首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The effect of cracks on the elastic properties of an isotropic elastic solid is studied when the cracks are saturated with a soft fluid. A polynomial equation in effective Poisson's ratio is obtained, whose coefficients are functions of Poisson's ratio of the uncracked solid, crack density and saturating fluid parameter. Elastic and dynamical constants used in Blot's theory of wave propagation in poroelastic solids are modified for the introduction of cracks. The effects of cracks on the velocities of three types of waves are observed numerically. The frequency equation is derived for the propagation of Rayleigh-type surface waves in a saturated poroelastic half-space lying under a uniform layer of liquid. Dispersion curves for a particular model of oceanic crust containing cracks are plotted. The effects of variations in crack density and saturation on the phase and group velocity are also analysed.  相似文献   

6.
The spontaneous growth of a dynamic in-plane shear crack is simulated using a newly developed method of analysis in which no a priori constraint is required for the crack tip path, unlike in other classical studies. We formulate the problem in terms of boundary integral equations; the hypersingularities of the integration kernels are removed by taking the finite parts. Our analysis shows that dynamic crack growth is spontaneously arrested soon after the bending of the crack tips, even in a uniformly stressed medium with homogeneously distributed fracture strengths. This shows that the dynamics of crack growth has a significant effect on forming the non-planar crack shape, and consequently plays an essential role in the arrest of earthquake rupturing.  相似文献   

7.
8.
9.
10.
We derive a set of non-hypersingular boundary integral equations, both elastodynamic and elastostatic, for the analysis of arbitrarily shaped 2-D anti-plane and in-plane cracks located in an infinite homogeneous isotropic medium, rendered in a unified nomenclature for all cases. The hypersingularities that appear in the usual formulations for the dynamic cases, existent both at the source point and at the wavefront, are removed by way of a regularization technique based on integration by parts. The equations for the in-plane cases are presented in terms of a local Cartesian coordinate system, one of the axes of which is always held locally tangential to the crack trace. The expressions for the elastic field at any point on the model plane are also given.
Our formulations are shown to yield accurate numerical results, as long as appropriate stabilization measures are taken in the numerical scheme. The numerical applicability of our method to non-planar crack problems is illustrated by simulations of dynamic growth of a hackly crack which has small off-plane side-branches. The results imply that the branching of a crack brings about a significant decrease in the crack-tip stress concentration level and consequently may play an essential role in the arrest of earthquake rupturing.  相似文献   

11.
We report the results of an analytical investigation into the deformation behaviour of rate-dependent granular material as a refinement of previous studies on seepage phenomena during shear. The rheology has two components—a compliant part of the constitutive law associated with grain contacts as deformation takes place (dilatancy), and a rate-dependent viscous force transmitted by the melt phase. This formulation allows intermediate, time-dependent behaviour to be assessed for the dilatant porous medium. A key result is that during shear, the magnitude of the excess pore pressure first decreases then increases back to its initial value. Two characteristic timescales are identified that control the rate-dependent dilatancy of the mixture, τ1, the time constant that rules the increase of the magnitude of the excess pore pressure, and τ0 that controls its decline. We consider the dilatant effect to be an internal constraint in deforming magmas in the lithosphere and other porous (partially molten) regions in the solid earth. When such regions are exposed to external loading, secular pressure changes should drive fluid flow independent of local buoyancy forces, for the duration of the governing rate-dependent timescales. The accumulated heave of the process is also estimated.  相似文献   

12.
An anisotropic fractured poroelastic effective medium theory   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
16.
17.
Summary . A two-space singular perturbation technique is employed to derive approximate governing equations for flow of a viscous heat-conducting fluid through a rigid porous solid. It is assumed that buoyancy forces are significant, and it is shown that standard approximations used in the study of flow through a porous medium are valid provided that Gr ≫ 1, where Gr is a Grashof number calculated using a typical pore radius as the length scale. Results previously derived in the literature for flow through an isotropic random array of spherical particles are used to show how the permeability and conductivity tensors can be calculated for a problem of interest in planetary science.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号