首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferry's (1984) analysis of the biotite isograd in pelitic schistsof the Waterville Formation (south-central Maine, U.S.A.) ledto the conclusion that metamorphism had been caused by infiltrationof 1–2 rock volumes of aqueous fluid. We find that thisimportant observation is extremely sensitive to the assumedtemperature of metamorphism and to corresponding uncertaintiesin the thermodynamic data and solution assumptions. Uncertaintiesin the experimental calibrations of the geothermometers areon the order of ? 30?C. In addition, an analysis of the effectsof minor substituents on calcite-dolomite and garnet-biotitegeothermometers indicates that Ferry's (1980) temperatures areabout 40?C too low in the garnet zone. Correcting the phaseequilibria to higher temperatures by this latter amount lowersfluid:rock ratios by an order of magnitude to about 0?1:1. Sincesmall uncertainties have such great effects it is clearly importantto perform careful uncertainty analyses before using Ferry'sapproach to draw wide-ranging conclusions about fluid-rock interactions.Given a 40?C upward revision of temperature it is not necessaryto invoke pervasive infiltration of aqueous fluid as the majoragent of metamorphism. With these low fluid:rock ratios thewater source could reasonably be a thin sequence of underlyingmetapelites and/or the granitic intrusives which accompaniedthe Acadian orogeny.  相似文献   

2.
Metamorphic conditions in the staurolite, kyanite, and sillimanitezones of the Barrovian type area have been calculated usinga variety of equilibria. Temperatures ranged from 550?C (transitionzone) to 650?C (sillimanite zone) with P {small tilde} 6000bars and XH2O {small tilde} 0?6. Metamorphism was progressive,and the exact nature of the continuous reactions responsiblefor the formation of index minerals was strongly controlledby bulk rock Mg/(Mg + Fe). Thus, in magnesian rocks staurolitebroke down to kyanite + biotite, whereas in iron-rich rocksit broke down to garnet + muscovite and kyanite was not produced.Sillimanite formed both from kyanite and by dehydration reactionsof staurolite and white mica.  相似文献   

3.
The hornblende garbenschist horizon of the Lower Schieferhulleseries (LSH) in the SW Tauern Window, Austria, contains theassemblage hornblende + kyanite + staurolite + garnet + biotite+ epidote + plagioclase + ankerite + quartz + rutile + ilmenite,with either chlorite or paragonite present in all samples. Theseassemblages are divariant in the system SiO2-Al2O3-TiO2-Fe2O3-MgO-FeO-MnO-CaO-Na2O-K2O-H2O-CO2.Garnet-biotite geothermometry yields temperatures of final equilibrationof {small tilde}550 °C, and garnet-plagioclase-kyanite-quartzgeobarometry indicates pressures of 6–8 kb for the matrixassemblage and 9–10 kb for plagioclase inclusions in garnet.Quantitative modelling of zoned garnet, hornblende, and plagioclaseindicates growth and equilibration along a decompression pathfrom {small tilde}530 °C, 10 kb to {small tilde}550 °C,7 kb. Fluid inclusion data constrain the uplift path to havepassed through a point at {small tilde} 375 °C, 1.5 kb. These data permit the construction of a relatively completeP-T loop for metamorphism associated with the Alpine orogeniccycle in the LSH of the SW Tauern Window. The maximum pressureconditions ({small tilde}10 kb at 530 °C) recorded alongthis loop are considerably higher than previous estimates of5–7 kb for the region. Simple overthrust models developedfor the Tauern Window cannot account for pressures of this magnitude;a more likely scenario involves partial subduction of the rocksto a depth of {small tilde}35 km, followed by prolonged heatingin response to decay of the subduction isotherms. Initial upliftappears to have been rapid and occurred along a nearly isothermalpath. Significant cooling did not occur until the rocks werewithin {small tilde}5 km of the surface. Detailed tectonic modelsfor the evolution of the Tauern Window must be able to accountfor the quantitative features of the P-T loop.  相似文献   

4.
The igneous complex of Ballachulish is a composite calc-alkalinepluton of Caledonian age (412 ? 28 Ma), emplaced in Dalradianmetasediments at a pressure of 3 ? 0–5 kb (c. 10 km depth).The 4 by 7 km intrusion is composed of a zoned monzodiorite-quartzdiorite envelope with a distinct flowand deformation-foliation,surrounding a younger core of porphyritic granite. Two-pyroxene thermometry, Fe-Ti oxide thermobarometry, and stabilityrelationships of ternary feldspars, biotite, and amphibolesare used to calibrate the 3 kb isobaric crystallization sequencewith respect to the following parameters: the fractionationstage of the host rocks, the water content of the magmas, phasecompositions, and oxygen fugacity. Plagioclase, augite, andoxides generally yielded submagmatic temperatures due to theextensive recrystallization and re-equilibration of these phasesin the 900–l550?C subsolidus range. The ‘dry’monzodiorites apparently contained less than 1 wt. % initialmagmatic water, and remained H2O-deficient and vapor-absentthroughout their entire crystallization range. In contrast,2.5–3 wt.% initial H2O is estimated for the more fractionatedquartz diorites and the younger granites. The main crystallizationinterval for Opx–Cpx–Plg primocrysts in the dioritescovers c. 1100–950?C. Late-magmatic biotite and alkalifeldspar join the paragenetic sequence below 980?860?C, at fO2near NNO. A solidus temperature of c. 900?C is inferred forthis ‘dry’ system, in which amphiboles are entirelysubsolidus. At the present level of emplacement, crystallizationintervals of {small tilde} 1050–690?C and{small tilde}900–680?C are suggested for the quartz diorites and thegranites, which probably terminated crystallization in the presenceof a hydrous fluid.  相似文献   

5.
A suite of large and fresh peridotite xenoliths from a picritetuff deposit in the Cenozoic Vitim volcanic field, {small tilde}200km east of Lake Baikal, shows a continuous gradation from protogranularspinel through garnet–spinel to very abundant garnet peridotites.This includes composite nodules in which all these lithologiescoexist on the scale of a few centimeters. Garnet and many spinellherzolites are remarkably fertile in terms of their ‘basaltic’major element contents (CaO 30–37%, MgO 37–40%,Ca/Al=11, Cr/Al<013), whereas some garnet–spineland spinel peridotites are moderately depleted (Cr/Al 014–045).T estimates are 850–880C for the fertile spinel lherzolitesapparently brought up from shallow depths of 40–50 km.This contrasts with 980–1030C for depleted spinel peridotitesand 1000–1150C for the garnet-bearing peridotites forwhich equilibration pressures between 16 and 23 kbar are inferred.The data suggest that garnet and spinel peridotites coexistin the sub-Vitim mantle at a pressure of {small tilde}18 kbarover an interval of {small tilde}2 kbar, with the appearanceof garnet, and with the garnetto-spinel ratio in this transitionalzone primarily being controlled by bulk rock contents of Ca,Al, Cr, and Cr/Al ratios, in addition to P–T conditions. The Vitim peridotites show little evidence for metasomatic enrichment:they commonly show depletion of LREE compared with intermediateREE; this includes also rare amphibole-bearing veins. The fertilespinel and garnet lherzolites have very similar bulk rock majoroxide contents and REE distribution patterns; these featuresindicate a lack of significant chemical vertical mantle stratificationin that region. Garnet peridotites from Vitim show large differencesin modal and chemical composition from garnet peridotite xenolithsfrom Yakutian and South African kimberlites, suggesting distinctlithospheric mantle structure and composition in Archean cratonsand post-Archean mobile belts. * Present address: School of Earth Sciences, Macquarie University, N.S.W. 2109, Australia  相似文献   

6.
Metamorphic isograds and time-integrated fluid fluxes were mappedover the 1500 km2 exposure of the Waits River Formation, easternVermont, south of latitude 4430'N. Isograds based on the appearanceof oligoclase, biotite, and amphibole in metacarbonate rocksdefine elongated metamorphic highs centered on the axes of twolarge antiforms. The highest-grade isograd based on the appearanceof diopside is closely associated spatially with synmetamorphicgranitic plutons. Pressure, calculated from mineral equilibria,was fairly uniform in the area, 7 1.5 kb; calculated temperatureincreases from {small tilde} 480C at the lowest grades in thearea to {small tilde} 575C in the diopside zone. CalculatedXco2f equilibrium metamorphic fluid increases from <0-03at the lowest grades to 0.2 in the amphibole zone and decreasesto 0.07 in the diopside zone. Time-integrated fluid fluxesincrease with increasing metamorphic grade, with the followingmean values for each metamorphic zone (in cm3/cm2): ankerite-oligoclasezone, 1 x 104; biotite zone, 7 x 104; amphibole zone, 2 x 105;diopside zone, 7 x 105. The mapped pattern of time-integrated fluxes delineates twolarge deep-seated ({small tilde} 25-km depth) regional metamorphichydrothermal systems, each centered on one of the major antiforms.Fluid flowed subhorizontally perpendicular to the axis of theantiforms from their low-temperature flanks to their hot axialregions and drove prograde decarbonation reactions as they went.Along the axes of the antiforms fluid flow was further focusedaround synmetamorphic granitic intrusions. In the hot axialregion fluid changed direction and flowed subvertically outof the metamorphic terrane, precipitating quartz veins. Estimatesof the total recharge, based on progress of prograde decarbonationreactions, nearly match estimates of the total discharge, basedon measured quartz vein abundance, (2-10) x 1012 cm3 fluid percm system measured parallel to the axes of the antiforms. Withinthe axial regions fluids had lower XCO2 and rocks record greatertime-integrated fluxes close to the intrusions than at positionsmore than {small tilde} 5 km from them. The differences in bothfluid composition and time-integrated flux can be explainedby mixing close to the intrusions of regional metamorphic fluidsof XCO2/ with fluids from another source with XCO2{small tilde}0 in the approximate volume ratio of 1:2.  相似文献   

7.
Low-grade Mn-rich metamorphic rocks of the Lienne syncline (westernpart of the Venn–Stavelot Massif, Belgian Ardennes) havebeen re-examined to evaluate the petrological significance ofcarpholite proper, Mn2$ Al2[Si2O6](OH)4. Metamorphic P–Tconditions of these rocks are estimated to be {small tilde}300C1–2 kbar, which is in accordance with the exclusive occurrenceof carpholite in low-P rocks such as hydrothermal environmentselsewhere. Carpholite of the Lienne syncline exclusively occursin quartz-rich segregations. Its composition is close to end-member.Thermodynamic calculations confirm that carpholite is a stablephase at low-pressure–low-temperature conditions, in contrastto ferro- and magnesiocarpholite, which are high-pressure minerals.No information is available on the high-P behaviour of carpholite.The occurrence of carpholite is partly closely associated withspessartine-bearing country rocks, or carpholite is alteredto assemblages with spessartine, sudoite, chlorite, muscoviteand paragonite. Spessartine in these rocks contains minor amountsof hydrogarnet component {(H/4)/[Si$(H/4)] = 0.03–0.06}.The presence of carpholite-spessartine assemblages in theselow-P rocks is in contrast to high-pressure metamorphic rocksfrom other areas, where parageneses such as fem/magnesiocarpholite–chloritoidor magnesiocarpholite–chlorite–kyanite occur. Theappearance of carpholite–garnet assemblages in low-P Mn-richrocks can be explained by contrasting phase relations becauseof a high Mn–Mg partition coefficient between the mineralsunder consideration. In rhodo-chrosite-bearing veins in theLienne syncline, nearly complete replacement of carpholite byspessartine and chlorite is due to the continuous reaction carpholite$ rhodochrosite $ quartz = spessartine $ chlorite $ H2O $ CO2,which defines a very low Xco, in the temperature range underconsideration. It is suggested that spessartine (possibly containingsome hydrogarnet component), during prograde metamorphism atlow pressure, becomes stable at a temperature of {small tilde}300C KEY WORDS: carpholite; spessartine; sudoite; Venn–Stavelot Massif; Ardemes *Corresponding author. Fax: x49/531/3918131. e-mail: t.theye{at}tu.bs.de  相似文献   

8.
Olivine tholeiites (8–10 wt. % MgO) from Krafla show significantcorrelations between major elements (notably Fe) and incompatibletrace elements. In particular, the samples with the highestFe contents are the most enriched in elements such as K, Ti,and light rare earth elements (LREEs). The observed trends cannotbe explained by fractional crystallization of olivine, plagioclase,or clinopyrox-ene from a single primary magma, nor are theylikely to result from crustal contamination. The simplest explanationfor the compositional variations is that they result from imperfectmixing of primary melts, produced at different levels in theupwelling asthenosphere, which later underwent olivine fractionation.Nd and Sr isotopic data hint at the possibility that some mixingbetween two (plume and non-plume) mantle sources may also berequired. The average olivine tholeiite composition is comparedwith the average compositions of melts, predicted from parameterizationsof melting experiments, produced from mantle with differentpotential temperatures. The predicted compositions were correctedfor fractional crystallization before the comparison was made.The data compare well with the predicted average compositionof melt from mantle with a potential temperature of {small tilde}1580C. Differences between the observed and predicted compositions(notably higher Fe and lower Na in the Krafla basalts) are ascribedeither to errors related to the modelling or to the effect oftemperature- and velocity-structure of the mantle plume beneathIceland. The average REE composition of the olivine tholeiiteswas then inverted to obtain the variation of melt fraction withdepth. The predicted melt fraction rises from 00 at a depthof {small tilde} 140 km (consistent with a potential temperatureclose to 1580 C) to a maximum value of {small tilde} 03 atthe surface. The predicted melt thickness ({small tilde}22 kmwhen corrected for fractional crystallization) is consistentwith geophysical estimates of crustal thickness.  相似文献   

9.
Eocene igneous rocks from the Abrolhos Islands and surroundingsedimentary platform, offshore Brazil, 18?S, are largely Ti-richbasalt and diabase (4–6 wt.% TiO2), and cumulate rockssuch as wehrlite. Despite high Ti, incompatible-element abundancesare relatively low (e.g., K2O {small tilde} 1 wt.%; P2O5 0.5%; Zr 225 ppm; Rb 23 ppm; Ba 275 ppm); LREE enrichment yieldsLa/YbN {small tilde}8. Compared to other mafic rocks of theSouth Atlantic region, such as Mesozoic high-Ti dikes ({smalltilde}5 wt.% TiO2) and basalts (3–4 wt.% TiO2) of theSerra Geral (Paran?, southern Brazil) province, and high-Tibasalts ({small tilde}4 wt% TiO2) of some South Atlantic features(Walvis, southwest Indian ridge), Abrolhos basalts differ bylower incompatible-element concentrations and/or by isotopiccompositions that emphasize depleted characteristics (Sr–12;Nd 3) relative to bulk earth. Abrolhos isotopic compositionsdo, however, match those of some S. Atlantic islands (e.g.,Pb like those of nearby Trindade), and conform generally toDupal anomaly contours. Abrolhos high-Ti basalts can be modeled as liquids from about90% crystallization of parent picritic liquid emplaced nearthe base of the Brazilian crustal margin; no mantle geochemicalanomaly or special metasomatism are needed to account for theTi contents. Isotopic and trace-clement compositions (e.g.,Zr, Nb, Y) of the Abrolhos province suggest parentage in a mantlerepresenting a plume of bulk earth or ‘enriched’composition that interacted with overlying depleted mantle.  相似文献   

10.
Fluid-absent melting experiments on a biotite (20 wt.%) andhornblende (2 wt.%) bearing tonalitic gneiss were conductedat 6 kbar (900–975C), 10 kbar (875–1075C), and14 kbar (950–975C) to study melt productivity from weaklyperaluminous quartzofeldspathic metamorphic rocks. At 6 kbar,biotite dehydration–melting is completed at 975C viaincongruent melting reactions that produce orthopyroxene, twooxides, and {small tilde}25 wt.% granitic melt. At 6 kbar, hornblendedisappears at 900C, probably in reaction with biotite. At 10kbar, biotite dehydration–melting produces <10 wt.%melt up to 950C via incongruent melting reactions that produceorthopyroxene, garnet, and granitic melt. Hornblende disappearsin the satne temperature interval either by resorption or byreaction with biotite. Widespread biotite dehydration–meltingoccurs between 950 and 975C and produces orthopyroxene, twooxides, and {small tilde}20 wt.% fluorine-rich (up to 0•31wt.%) granitic melt. At 14 kbar only a trace of melt is presentat 950C, and the amounts of hornblende and biotite are virtuallythe same as in the starting material. At 975C, hornblende isgone and {small tilde}10 wt.% granitic melt is produced by meltingof both biotite and hornblende. Our results show that hornblende-bearing assemblages cannotgo through dehydration–melting on their own (althoughthey can in combination with biotite) if the Ca content in thesource rock is too low to stabilize clinopyroxene. In such rocks,hornblende will either resorb or melt by reaction with biotite.Under fluid-absent conditions, intrusion of hot, mantle-derivedmagmas into the lower crust is necessary to initiate widespreaddehydration–melting in rocks with compositions similarto those discussed here. We argue that the high thermal stabilityof biotite in our starting material is caused mainly by theincorporation of fluorine. The relatively high F content inbiotite in the starting material (0•47 wt.%) suggests thatthe rock has experienced dehydroxylation in its past. F enrichmentby a previous fluid-absent partial melting event is excludedbecause of the lack of phases such as orthopyroxene and garnetwhich would have been produced. Our experiments show that thedehydration–melting of such F-enriched biotite producesF-rich granitic liquids, with compositions within the rangeof A-types granites, and leaves behind a granulitic residuedominated by orthopyroxene, quartz, and plagioclase. This studytherefore supports the notion that A-type granites can be generatedby H2O-undersaturated melting of rocks of tonalitic composition(Creaser et al., 1991), but does not require that these sourcerocks should be residual after a previous melting event.  相似文献   

11.
We investigated rutile needles with a clear shape preferred orientation in garnet from (ultra) high-pressure metapelites from the Kimi Complex of the Greek Rhodope by electron microprobe, electron backscatter diffraction and TEM techniques. A definite though complex crystallographic orientation relationship between the garnet host and rutile was identified in that Rt[001] is either parallel to Grt<111> or describes cones with opening angle 27.6° around Grt<111>. Each Rt[001] small circle representing a cone on the pole figure displays six maxima in the density plots. This evidence together with microchemical observations in TEM, when compared to various possible mechanisms of formation, corroborates a precipitate origin. A review of exchange vectors for Ti substitution in garnet indicates that rutile formation from garnet cannot occur in a closed system. It requires that components are exchanged between the garnet interior and the rock matrix by solid-state diffusion, a process we refer to as “open-system precipitation” (OSP). The kinetically most feasible reaction of this type will dominate the overall process. The perhaps most efficient reaction involves internal oxidation of Fe2+ to Fe3+ and transfer from the dodecahedral to the octahedral site just vacated by $ {\text{Ti}}^{ 4+ }: 6\,{\text{M}}^{ 2+ }_{ 3} {\text{TiAl}}\left[ {{\text{AlSi}}_{ 2} } \right]{\text{O}}_{ 1 2} + 6\,{\text{M}}^{ 2+ }_{ 2, 5} {\text{TiAlSi}}_{ 3} {\text{O}}_{ 1 2} = 10\,{\text{M}}^{ 2+ }_{ 3.0} {\text{Al}}_{ 1. 8} {\text{Fe}}_{0. 2} {\text{Si}}_{ 3} {\text{O}}_{ 1 2} + {\text{M}}^{2+} + 2 {\text{e}}^{-} + 1 2\,{\text{TiO}}_{ 2} . $ OSP is likely to occur at conditions where the transition of natural systems to open-system behaviour becomes apparent, as in the granulite and high-temperature eclogite facies.  相似文献   

12.
The volume and composition of volcanic rocks associated withthe Gregory rift are interpreted in the light of inversionsperformed on the REE concentrations of the most magnesian basalts.When the estimated volume of salic rock ({small tilde}88 000km3) is converted into basalt ({small tilde}792 000 km3) thetotal volume of basaltic melt generated over the last 30 Myis at least 924 000 km3, corresponding to an average rate ofmelt production of {small tilde}0•03 km3/yr and an averagemelt thickness of between 7 and 26 km everywhere beneath therift. The mean compositions of the basaltic magmas erupted withinthe rift and on the rift flanks during the Upper Oligocene andMiocene, the Pliocene, and the Quaternary are taken to be representativeof the average compositions of melts produced by fractionalmelting in the asthenospheric mantle. When the REE concentrationsof the observed average compositions are inverted they suggestthat much of the melt was produced in the depth and temperaturerange of the transition from garnet to spinel peridotite. Fora mantle potential temperature of {small tilde}1500C the topof the melting region predicted from the inversions is at {smalltilde}70 km beneath the rift axis and {small tilde}80 km beneaththe rift flanks. Within the rift zone the predicted thicknessof melt increases from the Upper Oligocene and Miocene to thePliocene and is always greater than that predicted for the riftflanks, and the timeaveraged thickness of melt predicted is0/5 km. To generate the observed volume of melt the asthenosphericmantle must continually upwell through the melting region (extendingfrom 70 to 150 km) with a vertical velocity of between 40 and140 mm/yr. The results suggest that, volumetrically and compositionally,magmatic activity associated with the Gregory rift is quantitativelyconsistent with a model of a mantle plume upwelling beneaththinned continental lithosphere. Predictions made by such amodel are in broad agreement with geophysical observations. * Present address/reprint requests to: B.P. Exploration, 4/5 Long Walk, Stockley Park, Uxbridge UB11 1BP, UK  相似文献   

13.
Granulite-Facies Metamorphism at Molodezhnaya Station, East Antarctica   总被引:1,自引:0,他引:1  
Granulite-facies quartzofeldpathic gneisses metamorphosed 1000m.y. ago are exposed around Molodezhnaya Station (67°40'S,46°E) in East Antarctica. In addition to quartz, K-feldspar,and plagioclase, the fourteen samples studied in detail consistof the assemblages biotite-orthopyroxene-magnetite, biotite-garnet-orthopyroxene-ilmenite±magnetite, biotite-garnet ± ilmenite ± magnetite,biotite-garnet-sillimanite-ilmenite ± rutile, and biotite-garnet-cordierite-ilmenite-(sillimanite-rutile).Garnets are pyrope-almandine (13 to 34 mol per cent pyrope).Biotite (XFe = 0.33 to 0.57) is rich in TiO2 (4 to 6.3 wt percent) and its Al2O3 content depends on the mineral assemblage.Orthopyroxene (XFe = 0.45 to 0.60) contains 1.5 to 3.0 weightper cent Al2O3. By and large, the minerals are chemically homogeneousand compositional variations are systematic, which indicatecrystallization under equilibrium conditions. On the basis ofthe compositions of coexisting garnet-biotite, garnet-cordierite,garnet-plagioclase (with sillimanite), and garnet-plagioclase-orthopyroxene,temperatures and pressures during the granulite-facies metamorphismare estimated to be 700°C ± 30°C and 5.5 ±1 kb. Water pressure apparently was significantly less thantotal pressure. Alteration during events following the granulite-facies metamorphismhas resulted in chemical zoning in garnet, in which grain edgesare more iron-rich than cores, heterogeneous biotite compositions,and anomalous trends involving MnO. Temperatures based on biotiteand garnet-edge compositions range from 410 to 580°C. Differences in the chemical potential (µ) of water andoxygen in the fluid phase can explain compositional variationsamong the three sillimanite-bearing samples and the relativelyiron-rich compositions of garnet and biotite associated withcordierite. Apparently, the water released by the formationof cordierite remained in the rock, forcing µH2O to increaseas cordierite formed. Buffering of fluid phase composition bythe mineral assemblage suggests that water was not removed fromthe Molodezhnaya rocks by flushing with CO2-rich fluids duringmetamorphism, a hypothesis evoked to explain ‘dry’mineral assemblages in other granulite-facies terrains.  相似文献   

14.
The mid-Jurassic calcalkaline Russian Peak intrusive complex,located in the Klamath Mountains of northern California, consistsof an elliptical peridotite-to-quartz diorite suite intrudedby two plutons of granodiorite. Several techniques were usedto decipher the crystallization conditions for ultramafic rocks,quartz diorite, and granodiorite, including comparison of parageneseswith crystallization experiments, application of geothermometersand barometers, and evaluation of phase equilibria. Contactmetamorphic assemblages, hornblende barometry, and amphibolesubstitution schemes indicate that pressures of intrusion were{small tilde}3 kbar. Plagioclase and pyroxene thermometry indicateintrusion temperatures of {small tilde}1000C for quartz dioriteand 900C for granodiorite. Phase equilibrium analysis for thereaction phlogopite+quartz=K-feldspar+enstatite+H2O, coupledwith an estimate of the water-saturated quartz diorite solidus,suggests that the solidus of two-pyroxene quartz diorite wasat {small tilde}780C with a mole fraction of water of {smalltilde}0•55. The composition of granodiorite is very similarto that used in several crystallization experiments and indicatesa solidus of 70025C. Estimates of oxygen fugacity, obtainedfrom equilibrium relations of olivine, orthopyroxene, and spinelin ultramafic rocks, magnetite and ilmenite in quartz diorite,and magnetite, K-feldspar, and biotite in quartz diorite andgranodiorite are 2•1–2•5 and 1•0–1•3log units above the quartz-fayalite-magnetite (QFM) buffer forgranodiorite and quartz diorite at their respective solidustemperatures; and 1•0–4•0 log units above QFMfor ultramafic rocks and quartz diorite at subsolidus temperatures.Thus, the quartz diorite magma was hotter, drier, and slightlyreduced relative to the grandiorite magma, differences thatset important constraints on the genesis of the Russian Peakmagmas. These results also indicate that quartz diorite wasundersaturated with respect to H2O as it reached its solidus,a condition that is consistent with the absence of deutericalteration in this unit. In contrast, granodiorite shows extensivedeuteric alteration and features pegmatites, quartz pods, andradial dikes as might be expected for H2O-saturated conditions. Although calcalkaline plutonic complexes present serious difficultiesin estimating the intensive parameters of crystallization, judiciousapplication of appropriate methods may result in the successfulevaluation of the conditions of crystallization of such complexes.  相似文献   

15.
Pressures, temperatures, water activities (aH2O) and fugacitiesof the other C-O-H fluid species have been estimated on a traverseacross the amphibolite-granulite facies boundary in the MajorParagneiss, northwest Adirondacks, N.Y. Two-feldspar pairs givetemperatures ranging from 650?C in the central portion of theunit to 760?C towards the northeast. Biotite-garnet pairs giveerratic temperatures compared to two-feldspar temperatures.This discrepancy appears to be due to retrograde resetting asdetermined from compositional zoning patterns in biotites andgarnets. Some of the discrepancy may also be due to non-idealityof pyrope-almandine mixing or to non-ideality from other components.Pressures ranging from 5?4 kb for the southwestern portion ofthe unit to 8?0 kb in the northeast were determined from anorthite-grossular-sillimanite-quartzbarometry. Minimum pressures of 5?8 kb were also determinedfrom coexisting garnet + rutile. Values of aH2O of 0?08-0?5estimated from biotite and muscovite dehydration reactions showno correlation with grade. The variability in aH2O suggeststhat it is locally controlled and that a homogeneous, pervasivefluid was not present during high grade metamorphism. Graphiteequilibria indicate that fO2 was less than 0?5 log units belowQFM and that if a fluid was present, it was rich in CO2 andH2O. P-T-aH2O values suggest that partial melting did not occurduring metamorphism. Pervasive flooding with CO2 does not appearto have occurred. The amphibolite-granulite transition at thislocality is characterized by increasing temperature and pressure.  相似文献   

16.
Petrographic details together with mineral and whole-rock compositiondata are provided for acid-intermediate garnet granulites fromexposed granulite complexes in Lower Austria. Thermobarometricevaluation integrated with available isotopic age data indicatesthe initial equilibration of early Variscan ({small tilde}370Ma) high-pressure granulite assemblages at {small tilde}16 kbarand 1000C and their partial overprinting by retrograde assemblageswhich reflect the blocking of mineral exchange reaction equilibriaat {small tilde}6•5 kbar and 725C during subsequent Variscanuplift and cooling. These calculated P-T estimates, togetherwith general phase equilibria constraints and evidence frompreserved prograde coronitic reaction textures and garnet compositionalzoning profiles, indicate a clockwise P-T-t evolutionary pathof the type expected during crustal thickening in a major platecollision orogen and characterized by near-isothermal decompressionduring initial uplift. Geochemical characterization of the rockprotoliths as calc-alkaline igneous rocks and the high metamorphictemperatures suggest that garnet granulite formation involvedthe subduction of a magmatic arc at a continental plate margin. Reviewed evidence from granulites in the Central European Variscidesruns counter to suggestions by Bohlen (1987, 1991) that high-pressuregranulites are of little regional geotectonic significance incomparison with low- to medium-pressure granulites. The differentevolutionary P-T paths for these two important groups of granulitespoint to formation in contrasting plate settings. However, questionsare raised regarding petrogenetic models for low- to medium-pressuregranulites which have emphasized the importance of magmatic,rather than tectonic, crustal thickening and the recognitionof stabilization along deduced anti-clockwise P-T-t paths characterizedby post-peak near-isobaric cooling. It is suggested here that the reality of stabilization of atleast some low- to medium-pressure granulites in a collisionaltectonic regime may have been concealed either because lower-pressureassemblages have overprinted mineralogical evidence for an earlierhigh-pressure history at deeper crustal levels or through invaliddeduction of near-isobaric cooling trajectories as a resultof the different closure temperatures for the mineral reactionsused to monitor the equilibration temperatures and pressuresin granulites. However, the sequential underthrusting modelfavoured for the tectonometamorphic evolution of the Variscannappe pile in the Bohemian Massif renders it unlikely that alllate Variscan low- to medium-pressure granulites have experiencedthe early Variscan high-pressure metamorphism.  相似文献   

17.
We have determined the Fe-Mg fractionation between coexistinggarnet and orthopyroxene at 20–45 kb, 975–1400?C,and the effect of iron on alumina solubility in orthopyroxeneat 25 kb, 1200?C, and 20 kb, 975?C in the FMAS system. The equilibriumcompositions were constrained by experiments with crystallinestarting mixtures of garnet and orthopyroxene of known initialcompositions in graphite capsules. All iron was assumed to beFe2+. A mixture of PbO with about 55 mol per cent PbF2 provedvery effective as a flux. The experimental results do not suggest any significant dependenceof KD on Fe/Mg ratio at T 1000?C. The lnKD vs. l/T data havebeen treated in terms of both linear and non-linear thermodynamicfunctional forms, and combined with the garnet mixing modelof Ganguly & Saxena (1984) to develop geothermometric expressionsrelating temperature to KD and Ca and Mn concentrations in garnet. The effect of Fe is similar to that of Ca and Cr3+ in reducingthe alumina solubility in orthopyroxene in equilibrium withgarnet relative to that in the MAS system. Thus, the directapplication of the alumina solubility data in the MAS systemto natural assemblages could lead to significant overestimationof pressure, probably by about 5 kb for the relatively commongarnetlherzolites with about 25 mol per cent Ca+Fe2+ in garnetand about 1 wt. per cent Al2O3 in orthopyroxene.  相似文献   

18.
Four assemblages from calcic pelitic schists from South Strafford,Vermont, have been studied in detail to determine the relationshipbetween reaction history and compositional zoning of minerals.The lowest-grade assemblage is garnet + biotite + chlorite +plagioclase + epidote + quartz + muscovite + graphite + fluid.Along a path of isobaric heating, the net reaction is Chl +Ms + Ep + Gr = Grt + Bt + Pl + fluid. Garnet grows with decreasingFe/(Fe + Mg) and XSpa, (from 0•2 to 0•05), XGra staysnearly constant between 0•20 and 0•25, and plagioclasegrows with XAn increasing from peristerite to 0•2–0•5. The subsequent evolution depends on whether chlorite or epidotereacts out first. If chlorite is removed from the assemblagefirst, the net reaction along an isobaric heating path becomesGrt + Ms + Ep + Qtz + Gr = Bt + Pl + fluid. XAn of plagioclaseincreases to 0•20–0•70, depending on the bulk-rockcomposition and changes in pressure and temperature. If epidoteis removed first, the assemblage becomes a simple pelite andthe net reaction becomes Chl + Pl + Ms + Qtz = Grt + Bt + H2O.Plagioclase is consumed to provide Ca for growing garnet, andXAn, Fe/(Fe + Mg) of garnet, XGra, and XSpa all decrease. Afterboth chlorite and epidote are removed, continued heating upto the metamorphic peak of {small tilde}600C produces littleprogress of the reaction Grt + Ms = Bt + Pl; and XAn increases. The four assemblages have been numerically modeled using theGibbs method starting with measured compositions. The modelssuccessfully predict the observed compositional zoning and trendsof mineral growth and consumption along the computed P–Tpaths. The models also predict the compositional mineral zoningthat would have resulted from other P–T paths. * Present address: Department of Geology, University of Alabama, Tuscaloosa, Alabama 35487  相似文献   

19.
Disequilibrium phenocryst assemblages in the Younger Andesitesand Dacites of Iztacc?huatl, a major Quaternary volcano in theTrans-Mexican Volcanic Belt, provide an excellent record ofepisodic replenishment, magma mixing, and crystallization processesin calc-alkaline magma chambers. Phenocryst compositions andtextures in ‘mixed’ lavas, produced by binary mixingof primitive olivine-phyric basalt and evolved hornblende dacitemagmas, are used to evaluate the mineralogical and thermal characteristicsof end-members and the physical and chemical interactions thatattend mixing. Basaltic end-members crystallized olivine (FO90–88) andminor chrome spinel during ascent into crustal magma chambers.Resident dacite magma contained phenocrysts of andesine (An45–35),hypersthene (En67–61), edenitic-pargasitic hornblende,biotite, quartz, .titanomagnetite, and ilmenite. On reachinghigh-level reservoirs, basaltic magmas were near their liquidiat temperatures of about 1250–1200?C according to theolivine-liquid geothermometer. Application of the Fe-Ti-oxidegeothermometer-oxygen barometer indicates that hornblende dacitemagma, comprising phenocrysts (<30 vol. per cent) and coexistingrhyolitic liquid, had an ambient temperature between 940 and820?C at fO2s approximately 0?3 log units above the nickel-nickeloxide buffer assemblage. Mixing induced undercooling of hybridliquids and rapid crystallization of skeletal olivine (Fo88–73),strongly-zoned clinopyroxene (endiopside-augite), calcic plagioclase(An65–60); and orthopyroxene (bronzite), whereas low-temperaturephenocrysts derived from hornblende dacite were resorbed ordecomposed by hybrid melts. Quartz reacted to form coronas ofacicular augite and hydroxylated silicates were heated to temperaturesabove their thermal stability limit ({small tilde}940?C foramphibole, according to clinopyroxene-orthopyroxene geothermometry,and {small tilde}880?C for biotite). Calculations of phenocrystresidence times in hybrid liquids based on reaction rates suggestthat the time lapse between magma chamber recharge and eruptionwas extremely short (hours to days). It is inferred that mixing of magmas of diverse compositionis driven by convective turbulence generated by large differencesin temperature between end-members. The mixing mechanism involves:(1)rapid homogenization of contrasting residual liquid compositionsby thermal erosion and diffusive transfer (liquid blending);(2) assimilation of phenocrysts derived from the low-temperatureend-member; and (3) dynamic fractional crystallization of rapidlyevolving hybrid liquids in a turbulent boundary layer separatingbasaltic and dacitic magmas. The mixed lavas of lztacc?huatlrepresent samples of this boundary layer quenched by eruption.  相似文献   

20.
Recent theoretical studies of rift tectonics have concludedthat their observed geophysical features, require that (1) extensionaffects a much wider zone of the underlying lithospheric mantlethan the crust; (2) early extension involves a comparativelywide zone that narrows with time. The Neogene evolution of thesegment of the Rio Grande rift between the Great Plains andColorado Plateau shows this theoretical pattern clearly. Thewidth of the crustal extension zone narrowed from {small tilde}170km in the Oligo-Miocene to {small tilde}50 km in the Pliocene.In contrast, both gravity and teleseismic studies indicate thatthe current width of the zone of thinned lithospheric mantle(ß = 2–3) beneath the rift is {small tilde}750km. To assess the contributions of lithosphere- and asthenosphere-derivedmelts to the magmatismassociated with the early phase of developmentof the Rio Grande rift, we have undertaken a 670-km geochemicaltraverse of Oligo-Miocene volcanism between latitudes 36 and38N. Our section is centered on the present-day axis of therift in the Espanola Basin. It extends from the Navajo volcanicfield, Arizona, to Two Buttes, SE Colorado, and intersects hypabyssalintrusions on the rift shoulders at Dulce, west of the rift,and Spanish Peaks to the east. We have sampled a diverse rangeof magma types that vary in composition from ultrapotassic toHy- and Ne-normative basalts. A geochemical profile along thistraverse shows a spatially symmetrical variation in elementand oxide ratios, such as Na2O/K2O and Ba/Nb, and also in Srand Nd isotope ratios. On the rift flanks and shoulders Oligo-Miocenevolcanism was dominated by K-rich mafic magmatism, whereas atthe rift axis tholeiitic and alkalic basalts with whole-rockcompositions similar to those of ocean-island basalts (OIB)were erupted. This symmetrical geochemical variation broadlyparallels the corresponding teleseismic lithosphere thicknessprofile and is a mirror image of the gravity profile. We interpret the OIB-type magmas at the rift axis as predominantlyasthenosphere-derived melts. These suggest that mantle upwelling,and melting by decompression, were occurring during the earlydevelopment of the Rio Grande rift The symmetrical variationof incompatible elements and isotope ratios in rocks about therift axis suggests that the sources of the K-rich mafic magmason the stable flanks and shoulders of the rift are not directlyrelated to the subduction of the Farallon plate: an asymmetricprocess. Instead, we propose that the K-rich mafic magmas onthe flanks and shoulders of the Rio Grande rift are derivedfrom the melting of a metasomatized layer in the lithosphericmantle during extension. *Present address: British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号