首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ships are a dominant vector for biological invasions through ballast water discharge (BWD) and hull fouling. Here, we provide a first comprehensive analysis of shipping in Alaska, summarizing (a) the number, type and origin of vessel arrivals to Alaska for 2003 and 2004, (b) the spatial and temporal variation in vessel traffic, and (c) the available data on ballast water discharge in order to prioritize locations for tracking biological invasions. Most arrivals were passenger vessels, followed by ferries and fishing vessels, all of which carried little ballast water. Regional and seasonal patterns in arrivals and BWD were unevenly distributed among vessel types. The majority of vessels reporting BWD were from foreign ports, and most of this ballast was untreated. The largest volumes of ballast were from tankers at Valdez and Kenai Peninsula ports. Although Alaska has few documented invasions, opportunities for ship-mediated transfer now appear high and warrant further scrutiny.  相似文献   

2.
Under certain circumstances vessels do not need to meet ballast water management requirements as stated in the International Convention for the Management and Control of Ballast Water and Sediments (BWM Convention). Besides exceptions to ensure e.g., (a) the safety of a ship, (b) discharge of ballast water for the purpose of avoiding or minimizing pollution incidents, (c) uptake and discharge on high seas of the same ballast water, the same location concept comes into play as ballast water discharges from a ship at the same location where it was taken up is also excepted from BWM requirements. The term same location was not defined in this instrument, hence it is exposed to different interpretations (e.g., a terminal, a port, a larger area where two or more ports may be located). As the BWM Convention is an instrument with biological meaning, the authors recommend a biologically meaningful definition of the same location in this contribution.  相似文献   

3.
A prominent vector of aquatic invasive species to coastal regions is the discharge of water, sediments, and biofilm from ships' ballast-water tanks. During eight years of studying ships arriving to the lower Chesapeake Bay, we developed an understanding of the mechanisms by which invasive microorganisms might arrive to the region via ships. Within a given ship, habitats included ballast water, unpumpable water and sediment (collectively known as residuals), and biofilms formed on internal surfaces of ballast-water tanks. We sampled 69 vessels arriving from foreign and domestic ports, largely from Western Europe, the Mediterranean region, and the US East and Gulf coasts. All habitats contained bacteria and viruses. By extrapolating the measured concentration of a microbial metric to the estimated volume of ballast water, biofilm, or residual sediment and water within an average vessel, we calculated the potential total number of microorganisms contained by each habitat, thus creating a hierarchy of risk of delivery. The estimated concentration of microorganisms was greatest in ballast water>sediment and water residuals>biofilms. From these results, it is clear microorganisms may be transported within ships in a variety of ways. Using temperature tolerance as a measure of survivability and the temperature difference between ballast-water samples and the water into which the ballast water was discharged, we estimated 56% of microorganisms could survive in the lower Bay. Extrapolated delivery and survival of microorganisms to the Port of Hampton Roads in lower Chesapeake Bay shows on the order of 10(20) microorganisms (6.8 x 10(19) viruses and 3.9 x 10(18) bacteria cells) are discharged annually to the region.  相似文献   

4.
Ballast water exchange practices were monitored on 28 incoming container vessels at the Port of Montreal. Measurements on 15 vessels indicated 13 of 32 tanks had salinities of <30 per thousand. The 16 transits with a North Atlantic route visited 31 of 37 ports located on freshwater or near freshwater outflows. Ballast carried by this vessel type represents an important means for the introduction of species on a global scale because of its transit routes, dockside discharge and moving ballast between tanks. Container vessels represent about 15% of the world fleet, but account for 32% of all visits to global ports, and 46% of visits to the 25 largest ports. The 10 ports that handled the largest volumes of international cargo also included 8 that handled the most cargo containers. Large ports can receive over 100,000 visits by all vessel types annually, and serve as hubs for over 500 ports in 100 countries. Secondary transport of exotic species is also a concern because of frequent visits by regional vessels.  相似文献   

5.
Ballast water exchange processes facilitate the dispersal and unnatural geographic expansion of phytoplankton, including harmful algal bloom species. From 2005 to 2010, over 45,000 vessels (≈ 8000 annually) travelled across Galveston Bay (Texas, USA) to the deep-water ports of Houston (10th largest in the world), Texas City and Galveston. These vessels (primarily tankers and bulkers) discharged ≈ 1.2 × 10(8) metrictons of ballast water; equivalent to ≈ 3.4% of the total volume of the Bay. Over half of the ballast water discharged had a coastwise origin, 96% being from US waters. Galveston Bay has fewer non-indigenous species but receives a higher volume of ballast water discharge, relative to the highly invaded Chesapeake and San Francisco Bays. Given the magnitude of shipping traffic, the role of Galveston Bay, both as a recipient and donor region of non-indigenous phytoplankton species is discussed here in terms of the invasibility risk to this system by way of ballast water.  相似文献   

6.
Ballast water is a dominant mechanism for the interoceanic and transoceanic dispersal of aquatic non-native species (ANS), but few studies have addressed ANS transfers via smaller scale vessel movements. We analyzed ballast water reporting records and ANS occurrence data from four US West Coast port systems to examine patterns of intra-coastal ballast water transfer, and assess how ballast transfers may have influenced the secondary spread of ANS. In 2005, one third of the vessels arriving to the US West Coast originated at one of four West Coast port systems (intra-coastal traffic). These vessels transported and discharged 27% (5,987,588 MT) of the total ballast water volume discharged at these ports that year. The overlap of ANS (shared species) among port systems varied between 3% and 80%, with the largest overlap occurring between San Francisco Bay and LA/Long Beach. Our results suggest that intra-coastal ballast water needs further consideration as an invasion pathway, especially as efforts to promote short-sea shipping are being developed.  相似文献   

7.
Challenges in global ballast water management   总被引:3,自引:0,他引:3  
Ballast water management is a complex issue raising the challenge of merging international regulations, ship's specific configurations along with ecological conservation. This complexity is illustrated in this paper by considering ballast water volume, discharge frequency, ship safety and operational issues aligned with regional characteristics to address ecological risk for selected routes. A re-estimation of ballast water volumes gives a global annual level of 3500 Mton. Global ballast water volume discharged into open sea originating from ballast water exchange operations is estimated to approximately 2800 Mton. Risk based decision support systems coupled to databases for different ports and invasive species characteristics and distributions can allow for differentiated treatment levels while maintaining low risk levels. On certain routes, the risk is estimated to be unacceptable and some kind of ballast water treatment or management should be applied.  相似文献   

8.
We examined methods for verifying whether or not ships have performed mid-ocean ballast water exchange (BWE) on four commercial vessels operating in the Pacific and Atlantic Oceans. During BWE, a ship replaces the coastal water in its ballast tanks with water drawn from the open ocean, which is considered to harbor fewer organisms capable of establishing in coastal environments. We measured concentrations of several naturally occurring chemical tracers (salinity, six trace elements, colored dissolved organic matter fluorescence and radium isotopes) along ocean transects and in ballast tanks subjected to varying degrees of BWE (0-99%). Many coastal tracers showed significant concentration changes due to BWE, and our ability to detect differences between exchanged and unexchanged ballast tanks was greatest under multivariate analysis. An expanded dataset, which includes additional geographic regions, is now needed to test the generality of our results.  相似文献   

9.
《Marine pollution bulletin》2014,85(1-2):330-338
Ballast water exchange (BWE) is the most efficient measure to control the invasion of exotic species from ships. This procedure is being used for merchant ships in national and international voyages. The ballast water (BW) salinity is the main parameter to evaluate the efficacy of the mid-ocean ballast water exchange. The vessels must report to the Port State Control (PSC), via ballast water report (BWR), where and how the mid-ocean BWE was performed. This measure allows the PSC to analyze this information before the ship arrives at the port, and to decide whether or not it should berth.Ship BW reporting forms were collected from the Captaincy of Santana and some ships were visited near the Port of Santana, located in Macapá (Amazon River), to evaluate the BW quality onboard. We evaluated data submitted in these BWR forms and concluded that the BWE efficacy might be compromised, because data contained in these BWR indicate that some ships did not change their BW. We found mistakes in filling the BWR forms and lack of information. Moreover, these ships had discharged BW with high level of salinity, Escherichia coli and total coliforms into the Amazon River. We concluded that the authorities of the Amazon Region need to develop more efficient proceedings to evaluate the ballast water reporting forms and BW quality, as there is potential risk of future invasion of exotic species in Brazilian ports.  相似文献   

10.
Non-indigenous marine species (NIMS) are likely to be introduced into harbours by ballast water discharge or hull fouling, and then spread by natural means in the nearshore/shelf circulation. Reanalysis currents from the Australian Bluelink modelling project are used with particle-tracking to estimate the potential dispersal kernels for major New Zealand ports. A random walk term is added to the particle-tracking algorithm to account for missing variability in the numerical model currents. With few data to validate the model, the choice of added diffusivity is made by comparing simulated dispersal with observed dispersal of Global Program drifters. Histograms of the dispersal times between the ports are computed, along with estimates of the 10−1 and first percentile dispersal times, which are taken as proxies for the minimum dispersal time between the ports. The 10−1 percentile times range from 1 day (e.g., Bay of Islands to Whangarei) to several months (Tauranga to Chatham Islands). We identify eight geographical regions, based on the coastal currents and present kernels for a representative port in each region, along with tables of the 10−1 and first percentile dispersal times for all ports. The regions are: (1) northeast coast of the North Island (influenced by the East Auckland Current), (2) east coast of the North Island (East Cape Current), (3) west coast of the North Island (West Auckland Current/Taranaki Bight circulation), (4) Cook St (circulation in Cook St), (5) east coast of the South Island (Southland Current), (6) west coast of the South Island (Westland Current), (7) Fiordland (Subtropical Front/Southland Current), and (8) the Chatham Islands.  相似文献   

11.
In examining ship-mediated biological invasions, most research and treatment development has focused on ballast water. Another vector that has gained attention recently is vessels arriving in a "no ballast on board" (NOBOB) condition. Such ships retain relatively small, unpumpable volumes of water and sediment in their ballast tanks. Nonetheless, these unpumpable portions can represent great ecological risk. This scenario is relevant in the Great Lakes, which have experienced a dramatic series of introductions, despite most vessels arriving there as NOBOBs since 1994. We examined shipping patterns of NOBOBs arriving to lower Chesapeake Bay to begin evaluating their risk of biopollution. Only 14% of ships arrive as NOBOBs, and of those, 17% depart to another port in the upper bay. Most NOBOBs arrive from or leave for other US ports; proximate trans-Atlantic crossings are few. Given the nature of their operations, we conclude NOBOBs may represent a risk for aquatic nuisance species invasions to Chesapeake Bay.  相似文献   

12.
The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with “white pox” and “white plague type II” coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.  相似文献   

13.
The human mediated transfer of harmful organisms via shipping, specifically via ballast water transport, leading to the loss of biodiversity, alteration of ecosystems, negative impacts on human health and in some regions economic loss, has raised considerable attention especially in the last decade. Ballast water sampling is very important for biological invasions risk management. The complexity of ballast water sampling is a result of both the variety of organism diversity and behaviour, as well as ship design including availability of ballast water sampling points. Furthermore, ballast water sampling methodology is influenced by the objectives of the sampling study. In the course of research conducted in Slovenia, new sampling equipment for ships' ballast water was developed and tested. In this paper new ballast water sampling methods and equipment together with practical shipboard testing results are presented.  相似文献   

14.
Ships carry ballast water for better stability and to control trim. However, the discharge of ballast water near ports is known to transport invasive species from one coastal area to another. The exchange of ballast water on the high seas is supposed to reduce such invasions of exotic species. In this study, we used denaturing gradient gel electrophoresis (DGGE) to analyze the composition of the bacterial community in ballast water before and after such a mid-ocean exchange, and we also measured total bacterial counts. Our findings confirmed that the ballast water was replaced by the mid-ocean exchange, as indicated by the marked change in the composition of the bacterial community. There was also a significant decrease in bacterial abundance after the mid-ocean exchange. Finally, our findings support the incubation hypothesis, because the composition of the bacterial communities changed over time within the same ballast water.  相似文献   

15.
Data on shipping traffic in one of the busiest seaports in the world, the Port of Kaohsiung, were analyzed to evaluate the implications for ballast water management. Results show that 67% of the arriving vessels were registered to a flag of convenience, which typically have a lower degree of environmental records. The top five donor countries historically suffer from harmful algal bloom problems. The short journey and busy trading between these countries and Taiwan lead to a higher risk of inoculation. In addition, only 1.4% of all vessels visited more than once every year during the 9-year span, indicating that the port authority encounters many new vessels each year. These findings could influence the design and application of ballast water management strategies as well as highlight the challenges in their implementation. We suggest that an analysis of vessel traffic patterns should be coupled with other useful vessel information to make risk assessment successful.  相似文献   

16.
Shipping is a vital industry for the global economy. Stability of ships, provided by ballast water, is a crucial factor for cargo loading and unloading processes. Ballast water treatment has practical significance in terms of environmental issues, ecosystem, and human health, because ships discharge this water into the environment before loading their cargos. This study reviews the common methods for ballast water management – exchange, heating, filtration, ultrasonic treatment, ultraviolet irradiation, chemicals, and gas supersaturation – to select the best one. This study compares water temperature, salinity, dissolved oxygen, polycyclic aromatic hydrocarbons (PAHs), and heavy metals (Co, Cr, Ni, Pb) for ballast tanks of selected ships with the recipient port environment in the Persian Gulf as a case study. The exchange of ballast water in the ocean and/or its treatment on board to prevent inadvertent effects on the environment's physicochemical conditions is related to vessel characteristics, legislation, and the environmental condition. Ecological risk study showed that the salt content in ballast water is close to that of seawater, but the values of Cr (2.1 mg/l) and Ni (0.029 mg/l) in ballast water are higher than those in seawater (1 and 0.004 mg/l, respectively).  相似文献   

17.
A total of 150 different organisms, including one plant species and 12 animal phyla were identified from sea-chests of 42 vessels visiting or operating in New Zealand between May 2000 and November 2004. Forty-nine percent of organisms were sessile, 42% mobile adults and the remaining 9% sedentary. Decapods were the most represented group with 19 species present among 79% of vessels. Forty percent of organisms were indigenous to New Zealand, 15% introduced, 10% non-indigenous, and 35% of unknown origin. Sea-chests have the potential to (1) transfer non-indigenous organisms between countries across oceanic boundaries; and (2) disperse both indigenous and introduced organisms domestically. The occurrence of adult mobile organisms is particularly significant and indicates that sea-chests may be of greater importance than ballast water or hull fouling for dispersing certain marine species. These findings emphasise the need to assess and manage biosecurity risks for entire vessels rather than different mechanisms (i.e., ballast water, hull fouling, sea-chests, etc.) in isolation.  相似文献   

18.
Exotic species introductions to the North American Great Lakes have continued even though ballast water management strategies were implemented in the early 1990s. Overseas vessels that arrive with little or no exchangeable ballast on board have been suspected to be an important source for discharging low salinity ballast containing low salinity tolerant organisms in this region. Residual ballast averaged 18.1+/-13.4 per thousand salinity among 62 samples taken primarily from bottom tanks on 26 vessels that entered the Great Lakes in 1999 and 2000. Sampling of 2-4 tanks each on nine vessels indicated all carried at least one tank of residual ballast of 相似文献   

19.
Transport of ballast water is one major factor in the transmission of aquatic organisms, including pathogenic bacteria. The IMO-guidelines of the Convention for the Control and Management of Ships' Ballast Water and Sediments, states that ships are to discharge <1 CFU per 100 ml ballast water of toxigenic Vibrio cholerae, emphasizing the need to establish test methods. To our knowledge, there are no methods sensitive and rapid enough available for cholera surveillance of ballast water. In this study real-time PCR and NASBA methods have been evaluated to specifically detect 1 CFU/100ml of V. cholerae in ballast water. Ballast water samples spiked with V. cholerae cells were filtered and enriched in alkaline peptone water before PCR or NASBA detection. The entire method, including sample preparation and analysis was performed within 7 h, and has the potential to be used for analysis of ballast water for inspection and enforcement control.  相似文献   

20.
Bacteria (and viruses) numerically dominate ballast water communities, but what controls their population dynamics during transit is largely unexplored. Here, bacterial abundance, net and intrinsic growth rates, and grazing mortality were determined during a trans-Atlantic voyage. The effects of grazing pressure by microzooplankton on heterotrophic bacteria during transit were determined for source port, mid-ocean exchange (MOE), and six-day-old source port ballast water. When the grazer component was removed, bacterial abundances significantly increased. Additionally, we determined that the grazer-mediated mortality for ballast water originating from ports was greater than MOE water and that mortality decreased over time for the source port ballast water. This study shows that bacterial populations in transit are controlled by microzooplankton grazing. If these findings are representative of ballast water environments, they suggest that if the grazing component is selectively removed by various treatment methods, bacterial populations may increase; this could have environmental and human health consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号