首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct measurements of the Earth's magnetic field in Italy since 1640 a.d. have been used to check the remanence directions derived from historically dated volcanic rocks of Etna and Vesuvius. Direct measurements consist of the records of L’Aquila and Pola geomagnetic observatories, the repeat stations of the Italian Magnetic Network and the data base of the Historical Italian Geomagnetic Data Catalogue. All have been relocated to the same reference site (Viterbo — lat. 42.45°N, long. 12.03°E) in order to draw a reference secular variation (SV) curve. The direction of the Earth's field at Viterbo has also been calculated from the historical records (2000-1600) of ref. [Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London, Ser. A 358, 957-990] database. The remanence directions from Etna show a general agreement with the trend of the SV curve, although their inclination is usually lower than that from the direct measurement. The directions from Vesuvius are more scattered. Large discrepancies occur at both volcanoes and in some cases have been ascribed in the literature to poor geographic information, making it difficult to identify the flows actually emplaced during the eruptions reported in the chronicles. Closer examination shows that the great majority of the best-defined remanence directions (semi-angle of confidence α95 < 2.5°) deviate significantly from the geomagnetic direction measured at the time of the emplacement, the angle between the two directions being larger than the α95 value. The value of 2.5-3.0° can thus be regarded as a conservative evaluation of the error when dealing with dating Etna and Vesuvius lava flows older than 17th century, even when the accuracy attained in remanence measurements is higher. In default of a SV curve for Italy derived from archaeological artefacts, a further error in dating is introduced when reference is made to SV curves of other countries, even if well-established, as these are from regions too far from Italy (>600 km) to confidently relocate magnetic directions.  相似文献   

2.
This paper shows how 226Ra–230Th disequilibria can be used to date Holocene volcanic rocks from some well selected volcanoes. A systematic study of these disequilibria on historical or well-dated volcanic samples is indeed first required to test the applicability of this method. Two examples are described here to illustrate its potential. In the case of Mt. Etna, the good correlation observed between (226Ra)0 activities at the time of eruption and Th contents in lava flows from the last two millennia [M. Condomines, J.C. Tanguy, V. Michaud, Magma dynamics at Mt. Etna: constraints from U–Th–Ra–Pb radioactive disequilibria and Sr isotopes in historical lavas, Earth Planet. Sci. Lett. 132 (1995) 25–41] is used to infer the ages of several newly analysed lava flows. The calculated ages are in good agreement with those deduced from the archaeomagnetic curve describing the variation of the geomagnetic field direction in southern Italy [J.C. Tanguy, I. Bucur, J.F.C. Thompson, Geomagnetic secular variation in Sicily and revised ages of historic lavas from Mt. Etna, Nature 318 (1985) 453–455, J.C. Tanguy, M. Le Goff, V. Chillemi, A. Paiotti, C. Principe, S. La Delfa, G. Patane, Variation séculaire de la direction du champ géomagnétique enregistrée par les laves de l'Etna et du Vésuve pendant les deux derniers millénaires, C. R. Acad. Sci. Paris 329 (1999) 557–564, J.C. Tanguy, M. Le Goff, C. Principe, S. Arrighi, V. Chillemi, A. Paiotti, S. La Delfa, G. Patane, Archaeomagnetic dating of Mediterranean volcanics of the last 2100 years: validity and limits. Earth Planet. Sci. Lett. 211 (2003) 111–124]. We also present a whole set of new U-series data on historical, recent, and older samples from Merapi (Indonesia), and show that the (226Ra)/Ba ratio has probably maintained a quasi-steady state value during at least the past four millennia, and can be used to infer the (226Ra)0/Ba ratio of old volcanics at the time of eruption, and thus their ages. Comparison with 14C ages available on three samples [R. Gertisser, J. Keller, Temporal variations in magma composition at Merapi volcano (Central Java, Indonesia): magmatic cycles during the past 2000 years of explosive activity, J. Volcanol. Geotherm. Res. 123 (2003) 1–23] shows an excellent agreement. These dating methods, based on the post-eruptive decrease of 226Ra excesses can be confidently used to date young rocks on both volcanoes, an important step to infer their recent eruptive history and magmatic evolution. It also opens the possibility to extend the geomagnetic field variation curve back into the past few millennia. The promising results obtained in this work should encourage new systematic U-series studies to test the applicability of such methods to other permanently active volcanoes showing 226Ra excesses.  相似文献   

3.
A careful examination of historical documents pertaining to the long (over three thousand years) history of Mount Etna has been carried out. Despite the abundance of details on eruptions, sometimes very ancient (e.g. that of 479/8 B.C. described by PINDAR), it is shown that the reports are often too imprecise for identifying with certainty the type of eruptive activity and the spatial extension of lava flows — or even the lava flows and eruptive centres themselves —, many of these having been buried by subsequent volcanic activity. Conversely, it can be shown that well preserved cones and flows were apparently produced by eruptions that went unoticed by historians. These considerations are supported by previous paleomagnetic work : lava flows and eruptive systems taken as belonging to eruptions of the years 1651 (Scorciavacca), 1595 (Gallo Bianco), 1566 (Linguaglossa), 1536 (Mt Pomiciaro NW, and a small flow W of Mt Vetore), 1494 (Mt Frumento Supino), 1408 (Trecastagni), 1381 (N of Catania), 1329 (Linera, Mt Ilice), 1284 (N of Zafferana), 1169 or 812 (Mt Sona) ..., have paleomagnetic directions inconsistent with that of the geomagnetic field at these respective dates. The reinterpretation of ancient documents by recent authors is often misleading, and some major errors have been corrected. Obviously, many gaps or uncertainties remain in the summary of eruptive sequences, except perhaps for the last two or three centuries. Eruptive models that are based on the use of historical documents should be examined in the view of these uncertainties with great care.  相似文献   

4.
The 1614–1624 lava flow of Mt. Etna was formed during a long-duration flank eruption involving predominantly pahoehoe flows which produced unusual surface features including mega-tumuli (here defined) and terraces. Detailed mapping of the flow units, surface features, and associated tubes reveals a complex sequence of emplacement for the field. The stair-stepped terraces appear to have been formed as a consequence of self-damming of tube-fed flows which developed «perched» ponds of lava. Surges of lava through tubes elevated sections of crusted lava at the distal ends of the flow to generate tumuli, some as high as 130 m, as a consequence of pressure via «hydrostatic head» conditions within the tube. Although pahoehoe lavas and the related features described here are atypical of Mt. Etna, they may reflect styles of eruption and lava emplacement found on volcanoes elsewhere.  相似文献   

5.
Statistical analysis of the magnetic fabric of samples from several successive lava flows emplaced under similar conditions can allow determination of the mean flow direction when magnetic fabric data from individual flows do not lead to reliable results. A difference between the obtained flow direction and the present dip direction indicates that the flows were tilted after emplacement. For 2 successive series of flows on the Jeanne d’Arc Peninsula presently NNW dipping, this method shows lava emplacement along a SSW–NNE direction. This indicates a gentle tilting acquired during a period of weak deformation in the whole archipelago. Additionally, the magnetic fabric data allow the reconstruction of the different conditions of emplacement of these two series of lava flows and of formation of the local thick conglomerate interbedded between these series.  相似文献   

6.
A careful re-examination of the well-known written documents pertaining to the 2,750-year-long historical period of Mount Etna was carried out and their interpretation checked through the high-accuracy archeomagnetic method (>1,200 large samples), combined with the 226Ra-230Th radiochronology. The magnetic dating is based upon secular variation of the direction of the geomagnetic field (DGF) and estimated to reach a precision of  ±40 years for the last 1,200 years, and ±100 to 200 years up to circa 150 B.C. Although less precise, the 226Ra-230Th method provides a unique tool for distinguishing between historic and prehistoric lavas, which in some cases might have similar DGFs. We show that despite the abundance of details on ancient historical eruptions, the primary sources of information are often too imprecise to identify their lava flows and eruptive systems. Most of the ages of these lavas, which are today accepted on the geological maps and catalogues, were attributed in the 1800s on the basis of their morphology and without any stratigraphical control. In fact, we found that 80% of the “historically dated” flows and cones prior to the 1700s are usually several hundreds of years older than recorded, the discrepancies sometimes exceeding a millennium. This is proper the case for volcanics presumed of the “1651 east” (actually ∼1020), “1595” (actually two distinct flows, respectively, ∼1200 and ∼1060), “1566” (∼1180), “1536” (two branches dated ∼1250 and ∼950), “1444” (a branch dated ∼1270), “1408” (lower branches dated ∼450 and ∼350), “1381” (∼1160), “1329” (∼1030), “1284” (∼1450 and ∼700), “1169 or 812” (∼1000) eruptions. Conversely, well-preserved cones and flows that are undated on the maps were produced by recent eruptions that went unnoticed in historical accounts, especially during the Middle Ages. For the few eruptions that are recorded between A.D. 252 and 750 B.C., none of their presumed lava flows shows a DGF in agreement with that existing at their respective dates of occurrence, most of these flows being in fact prehistoric. The cinder cones of Monpeloso (presumed “A.D. 252”) and Mt. Gorna (“394 B.C.”), although roughly consistent magnetically and radiochronologically with their respective epochs, remain of unspecified age because of a lack of precision of the DGF reference curve at the time. It is concluded that at the time scale of the last millennia, Mount Etna does not provide evidence of a steady-state behavior. Periods of voluminous eruptions lasting 50 to 150 years (e.g., A.D. 300–450, 950–1060, 1607–1669) are followed by centuries of less productive activity, although at any time a violent outburst may occur. Such a revised history should be taken into account for eruptive models, magma output, internal plumbing of the volcano, petrological evolution, volcano mapping and civil protection.  相似文献   

7.
Basaltic 'a'ā lava flows often demonstrate compound morphology, consisting of many juxtaposed and superposed flow units. Following observations made during the 2001 eruption of Mt. Etna, Sicily, we examine the processes that can result from the superposition of flow units when the underlying units are sufficiently young to have immature crusts and deformable cores. During this eruption, we observed that the emplacement of new surface flow units may reactivate older, underlying units by squeezing the still-hot flow core away from the site of loading. Here, we illustrate three different styles of reactivation that depend on the time elapsed between the emplacement of the two flow units, hence the rheological contrast between them. For relatively long time intervals (2 to 15 days), and consequently significant rheological contrasts, superposition can pressurise the underlying flow unit, leading to crustal rupture and the subsequent extrusion of a small volume of high yield strength lava. Following shorter intervals (1 to 2 days), the increased pressure caused by superposition can result in renewed, slow advance of the underlying immature flow unit front. On timescales of < 1 day, where there is little rheological contrast between the two units, the thin intervening crust can be disrupted during superposition, allowing mixing of the flow cores, large-scale reactivation of both units, and widespread channel drainage. This mechanism may explain the presence of drained channels in flows that are known to have been cooling-limited, contrary to the usual interpretation of drainage as an indicator of volume-limited behaviour. Because the remobilisation of previously stagnant lava can occur swiftly and unexpectedly, it may pose a significant hazard during the emplacement of compound flows. Constant monitoring of flow development to identify areas where superposition is occurring is therefore recommended, as this may allow potentially hazardous rapid drainage events to be forecast. Reactivation processes should also be borne in mind when reconstructing the emplacement of old lava flow fields, as failure to recognise their effects may result in the misinterpretation of features such as drained channels.  相似文献   

8.
The 1224 Mt. Etna eruption is a significant event both in terms of the mass of erupted materials and because it involved the lower eastern slope of the volcano, reaching down to the sea. Nevertheless, it is unknown to current historical catalogues. According to the historical sources, only two other lava flows actually reached as far as the sea: in 396 BC, just north of the present-day inhabited area of Acireale, according to the geological data alone, and in 1669, when the lava covered the south-eastern flank of Mt. Etna and damaged Catania. We present and discuss the two medieval sources that attest to the eruption of 1224 and make available the original texts. Furthermore, through the close analysis of the historical and topographic context of the Etna area, taking account of the roads and ports in the early 13th century, we have tried to single out the possible area of the lava's outlet into the sea in 1224 on historical grounds. A repeat of an eruption similar to that of 1224 would have a serious impact today as the coast is densely populated.  相似文献   

9.
The normal to reverse Lower Mammoth reversal (3.33 Ma) has been recorded in several sequences of lava from the Waianae Volcano, the Island of Oahu, Hawaii. 137 samples from 29 flows from the Pu'u Paheehee section have been the subject of a palaeointensity study using the microwave technique. Duplicate sister samples from the directional study of Herrero-Bervera and Valet (Earth Planet. Sci. Lett. 171 (1999) 139–148) were used. Microwave demagnetisation was carried out on all samples and the directions compared to the published flow mean directions. Microwave palaeointensity experiments were carried out on all accepted samples using the 8.2 GHz and 14 GHz microwave systems. The perpendicular applied field palaeointensity method and a Coe analogue method were used. Eighty-four samples from 24 flows gave acceptable palaeointensity results. The results indicate that the geomagnetic field was low (mean 5.9±1.3 μT (N=7)) prior to the transitional directions. During the first stage of the reversal the field remains low. Results however could only be obtained from three transitional flows. The field then strongly recovers with very high intensity (70 μT) and reversed direction. After this the intensity decreases before the field becomes transitional again for a cluster of four flows. The field does not reduce as much as previously, rather it is about twice the pre reversal intensity. For the final section of reversed flows the intensity is more than twice the pre reversal mean value, 15.1±5.9 μT (N=7). Whilst some similarities are seen between this reversal and other reversals of different ages and locations there is not enough data at present to say whether there is any systematic behaviour.  相似文献   

10.
The anisotropy of magnetic susceptibility (AMS) of lava flows is an innovative method which has been proved to be directly related to the shear history of lava. One of the advantages of this method is that it can be used in the absence of other morphological features commonly employed to study the mechanism of emplacement of lava flows. This feature of the AMS method makes it very attractive to gain insight into the mechanism of emplacement of massive, relatively featureless, long lava flows such as those forming flood basalt provinces. In this work, we report the results of the measurement of AMS as a function of vertical position within the Birkett lava flow, one of the Columbia River Basalt Group flows. The observed variation of AMS allows us to identify at least 16 discrete events of lava injection and to estimate the thickness of individual injection events. The AMS-estimated thickness of each injection event (in the range of 0.5-4.0 m) coincides with the range inferred for injected lava pulses in modern Hawaiian lava flows. Thus, the evidence provided by the AMS method supports the notion that at least some flood basalt lava flows were emplaced by the same mechanism as many present-day inflated pahoehoe flows. Regarding the orientation of the principal susceptibilities, in the central part of the flow they define a preferred orientation along an E-W trend, whereas in the outer parts of the flow they have a NNE-SSW trend. This difference in the orientation of the principal susceptibilities is interpreted as the result of a change of flow direction of the lava as emplacement progressed. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00445-002-0203-8.  相似文献   

11.
Historic and recent (last 2,000?years) eruptions on the active volcanic island of Tenerife have been predominantly effusive, indicating that this is the most probable type of activity to be expected in the near future. In the past, lava flow invasion caused major damage on the island, and as the population and infrastructure have increased dramatically since the last eruption, lava flows are the most important short-term volcanic risk on Tenerife. Hence, an understanding of lava flow behaviour is vital to manage risks from lava flows and minimise future losses on the island. This paper focuses on the lava flows from the historic eruptions in Tenerife, providing new data on the volumes emitted, advance rates and the timing of the emplacement of flows. The studies show three main stages in the development of unconfined flow fields: the first stage, corresponding to the fast advance of the initial fronts during the first 24?C36?h of eruption (reaching calculated velocities of up to 1.1?m/s); the second stage, in which fronts stagnate; and a third stage, in which secondary lava flows develop from breakouts 4?C7?days after the initial eruption and farther extend the flow field (velocities of up to 0.02?m/s have been calculated for this stage). The breakouts identified originated at sites both proximal and distal to the vent and, in both cases, caused damage through lengthening and widening the original flow field. Hence, the probability of damage from lavas to land and property is highest during stages 1 and 3, and this should be accounted for when planning the response to a future effusive eruption. Tenerife??s lava flows display a similar behaviour to that of lava flows on volcanoes characterised by basaltic effusive activity (such as Etna or Kilauea), indicating the possibility of applying forecasting models developed at those frequently active volcanoes to Tenerife.  相似文献   

12.
The evolution of lava flows emplaced on Mount Etna (Italy) in September 2004 is examined in detail through the analysis of morphometric measurements of flow units. The growth of the main channelized flow is consistent with a layering of lava blankets, which maintains the initial geometry of the channel (although levees are widened and raised), and is here explicitly related to the repeated overflow of lava pulses. A simple analytical model is introduced describing the evolution of the flow level in a channelized flow unit fed by a fluctuating supply. The model, named FLOWPULSE, shows that a fluctuation in the velocity of lava extrusion at the vent triggers the formation of pulses, which become increasingly high the farther they are from the vent, and are invariably destined to overflow within a given distance. The FLOWPULSE simulations are in accordance with the observed morphology, characterized by a very flat initial profile followed by a massive increase in flow unit cross-section area between 600 and 700 m downflow. The modeled emplacement dynamics provides also an explanation for the observed substantial “loss” of the original flowing mass with increasing distance from the vent.  相似文献   

13.
 Lineated sheet flows are flat-lying, glassy lava flows characterized by a regular surface pattern of parallel grooves or furrows aligned with the flow direction. They are unique to the submarine environment. We propose that the lineations are developed within the collapsed interiors of partially ponded lobate sheet flows that initially inflate and then drain out during emplacement. During lava drainout, the original lobate crust founders and a new crust begins to grow on the subsiding lava surface. Lineated flow texture is created where molten lava emerges laterally from beneath a growing crust. The lineations are formed by raking of the emerging lava surface by irregularities on the bottom edge of the crust and are preserved owing to rapid chilling by seawater. Therefore, lineated sheet flows are the product of a specific sequence of events over a short period of time during the course of a deep submarine eruption. Received: 23 November 1998 / Accepted: 22 February 1999  相似文献   

14.
Analysis of thermally generated night-time volcanic radiances recorded with a 1-km pixel size at 1.6 and 11 µm during 1991-1993 and 1996-1999 for Mount Etna shows that lava flows extending beyond the summit craters can be distinguished from vent activity. The two phenomena plot in different regions of feature space when the mean volcanic radiance (per anomalous pixel) at 11 µm is plotted against the mean volcanic radiance at 1.6 µm. The distinct feature space characteristics of lava flow fields are apparent within 1-2 days of the onset of each effusive event. Such a plot also enables lava flow fields being fed by open channels to be distinguished from tube-fed flow fields. Rank order analysis of the total 1.6-µm volcanic radiance series shows that vent activity and lava flows belong to different populations, and offers further scope for remotely identifying changes in eruptive state.  相似文献   

15.
苏格兰当巴(Dunbar)下石炭统含钙砂岩组12个采样点的热退磁结果,显示一致的稳定磁化方向:偏角D=196°,倾角 I=-45°,α95=4.3。侵入其中的一条20m厚的石炭系岩脉,其6个采样点的热退磁结果显示不同的磁化方向:D=195°,I=15°,α95=10.7。 本文研究烘烤效应,论证了上述两个磁化方向均为原生。这与现存的对不列颠群岛该时期古地磁方向的看法矛盾。其原因可能是:1.以往的数据解释不可靠,特别是重磁化问题;2.构造原因;3.持续相当时间的异常地磁场。 对比纬度相似的太平洋夏威夷群岛熔岩流的“点记录”,本文针对当巴提出一种磁化模式:各有关古地磁磁化成分可能均产生于同一地质时代. 火成岩的尖晶石相方向,最可能为原生.它在古地磁分析中应给以较大权重.  相似文献   

16.
An extensive palaeomagnetic study has been undertaken to provide further elements leading to a better assessment of the volcanic history of the Vesuvius. This work refers to lavas for which the date of emplacement have recently been questioned; i.e. either during the period 968–1037 or in 1631. From 7 sites, 97 sun-orientated specimens have been collected. The dominant magnetic carrier for all sites consists of magnetite on the basis of an analysis of IRM acquisition. The linearity analysis carried out on at least 6 specimens per site subjected to PAFD has indicated the presence of single- and multi-component magnetizations. The within-site mean directions of 5 sites are close to each other suggesting that lavas from these sites can be ascribed to the same volcanic event. The remaining 2 sites can also be referred to this event on ground of stratigraphical considerations. The plotting of the between-site mean directions of the previously mentioned 5 sites on the Vesuvius secular variation curve suggests that the lavas from these sites could not be emplaced during the period 968–1037 but some hundred years later than 1301. The stratigraphic and historic dating of deposits and a building, respectively, at one of the 2 remaining sites allows to conclude that all the investigated flows had to be emplaced during the 1631 event. Therefore, this event was characterized not only by explosive activity but by an important effusive phase as well.  相似文献   

17.
We studied the anisotropy of magnetic susceptibility (AMS) of 22 basaltic flow units, including S-type pahoehoe, P-type pahoehoe, toothpaste lava and 'a' emplaced over different slopes in two Hawaiian islands. Systematic differences occur in several aspects of AMS (mean susceptibility, degree of anisotropy, magnetic fabric and orientation of the principal susceptibilities) among the morphological types that can be related to different modes of lava emplacement. AMS also detects systematic changes in the rate of shear with position in a unit, allowing us to infer local flow direction and some other aspects of the velocity field of each unit. 'A' flows are subject to stronger deformation than pahoehoe, and also their internal parts behave more like a unit. According to AMS, the central part of pahoehoe commonly reveals a different deformation history than the upper and lower extremes, probably resulting from endogenous growth.  相似文献   

18.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

19.
The Valle del Bove, situated on the east side of Mount Etna is considered as the result of an important collapse. The structural survey of the continuous rock outcrops in the walls of the depression permits to distinguish several unities belonging to different volcanoes, which have been destroyed by the collapse. The succession of the different volcanic centers shows a migration of the eruptive activity from East to West. The collapse took place only when the main activity was removed to the emplacement of the principal crater now in activity. This E-W direction of migration corresponds to one of the main fault directions of Etna; the collapse and the formation of the caldera is considered as the consequence of a violent pumice explosion or as the result of the westward migration of the magma along this fault.  相似文献   

20.
Since the mechanical properties of lava change over time, lava flows represent a challenge for physically based modeling. This change is ruled by a temperature field which needs to be modeled. MAGFLOW Cellular Automata (CA) model was developed for physically based simulations of lava flows in near real-time. We introduced an algorithm based on the Monte Carlo approach to solve the anisotropic problem. As transition rule of CA, a steady-state solution of Navier-Stokes equations was adopted in the case of isothermal laminar pressure-driven Bingham fluid. For the cooling mechanism, we consider only the radiative heat loss from the surface of the flow and the change of the temperature due to mixture of lavas between cells with different temperatures. The model was applied to reproduce a real lava flow that occurred during the 2004–2005 Etna eruption. The simulations were computed using three different empirical relationships between viscosity and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号