首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
From 2000 to 2006, a total of 75 bivalve species were identified, varying from 29 (spring 2001) to 54 species (spring 2005) per year. Seasonal tendencies in diversity varied according the year, thus the interpretation of long-term and regional scales is essential before drawing any conclusions in other studies. Richness and diversity consistently decreased with depth and increased with sediment grain size (from low in very coarse sand to high in coarse silt). Diversity decreased progressively from 3 to 16 m depth, thus the harsher shallower environments (due to waves and tidal air exposure) showed greater diversity than the most stable areas. Communities in finer sediments were more diverse than those in coarser sand. Evenness showed patterns opposite to diversity, overall.Diversity and evenness maps (produced with multivariate universal kriging), showed that most geographic areas with greater diversity were farer from river outflows and wastewater treatment plants. Two types of geographic pattern were observed: areas with persistently greater bivalve diversity through time and areas that changed locally from year to year. This spatial analysis can be used to establish priority conservation areas for management purposes, and to analyse the persistency of regional diversity patterns. The area with most habitat heterogeneity (Sotavento) corresponded to greatest diversity.There was a positive relationship between Spisula solida and Chamelea gallina landings and bivalve diversity 2 years and 1 year later, respectively. Possibly, local fisheries, by selectively withdrawing the commercial numerically dominant species from the ecosystem, increased diversity 1 to 2 years later, as the ecological niches of the dominants are quickly filled by several other species thereby creating a more even community. On regional scales, no significant impact was found on long-term bivalve diversity in local fisheries,  相似文献   

2.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号