankton in the same water column to surface light produced similar results, indicating that mixing moderates UVB effects. In the ZRE-SCS, surface phytoplankton showed greater photoinhibition in January (sunny). However, in April (cloudy), phytoplankton showed little UVB inhibition. Incubation for a short time without UVB showed a large increase in Chl a at two stations in the ZRE-SCS, but a large decrease at the other station in the presence of UVB. In contrast, in the CRE-ECS, a similar incubation experiment without UVB showed a decrease in Chl a, and small UVB inhibition of Chl a at two stations. Nutrient conditions might have played a role in the difference of UVB inhibition between the two regions as the ZRESCS had relatively high concentrations of all nutrients while PO4 was only 0.21 μM at one of the CRE-ECS stations. The results suggest that phytoplankton in temperate waters would be more responsive to variation of UVB than ones in subtropical waters.  相似文献   

8.
M. S. Barash 《Oceanology》2013,53(6):739-749
The consideration of the conditions during the mass extinctions has shown that a series of factors, including mutually independent tectonic movements, variations in the sea level and climate, volcanism, asteroid impacts, changes in the composition of the atmosphere and hydrosphere, the dimming of the atmosphere by aerosols at volcanism and impact events, etc., had a harmful affect during some periods of time (a hundred thousand years to millions of years). Some of the listed events occurred for a long period of time and could not have caused the abrupt catastrophic death of organisms on a global scale. The examination of the hierarchy of the major events allows us to distinguish the primary terrestrial (volcanism) and cosmic (impact events) reasons for the mass extinctions. The coeval mutually independent events testify to the common external reasons for the higher order beyond the solar system. These events are suggested to be related with the orbital movement of the solar system around the galaxy’s center, the intersection of the galactic branches, and the oscillations of the solar system’s position relative to the galactic plane. These reasons influence the processes on the Earth, including the internal and external geospheres, and activate the impacts of asteroids and comets. Under their effect, two main subsequences of events are developed: terrestrial, leading to intense volcanism, and cosmic impact events. In both cases, harmful chemical elements and aerosols are vented to the atmosphere, thus resulting in the greenhouse effect, warming, the dimming of the atmosphere, the prevention of photosynthesis, the ocean’s stagnation, and anoxia with the following reduction of the bioproductivity, the destruction of the food chains, and the extinction of a significant part of the biota.  相似文献   

9.
A simple, yet efficient and fairly accurate algorithm is presented to estimate photosynthetically available radiation (PAR) at the ocean surface from Global Imager (GLI) data. The algorithm utilizes plane-parallel radiation-transfer theory and separates the effects of the clear atmosphere and clouds, i.e., the planetary atmosphere is modeled as a clear atmosphere positioned above a cloud layer. PAR is computed as the difference between the incident 400–700 nm solar flux at the top of the atmosphere (known) and the solar flux reflected back to space by the atmosphere and surface (derived from GLI radiance), taking atmospheric absorption into account. Knowledge of pixel composition is not required, eliminating the need for cloud screening and arbitrary assumptions about sub-pixel cloudiness. For each GLI pixel, clear or cloudy, a daily PAR estimate is obtained. Diurnal changes in cloudiness are taken into account statistically, using a regional diurnal albedo climatology based on 5 years of Earth Radiation Budget Satellite (ERBS) data. The algorithm results are verified against other satellite estimates of PAR, the National Centers for Environmental Prediction (NCEP) reanalysis product, and in-situ measurements from fixed buoys. Agreement is generally good between GLI and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) estimates, with root-mean-squared (rms) differences of 7.9 (22%), 4.6 (13%), and 2.7 (8%) Einstein/m2/day on daily, weekly, and monthly time scales, and a bias of only 0.8–0.9 (about 2%) Einstein/m2/day. The rms differences between GLI and Visible and Infrared Spin Scan Radiometer (VISSR) estimates and between GLI and NCEP estimates are smaller and larger, respectively, on monthly time scales, i.e., 3.0 (7%) and 5.0 (14%) Einstein/m2/day, and biases are 1.1 (2%) and −0.2 (−1%) Einstein/m2/day. The comparison with buoy data also shows good agreement, with rms inaccuracies of 10.2 (23%), 6.3 (14%), and 4.5 (10%) Einstein/m2/day on daily, weekly, and monthly time scales, and slightly higher GLI values by about 1.0 (2%) Einstein/m2/day. The good statistical performance makes the algorithm suitable for large-scale studies of aquatic photosynthesis.  相似文献   

10.
This is a comprehensive study of the physicochemical characterization of multicomponent aerosols in the smoky atmosphere of Moscow during the extreme wildfires of August 2010 and against the background atmosphere of August 2011. Thermal–optical analysis, liquid and ion chromatography, IR spectroscopy, and electron microscopy were used to determine the organic content (OC) and elemental content (EC) of carbon, organic/inorganic and ionic compounds, and biomass burning markers (anhydrosaccharides and the potassium ion) and study the morphology and elemental composition of individual particles. It has been shown that the fires are characterized by an increased OC/EC ratio and high concentrations of ammonium, potassium, and sulfate ions in correlation with an increased content of levoglucosan as a marker of biomass burning. The organic compounds containing carbonyl groups point to the process of photochemical aging and the formation of secondary organic aerosols in the urban atmosphere when aerosols are emitted from forest fires. A cluster analysis of individual particles has indicated that when the smokiest atmosphere is characterized by prevailing soot/tar ball particles, which are smoke-emission micromarkers.  相似文献   

11.
影响东海气候的太阳活动信息分析   总被引:8,自引:2,他引:6  
采用逐次滤波法逐次提取东海气温资料序列中蕴涵的太阳活动影响信息并加以分析,发现东海气候年代际变化特征十分清楚,主要表现为:(1)突变性,东海夏季7月海平面层及对流层大气温度场在过去半个多世纪中发生过一次急剧变化,突变点是1978年7月.从1978年7月由历时30多年的温度偏低时期跃变为持续高温时期,高温期持续至20世纪末,升温幅度超过0.4℃.资料分析表明,整个对流层东海夏季大气温度都具有这种年代际变化特征;(2)高空气候持续增温型,东海夏季7月平流层中部10 hPa大气温度表现为一种波动式的持续升温过程,50多年来温度升高4℃,年升温率超过0.075℃/a.东海平流层底部100 hPa温度也具有持续升温的特点,从1948年至今呈缓慢升高的趋势,53 a升高了1.9℃,升温率为0.036℃/a;(3)周期性,东海不同高度大气温度都具有显著程度不同的22 a周期性年代际变化特征,22 a周期分量的振幅由高空到低空迅速减小,表明22 a周期高空清楚,低空不太明显.东海对流层中部和平流层底部还具有显著的11 a周期性年代际变化.据分析认为22 a周期是太阳黑子磁场磁性变化周期所激发,11 a周期与太阳黑子相对数11 a周期相吻合,二者均为太阳活动在大气气候中的反映.  相似文献   

12.
We consider some peculiarities of the behavior of thermal and radio thermal (microwave radiation) characteristics of the atmosphere during prestorm situations in water areas monitored directly and remotely. The objects of research are (a) a region of the SMKF1 station (Sombrero Key) in the Florida Straight in August 2005 and (b) Golubaya Bay in the Black Sea (Gelendzhik, the territory of the Southern Branch of the Shirshov Institute of Oceanology, Russian Academy of Sciences) in September 2010, several days before an intensive storm. Using meteorological and satellite microwave radiometric data, we have studied some common and specific features in the behavior of surface air temperature and humidity, surface fluxes of sensible and latent heat, total heat and water vapor content of the atmosphere, and microwave radiation characteristics of the “water surface-atmosphere” system during time periods preceding the approach of Hurricane Katrina to the region of SMKF1 and development of the sea storm near the Golubaya Bay. In both cases the effect of the accumulation of the latent heat of water vapor in the atmosphere was observed during the prestorm periods (of several days).  相似文献   

13.
The shortwave radiative forcings of smoke aerosol in the cloudless atmosphere during the summer fires of 2010 in European Russia were quantitatively estimated for the land surface and the atmospheric upper boundary from measurement data obtained at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics (OIAP ZSS), Russian Academy of Sciences. Variations in the temperature of the surface air layer due to the smoke-induced attenuation of incoming solar radiation were estimated. The most intensive smoke generation in the atmosphere was observed on August 7–9, 2010, when the maximum aerosol optical thickness amounted to more than 4.0 at a wavelength of 550 nm. In this case, the albedo of single aerosol scattering amounted to ∼0.95–0.96 and the asymmetry factor amounted to ∼0.69–0.70. The maximum shortwave radiative forcing of aerosol amounted to about −360 W/m2 for the land surface and almost −150 W/m2 for the atmospheric upper boundary. During the period of intensive smoke generation, the cooling of the atmospheric surface layer over daylight hours (12 h) amounted, on average, to ∼6°C. The power character of the dependence of the shortwave radiative forcing of aerosol for the land surface on aerosol optical thickness up to its values exceeding 4.0, which was revealed earlier on the basis of data on aerosol optical thickness (up to 1.5) obtained at the OIAP ZSS during the summer forest and peatbog fires of 2002 in the region of Moscow, was supported.  相似文献   

14.
As follows from the statement of the Third Official Solar Cycle 24 Prediction Panel created by the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the International Space Environment Service (ISES) based on the results of an analysis of many solar cycle 24 predictions, there has been no consensus on the amplitude and time of the maximum. There are two different scenarios: 90 units and August 2012 or 140 units and October 2011. The aim of our study is to revise the solar cycle 24 predictions by a comparative analysis of data obtained by three different methods: the singular spectral method, the nonlinear neural-based method, and the precursor method. As a precursor for solar cycle 24, we used the dynamics of the solar magnetic fields forming solar spots with Wolf numbers Rz. According to the prediction on the basis of the neural-based approach, it was established that the maximum of solar cycle 24 is expected to be 70. The precursor method predicted 50 units for the amplitude and April of 2012 for the time of the maximum. In view of the fact that the data used in the precursor method were averaged over 4.4 years, the amplitude of the maximum can be 20–30% larger (i.e., around 60–70 units), which is close to the values predicted by the neural-based method. The protracted minimum of solar cycle 23 and predicted low values of the maximum of solar cycle 24 are reminiscent of the historical Dalton minimum.  相似文献   

15.
景振华 《海洋与湖沼》1992,23(1):101-108
将由海洋中各物理过程产生的海水特性分布非均匀性,分为小、中、天气式和全球4种时、空尺度。对比副势带急民生罗斯贝波变形半径,阐明海洋天气式涡旋小于和慢于大气中的数十倍。对比在高空锋带下方,低怪大气锋中出现地面涡,揭示海洋蛇曲中不产生高空锋带类似物及近海底锋;大洋中自由涡虽能集中于海洋上半部,便与大气中低空正、反气旋正相反。因而,锋流环和洋中涡能对局地天气起作用,流环能成为海洋子午向热传递的重要机制。  相似文献   

16.
The earlier developed monotonous conservative variant of a net-characteristic method of the second- and third-order approximation based on 3D equations of magnetic gasodynamics with consideration for the magnetic field diffusion is expanded for the solution of dynamic problems on the flow of the upper atmosphere of the Earth by solar plasma. It is modified, which results in support for the solenoidality of the magnetic field and the removal of the magnetic charge. Calculations are carried out and preliminary results of using software complexes to simulate the passage of the leading edge of solar plasma through the upper atmosphere of the Earth are given. Unlike existing studies in this direction, the dynamics of the passage of the leading edge upon a strong burst in the intensity of solar wind over the entire altitude range from the surface of the Earth to the upper magnetosphere is considered.  相似文献   

17.
Sabellariid worms, such as Phragmatopoma lapidosa, are sessile suspension feeders that attach to exposed hard bottom and serve as foundation species for worm reefs which are complex, multifaceted habitats. While worm reefs are adapted to dynamic sedimentary environments, burial of these habitats by beach nourishment projects is a concern. This study determined duration and depth of burial that can be tolerated by P. lapidosa without death. Worm rock samples were buried in sand at 1–10 cm (1-cm intervals), and at 15, 25 and 40 cm for the duration of 72, 144, and 216 h and then surveyed for initial mortality after burial and one week after removal of sediment (latent effects). Initial mortality was similar across all burial depths for the 72-h duration with values ranging from 8.3% (±0.8 SE) for 1 cm to 24.0% (±8.0 SE) for 10 cm of sediment. As burial duration increased to 144 h, mortality generally increased as burial depth increased with an average mortality for 2 cm of sediment of 23.5% (±5.3 SE) increasing to 96.0% (±14.3 SE) with 40 cm of sediment. The mean percent mortality for burial samples in the 216 h treatment varied from a low of 71.2% (±3.3 SE) for 1 cm depth to a high of 100% (±0 SE) for 10, 15, 25, and 40 cm depths. Mortality for most treatments also increased over time after removal of sediment indicating latent effects of burial stress.  相似文献   

18.
New information about the chemical composition of the stratosphere and mesosphere is reviewed. This information was obtained in different seasons in both hemispheres with the use of the MIPAS (IR limb sounder), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY; UV-visible and near-IR nadir and limb viewer), and Global Ozone Mapping Spectrometer (GOMOS) instruments installed on the European Envisat satellite launched in 2002. Measurements with the MIPAS instrument make it possible to retrieve information about the composition of the nighttime atmosphere. It should be noted that several powerful solar proton events (SPEs) occurred on the Sun in the period of satellite measurements. As is well known, the ionization of the polar atmosphere by SPEs is responsible for the intense interaction between ionic and neutral constituents below 100 km, which leads to the additional formation of nitrogen oxides and OH radicals destroying the ozone. Therefore, observations of the composition of the middle atmosphere in these periods are of great interest, because such situations serve as a unique test which makes it possible to check our knowledge not only about photochemical processes in the atmosphere but also about its interaction with cosmic plasma. The results of a comparison of model calculations with newly obtained data on the chemical composition, including those for SPE periods, are presented.  相似文献   

19.
A technique is presented to estimate photosynthetically available radiation (PAR) at the ocean surface from Geostationary Ocean Color Imager (GOCI) data. The sensor is adapted to the problem, since it measures at visible wavelengths and does not saturate over clouds, and the hourly data provides adequate temporal sampling to describe diurnal variability of clouds. Instantaneous surface PAR is computed as the difference between the solar irradiance incident at the top of the atmosphere (known) and the solar irradiance reflected back to space (derived from GOCI radiance), taking into account absorption and scattering by the clear atmosphere (modeled). Knowledge of pixel composition is not required. Apart from planetary albedo and sun zenith angle, the model parameters are fixed at their climatological values. The instantaneous PAR estimates at hourly intervals are integrated over time to provide daily values. The technique is applied to GOCI imagery acquired on 5 April 2011, and the GOCI daily PAR estimates are compared with those obtained from MODerate Resolution Imaging Spectrometer (MODIS) data. Agreement is good between the two types of estimates, with a coefficient of determination (r 2) of 0.778, a bias of 0.23 Em?2d?1 (0.5% with higher GOCI values), and a root-mean-squared difference of 5.00 Em?2d?1 (11.2%). Differences in cloudy conditions are attributed to daily cloudiness changes not captured by the MODIS observations. The comparison statistics indicate that GOCI PAR estimates have acceptable accuracy for regional studies of aquatic photosynthesis.  相似文献   

20.
Variations in the concentrations of both primary (PM10, CO, and NOx) and secondary (ozone) pollutants in the atmosphere over the Moscow and Kirov regions, Kiev, and Crimea under the conditions of the anomalously hot summer of 2011 are given and analyzed. The concentrations of ozone, PM10, CO, and NOx in the atmosphere over the Moscow region exceeded their maximum permissible levels almost continuously from late July to late August 2010. The highest level of atmospheric pollution was observed on August 4–9, when the Moscow region was within a severe plume of forest and peatbog fires. The maximum single concentrations of ozone, which exceeded its maximum permissible level two-three times, were accompanied by high concentrations of combustion products: the concentrations of PM10 and CO were also three-seven times higher than their maximum permissible concentrations. The maximum levels of air pollution were observed under the meteorological conditions that were unfavorable for pollution scattering, first of all, at a small vertical temperature gradient in the lower atmospheric boundary layer. The number of additional cases of mortality due to the exceeded maximum permissible concentrations of PM10 and ozone in the atmosphere over Moscow was estimated. Under the weather conditions that were close to those for the Moscow region, the air quality remained mainly satisfactory in the Kirov region, Kiev, and Crimea, which were almost not affected by fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号