首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   

2.
阿尔金大平沟金矿床地质特征及成因初探   总被引:3,自引:1,他引:3  
杨屹  杨风  刘新营  司迁 《新疆地质》2002,20(1):44-48
大平沟金矿处于阿尔金山北坡太古界托格拉格布拉克岩群的NWW向强应变构造带中,矿体主要为石英脉型和含金蚀变岩型,其形态,产状,规模严格受韧脆性剪切带控制,含矿围岩主要为韧脆性变形的闪长质碎粒岩,糜梭岩,与金矿化有关的围岩变主要有黄铁矿化,硅化,钾化等,且随蚀变强度的增强,金含量增高,属中低温变质,岩浆热液复合因型金矿床。  相似文献   

3.
康古尔金矿具有独特的成矿地质特征,矿床位于石炭系火山岩区大型韧性剪切带的次级构造中.控矿构造表现为脆韧性剪切活动的特点,该脆韧性剪切带在成矿期的活动具有中低温、高应变速率、高差异应力的动力学特征.金矿床的分布受脆韧性剪切带控制,矿体由蚀变千糜岩和糜棱岩化火山岩中矿化富集地段组成,矿体产状平行于糜棱岩面理.矿化产于脆韧性变形强烈部位,脆性变形叠加有利于形成富金矿.  相似文献   

4.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

5.
铧厂沟金矿床地质特征及控矿冈素分析   总被引:7,自引:0,他引:7  
铧厂沟金矿床位于勉-略-宁三角地带成矿有利部位。矿区出露中下泥盆统三河口群和中上元古界碧口群。矿床内发育的韧性剪切带经历了右行(韧性)-左行(韧脆性)-右行(脆性)多期(次)活动矿化受透镜状细碧岩控制,分布于韧性剪切带之中。矿体蚀变强烈,新生矿物定向排列,脉体中矿物具亚颗粒、变形纹、变形条带等料内变形特征。同位素地球化学及稀土分析结果表明,基性火山岩是金的矿源层。金矿的形成富集与韧性剪切带多期(次  相似文献   

6.
托莫尔日特金矿区韧脆性剪切带及其控矿作用   总被引:1,自引:0,他引:1  
矿区位于近NW-NWW向展布的断裂带内,并严格受其控制.控矿断裂带为一条韧-脆性剪切带,其形成主要经历了早期韧性变形、晚期脆性变形及后期改造破坏3个阶段,叠加于早期韧性剪切带之上的晚期脆性破裂带,是矿脉的主要产出位置,成矿与断裂带的韧-脆性转换密切相关.矿体形成于韧-脆性剪切带的转换带附近,后期由于抬升剥蚀而出露地表.矿体分布可能具有"两层楼"式的垂直分带,上部为石英脉型金矿体,品位较高,但规模不大;下部为糜棱岩型金矿体,规模较大,但品位稍低.因此本区以后的找矿工作中应注意挖掘深部糜棱岩型金矿的潜力.  相似文献   

7.
大平沟金矿床矿石特征与金的赋存状态   总被引:11,自引:1,他引:11  
大平沟金矿床是受韧性剪切带控制的中温动力变质热液矿床,金矿石主要为蚀变糜棱岩型,夹少量钾长石石英脉型,矿石结构有变晶结构、交代-充填结晶结构两主要类型,矿石构造以块状构造、团块状构造、细脉状构造和浸染状构造为主。金呈独立金矿物(主要为自然金)出现,以包体金、裂隙金、连生金和粒间金等形式嵌布于黄铁矿、黄铜矿、石英、钾长石及方解石等主要载金矿和中,金矿物形态多样,粒度以中细粒为主。上述特点与我国东部地区产于太古变质岩(绿岩带)中的金矿床具有可对比性,也与矿床成因研究的认识相吻合。  相似文献   

8.
陕西略阳铧厂沟金矿床地质与矿床类型   总被引:2,自引:3,他引:2  
宗静婷 《西北地质》2004,37(1):97-101
铧厂沟金矿床位于勉略缝合带中泥盆系三河口群郭镇岩组中。含矿与容矿岩系为泥盆系三河口群郭镇岩组中的细碧岩和结晶灰岩。主控矿构造为寨子湾韧-脆性剪切构造带。围岩蚀变包括退化蚀变和矿化蚀变。在矿区内产出南北两条矿化带,矿石类型为蚀变细碧岩型、黄铁绢英片岩型和石英脉型。主要的金属矿物为黄铁矿和黄铜矿,金矿物是自然金。韧脆性剪切构造叠加和岩石强烈变形、彻底退化蚀变以及后期含矿热液交代与充填是主要的成矿作用,属于火山-沉积岩系中的类卡林型金矿床。  相似文献   

9.
剪切带流体与蚀变和金矿成矿作用   总被引:11,自引:1,他引:11  
刘忠明 《地学前缘》2001,8(4):271-275
剪切带中流体与金矿中交代蚀变作用密切相关。剪切带中往往发育不同期次、不同类型的蚀变及交代蚀变岩 ,第二、三期交代蚀变岩的形成与金矿化关系密切。在含金断裂蚀变带中 ,由于剪切带流体的强烈交代作用 ,交代蚀变岩成为金矿的重要矿石类型。剪切带中的流体往往携带大量成矿物质而成为成矿流体 ,并在金矿形成过程中起着重要。在剪切带中 ,由于压力迅速降低 ,经常导致成矿流体发生沸腾作用 ,从而导致金矿的形成。成矿主要与脆性变形有关 ,韧性剪切变形向脆性剪切变形转变至关重要。从韧性剪切带向脆性剪切带转变的过程中 ,Au ,Ag ,Cu ,Pb发生大规模的活化迁移 ,并在较窄的脆性断裂中明显富集 ,形成矿体或矿化体。岩浆流体是剪切带成矿流体中最为重要的一种流体 ,许多金矿的成矿物质来源于岩浆流体  相似文献   

10.
邱添  朱永峰 《岩石学报》2012,28(7):2250-2256
萨尔托海金矿产在达拉布特蛇绿混杂岩带中。本文首次在该金矿区厘定出韧性剪切带,糜棱岩或者糜棱岩化石英菱镁岩中构成糜棱面理的矿物(铬云母、石英)形成于韧性剪切变形过程中,而切割糜棱面理的方解石-石英-黄铜矿-白云母脉代表脆性变形阶段的流体活动。根据矿物组合相互切割关系,识别出三期构造变形:早期NE向韧性变形(形成铬云母-石英组合)之后,发生了应力方向显著不同的破裂,形成NNW向分布的方解石-石英-黄铜矿-白云母脉;再晚期,应力方向又恢复到NE向,发育了浅层次的脆性构造破坏,形成了白云母-石英细脉。韧性剪切变形向脆性变形转换期间形成了石英-碳酸盐脉,其中往往含硫化物和自然金,此阶段是萨尔托海金矿的主要成矿时期。韧性剪切带控制着萨尔托海地区的金矿分布,成矿作用主要受沿剪切带迁移流体的控制,穿切糜棱面理的方解石-石英-黄铜矿-白云母脉是主要的找矿标志。韧性剪切带对金矿的显著控制表明,韧脆性转换期间形成的含硫化物石英碳酸盐脉以及相伴生的热液蚀变使金富集成矿,矿体一般赋存在断裂构造复杂的膨胀部位。萨尔托海金矿的成因与蛇绿岩的形成和演化没有关系。对韧性剪切带的系统研究是在该地区取得找矿勘探突破的关键。  相似文献   

11.
12.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

13.
The Macraes mine is hosted in an orogenic (mesothermal) gold deposit in metasedimentary rocks of the Otago Schist belt. Much gold occurs within altered schist with minimal silica-addition, and this study focuses on altered schist ore types. The unmineralized host schists are chemically and mineralogically uniform in composition, but include two end-member rock types: feldspathic schist and micaceous schist. Both rock types have undergone hydrothermal alteration along a shallow-dipping foliation-parallel shear zone, but their different rheological properties have affected the style of mineralisation. Micaceous schist has been extensively recrystallized and hydrothermally altered during ductile deformation, to form ores characterized by abundant, disseminated millimetre-scale pyrite cubes (typically 1–2 wt% S) and minor silicification. The earliest pyrite contained Ni and/or As in solid solution and no gold was imaged in these pyrites or later arsenopyrite grains. The ore type is refractory and gold recovery by cyanide leaching is less than 50%, with lowest recovery in rocks that have been less affected by later brittle deformation. In contrast, hydrothermally altered feldspathic schist is characterized by mineralised black microshears and veinlets formed during shear-zone related brittle deformation. Microsheared ore has relatively low sulphur content (<0.7 wt%) and muscovite has been illitised during hydrothermal alteration. Pyrite and arsenopyrite in microshears are fractured and deformed, and contain 1–10 m blebs of gold. Later pyrite veinlets also contain micron- to submicron-scale inclusions of sphalerite, chalcopyrite, galena, and gold (10 microns). Gold in microsheared ore is more readily recoverable than in the refractory ore, although encapsulation of the fine gold grains inhibits cyanidation. Both microsheared ore and disseminated pyritic ore pass laterally into mineralised black shears, which contain hydrothermal graphite and late-stage cataclastic sulphides. This black, sheared ore releases gold readily, but the gold is then adsorbed on to gangue minerals (preg-robbed) and net cyanidation recovery can be less than 50%. Hence, low gold recovery during cyanidation results from (1) poor liberation of gold encapsulated in microcrystalline quartz and unfractured sulphide grains, and (2) preg-robbing of liberated gold during cyanidation. Introduction of pressure-oxidation of ore prior to cynidation has mitigated these issues.  相似文献   

14.
铧厂沟金矿床区域韧性剪切带特征   总被引:3,自引:0,他引:3  
首次对铧厂沟金矿床区域韧性剪切带进行了较为系统的研究。根据野外地质调查和室内显微构造分析 ,区内发育一条较大区域韧性剪切带 ,无论沿走向还是顺倾向均呈舒缓波状 ,强变形带和弱变形域呈镶嵌形式。区域韧性剪切带经历了右行—左行—右行多期 (次 )活动 ,剪切方位也多次变化 ;早期形成温度约 5 0 0℃ ,以右行剪切为主 ,古应力值大于 0 .0 75GPa。控矿韧脆性剪切带是区域韧性剪切带演化的产物 ,最终形成脆性断裂。区域韧性剪切作用控制矿床、矿带的分布 ,并使部分金从矿源层分溢出来 ,产生第一阶段金的富集。次级韧脆性剪切带 (控矿剪切带 )控制富矿体的分布。因此 ,铧厂沟金矿床可称为韧性剪切带型金矿床。另外 ,中 -下泥盆统三河口群第一岩段第一岩层 (D1 -2 SH1a)部分原岩有明显海底热水同沉积特征 ;在矿床之西万家山—张家山应注意寻找硅化石英粗糜棱岩型金矿石。  相似文献   

15.
The Mupane gold deposit, which is one of the numerous gold occurrences in the Tati Greenstone Belt in the northeastern part of Botswana, consists of four orebodies, namely Tau, Tawana, Kwena, and Tholo deposits. The present research, which focuses on the genesis of the Tau deposit, was based on ore petrography, mineral chemistry of sulfides, and sulfur isotope data. Mineralogical characteristics of the host rocks indicate that banded iron formation at the Tau deposit includes iron oxides (magnetite), carbonates (siderite and ankerite), silicates (chlorite and amphibole), and sulfides (arsenopyrite and pyrrhotite). The deposit features arsenopyrite-rich zones associated with biotite-chlorite veins, which are indicative of the precipitation of arsenopyrite concomitant with potassic alteration. The replacement of magnetite by pyrrhotite in some samples suggests that sulfidation was likely the dominant gold precipitation mechanism because it is considered to have destabilized gold-thiocomplexes in the ore-forming fluids. Based on textural relationships and chemical composition, arsenopyrite is interpreted to reflect two generations. Arsenopyrite 1 is possibly early in origin, sieve textured with abundant inclusions of pyrrhotite. Arsenopyrite 1 was then overgrown by late arsenopyrite 2 with no porous textures and rare inclusions of pyrrhotite. Gold mineralization was initiated by focused fluid flow and sulfidation of the oxide facies banded iron formation, leading to an epigenetic gold mineralization. The mineralogical assemblages, textures, and mineral chemistry data at the Tau gold deposit revealed two-stage gold mineralizations commencing with the deposition of invisible gold in arsenopyrite 1 followed by the later formation of native gold during hydrothermal alteration and post-depositional recrystallization of arsenopyrite 1. Laser ablation inductively coupled plasma mass spectrometric analysis of arsenopyrite from the Tau deposit revealed that the hydrothermal event responsible for the formation of late native gold also affected the distribution of other trace elements within the grains as evidenced by varying trace elements contents in arsenopyrite 1 and arsenopyrite 2. The range of δ34S of gold-bearing assemblages from the Tau deposit is restricted from +1.6 to +3.9‰, which is typical of Archean orogenic gold deposits and indicates that overall reduced hydrothermal conditions prevailed during the gold mineralization process at the Tau deposit. The results from this study suggest that gold mineralization involved multi-processes such as sulfidation, metamorphism, deformation, hydrothermal alteration, and gold remobilization.  相似文献   

16.
17.
抱伦金矿床位于海南岛西南部乐东县境内,是一个以石英脉型为主的大型金矿床。野外地质调查表明,矿区大致经历了三期构造变形:早期(D1)NE向褶皱,中期(D2)NNW向褶皱和剪切变形,晚期(D3)脆性断层和节理。其中,中期的NNW向右行剪切变形为金矿体的赋存提供了主要空间,金矿化主要发生于三个不同的阶段,以第一阶段(自然金-Q2石英阶段)最为重要,形成了大量自然金,为主要矿化阶段。对切割矿体的细晶岩脉中锆石的定年研究表明,抱伦金矿化主要与印支期尖峰岭花岗岩浆活动有关,而与燕山晚期岩浆活动关系不大。  相似文献   

18.
以南天山中段萨恨托亥-大山口成矿带内控矿韧性剪切带为例,对韧性剪切带的金成矿作用进行了初步探讨.通过对地质体的构造变形特点、变形演化过程的分析表明,韧性剪切带的构造属性控制了金矿的产状及规模,金矿化阶段与韧性剪切带的变形演化过程密切相关.矿化类型、矿化强度及矿化方式受韧性剪切带发展阶段制约,剪切带内物质组分迁移变化揭示出韧性剪切带与金在剪切带内的迁移富集、沉淀成矿的内在联系.韧性剪切带成矿作用是南天山成矿带中段重要的金矿成矿作用.  相似文献   

19.
黔东南金成矿区位于江南造山带金成矿省的西南端,成矿条件优越。坑头金矿床是黔东南金成矿区的一个中型矿床,在其深部找矿中,发现除石英脉型矿体外,还存在蚀变岩型矿体。然而,这种蚀变岩型矿体的构造形态、蚀变类型、与石英脉型矿体之间关系和金的赋存状态尚不清楚。本研究与当前的勘查工作紧密结合,围绕石英脉型矿体和新发现的蚀变岩型矿体为研究切入点,借助微区分析技术(扫描电镜和电子探针)进行系统的“流体-蚀变-成矿”研究。蚀变矿物金红石矿物化学显示为热液成因,具有典型造山型金矿床的金红石标型特征。围岩的沉积-成岩过程(包括低级变质作用过程),主要形成了草莓状黄铁矿和含铁碳酸盐岩,为后期含金硫化物(黄铁矿和毒砂)的形成提供物质基础(如Fe)。金的成矿富集过程主要经历了绢云母+毒砂+黄铁矿+石英(Ser+Apy+Py+Qtz)阶段、黄铁矿+毒砂+石英(Py+Apy+Qtz)阶段和自然金+石英(Au0+Qtz)阶段。在Ser+Apy+Py+Qtz阶段,主要表现为含矿流体与围岩的初级交代,形成大量浸染状黄铁矿+毒砂的硫化带;Py+Apy+Qtz阶段主要为流体沿着剪切带再交代,形成蚀变岩型矿...  相似文献   

20.
加吾金矿位于青海省东部同德县境内,是武警黄金部队近年来发现的又一处具大型规模的金矿床。该矿床在大地构造位置上处于西秦岭与东昆仑的衔接部位。矿体赋存于中下三叠统中,在平面上呈舒缓波状,在剖面上为脉状、似层状。矿石中金属矿物主要为黄铁矿和毒砂,金主要以微细粒分布于石英裂隙和毒砂、黄铁矿等矿物粒间。区内中下三叠统隆务河群板岩中的金丰度值和有机碳含量高,是有利的赋矿层位。矿体产于北西向和近东西向构造蚀变带内,受区内断裂带控制明显。矿体在空间上与印支期中酸性岩浆岩相伴产出。研究表明,该矿床为受构造蚀变带控制的、与沉积作用和岩浆活动有成因联系的微细浸染型金矿床。截止目前,该矿共计探明金矿脉22条,累计提交金资源量超过20t。该矿的发现和评价对指导青海东部微细浸染型金矿找矿具有重要的示范意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号