首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We consider the equilibria of a satellite in a circular orbit under the action of gravitational and constant torques. The number of equilibria depending on the parameters of the problem is found by the analysis of an algebraic equation of order 6. The domains with different numbers of equilibria are specified, and the equations of boundary curves are determined in function of values of the components of constant torque. Classification of different distributions of number of equilibria is made for arbitrary values of the parameters.  相似文献   

2.
Attitude motion of a satellite subjected to gravitational and aerodynamic torques in a circular orbit is considered. In special case, when the center of pressure of aerodynamic forces is located in one of the principal central planes of inertia of the satellite, all equilibrium orientations are determined. Existence conditions of all equilibria are obtained and evolution of domains with a fixed number of equilibria is investigated in detail. All bifurcation values of the system’s parameters corresponding to the qualitative change of these domains are determined. Sufficient conditions of stability are obtained for each equilibrium orientation using generalized integral of energy.  相似文献   

3.
We consider the motion of a dual spin satellite placed in the gravitational field of n material points, assuming that the satellite has no influence on the motion of these points. The main bodies are located at the libration points of the classical n bodies problem. We investigate the set of relative equilibria of the satellite. As in the elementary case of a gyrostat attracted by a single point, we show that this problem is equivalent to find the extremum of a quadratic function. We obtain all possible equilibria of the satellite by solving two algebraic equations. Sufficient conditions of stability of these relative equilibria are given.  相似文献   

4.
The paper deals with the study of a satellite attracted by n primary bodies, which form a relative equilibrium. We use orthogonal degree to prove global bifurcation of planar and spatial periodic solutions from the equilibria of the satellite. In particular, we analyze the restricted three body problem and the problem of a satellite attracted by the Maxwell’s ring relative equilibrium.  相似文献   

5.
Attitude motion of a satellite subjected to gravitational and aerodynamic torques in a circular orbit is investigated. In special case, when the center of pressure of aerodynamic forces is located on one of the principal central axes of inertia of the satellite, all equilibrium orientations are determined. Necessary and (or) sufficient conditions of stability are obtained for each equilibrium orientation. Evolution of domains where stability conditions take place is investigated. All bifurcation values of parameters corresponding to qualitative change of domains of stability are determined.  相似文献   

6.
Dual-spin or gyrostat satellites subject to gravitational torques can adopt an infinite number of possible equilibria obtained by adjusting the magnitude and direction of the rotor angular momentum within the satellite. This paper seeks to answer the question, which of these equilibria is best — and best is chosen here to mean most stable in the sense that the energy required to perturb the orientation by any prescribed amount is maximized, i.e. the smallest eigenvalue of the Hessian matrix of the dynamic potential energy is maximized. Using this criterion, it is shown that the conventional configuration for dual-spin satellites with the angular momentum of the rotor, the spacecraft principal axis of maximum moment of inertia, and the perpendicular to the orbital plane coincident is not always the best orientation. The optimal configuration is shown to have the minimum moment of inertia always aligned with the local vertical, but the principal axis of maximum moment of inertia, shifts from the perpendicular to the orbital plane to lying in-plane as the angular momentum of the rotor is increased from zero (corresponding to a rigid gravity gradient satellite) to some sufficiently large value which is determined as a function of parameters. For angular momentum greater than this value, global optimality is established analytically, and otherwise local optimality is proved analytically with global optimality demonstrated numerically.  相似文献   

7.
This paper is the continuation of a previous work [6] in which we have obtained the set of all possible equilibria of a gyrostat satellite attracted by n points mass by solving two algebraical equations P1=0 and P2=0. It results that there is a maximum of 24 isolated equilibrium orientations for the satellite. Sufficient conditions of stability for these relative equilibria are given.Here we consider only the elementary case n=1. We show that the coefficients of the two algebrical equations depend on four parameters j1, j3, K and v2. The two first parameters depend only on the direction of the internal angular momentum of the rotors, the third being only function of the principal moments of inertia of the satellite and the last parameter is a decreasing function of one of the components of . We show that the two polynomials P1 and P2 are unvariant within two transformations of the parameters j1 and j3. It is then possible to reduce the range of variation of these parameters.For some particular values of the parameters, it is possible to give the minimum number of real roots of equations P1=0 and P2=0. In general cases, a computing program is written to obtain the number of real roots of these equations according to the values of the parameters. We show that among the roots found, few of them corresponds to stable equilibrium orientations.  相似文献   

8.
The spectral stability of synchronous circular orbits in a rotating conservative force field is treated using a recently developed Hamiltonian method. A complete set of necessary and sufficient conditions for spectral stability is derived in spherical geometry. The resulting theory provides a general unified framework that encompasses a wide class of relative equilibria, including the circular restricted three-body problem and synchronous satellite motion about an aspherical planet. In the latter case we find an interesting class of stable nonequatorial circular orbits. A new and simplified treatment of the stability of the Lagrange points is given for the restricted three-body problem.  相似文献   

9.
We hereby study the stability of a massless probe orbiting around an oblate central body (planet or planetary satellite) perturbed by a third body, assumed to lay in the equatorial plane (Sun or Jupiter for example) using a Hamiltonian formalism. We are able to determine, in the parameters space, the location of the frozen orbits, namely orbits whose orbital elements remain constant on average, to characterize their stability/unstability and to compute the periods of the equilibria. The proposed theory is general enough, to be applied to a wide range of probes around planet or natural planetary satellites. The BepiColombo mission is used to motivate our analysis and to provide specific numerical data to check our analytical results. Finally, we also bring to the light that the coefficient J 2 is able to protect against the increasing of the eccentricity due to the Kozai-Lidov effect and the coefficient J 3 determines a shift of the equilibria.  相似文献   

10.
The rotational motion of an artificial satellite is studied by considering torques produced by gravity gradient and direct solar radiation pressure. A satellite of circular cylinder shape is considered here, and Andoyers variables are used to describe the rotational motion. Expressions for direct solar radiation torque are derived. When the earths shadow is not considered, an analytical solution is obtained using Lagranges method of variation of parameters. A semi-analytical procedure is proposed to predict the satellites attitude under the influence of the earths shadow. The analytical solution shows that angular variables are linear and periodic functions of time while their conjugates suffer only periodic variations. When compared, numerical and analytical solutions have a good agreement during the time range considered.  相似文献   

11.
A cylindrically-symmetric magnetic arcade with its axis on the photosphere is perturbed by means of an alteration in the pressure along the base. The perturbation is examined with a view to finding equilibrium configurations close to the original equilibrium. It is found that equilibria can only be found when the integral of the excess pressure along the base is zero. In other cases no equilibria can be found and the arcade is likely either to collapse or, in the case of a coronal mass ejection, to erupt. For an initial arcade whose field increases linearly with radial distance from the axis, the neighbouring equilibria have been found.  相似文献   

12.
William B. Moore 《Icarus》2006,180(1):141-146
Models of tidal-convective equilibrium for Europa's ice shell are computed using a laboratory-derived composite flow law for ice. Volume diffusion creep is found to dominate the flow law at equilibrium, and thus the thickness of the shell is strongly dependent on the poorly known grain size of the ice. This grain size is, however, constrained to be less than a few millimeters if equilibrium is achieved at the current eccentricity. Europa's ice shell cannot be thinner than about 16 km in equilibrium at present, since tidal dissipation cannot generate enough heat in such a thin shell to balance the heat transport. No conductive equilibria are found; this is likely due to the fact that most of a conductive shell must be cold if temperature gradients are to be large enough to carry the heat. A minimum eccentricity of about 0.0025 (about 1/4 the present value) below which there are no equilibria is also found.  相似文献   

13.
This paper discusses the possibility of constructing time-independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self-consistent equilibrium can be constructed from any set of time-independent phase-space building blocks which, when combined, generate the mass distribution associated with an assumed time-independent potential. This approach provides a way to justify Schwarzschild's method for the numerical construction of self-consistent equilibria with arbitrary time-independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild's method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non-integrable potential.  相似文献   

14.
Solar sails are a proposed form of spacecraft propulsion using large membrane mirrors to propel a satellite taking advantage of the solar radiation pressure. To model the dynamics of a solar sail we have considered the Earth–Sun Restricted Three Body Problem including the Solar radiation pressure (RTBPS). This model has a 2D surface of equilibrium points parametrised by the two angles that define the sail orientation. In this paper we study the non-linear dynamics close to an equilibrium point, with special interest in the bounded motion. We focus on the region of equilibria close to SL 1, a collinear equilibrium point that lies between the Earth and the Sun when the sail is perpendicular to the Sun–sail direction. For different fixed sail orientations we find families of planar, vertical and Halo-type orbits. We have also computed the centre manifold around different equilibria and used it to describe the quasi-periodic motion around them. We also show how the geometry of the phase space varies with the sail orientation. These kind of studies can be very useful for future mission applications.  相似文献   

15.
The stability of attitude equilibria relative to gravitational torques for a rigid satellite in a circular orbit has been divided into three inertia regions, the Lagrange region of assured Liapunov stability, the Beletskii-Delp region which is often described as stabilized due to gyroscopic coupling, and an assured instability region. The generalization of these regions to the case of dual-spin or gyrostat satellites whose internal spin momentum is along a principal axis is treated here. The stability boundaries are obtained for all possible equilibrium orientations for such vehicles, and the variations of these boundaries corresponding to changes in the internal momentum magnitude, or to aligning the momentum with a different principal axis, are determined.Alexander von Humboldt Research Fellow at the Institut für Mechanik; on sabbatical leave from Columbia University, New York, U.S.A.  相似文献   

16.
We study the dynamics of a satellite (artificial or natural) orbiting an Earth-like planet at low altitude from an analytical point of view. The perturbation considered takes into account the gravity attraction of the planet and in particular it is caused by its inhomogeneous potential. We begin by truncating the equations of motion at second order, that is, incorporating the zonal and the tesseral harmonics up to order two. The system is formulated as an autonomous Hamiltonian and has three degrees of freedom. After three successive Lie transformations, the system is normalised with respect to two angular co-ordinates up to order five in a suitable small parameter given by the quotient between the angular velocity of the planet and the mean motion of the satellite. Our treatment is free of power expansions of the eccentricity and of truncated Fourier series in the anomalies. Once these transformations are performed, the truncated Hamiltonian defines a system of one degree of freedom which is rewritten as a function of two variables which generate a phase space which takes into account all of the symmetries of the problem. Next an analysis of the system is achieved obtaining up to six relative equilibria and three types of bifurcations. The connection with the original system is established concluding the existence of various families of invariant 3-tori of it, as well as quasiperiodic and periodic trajectories. This is achieved by using KAM theory techniques.  相似文献   

17.
Modern observational techniques using ground-based and space-based instrumentation have enabled the measurement of the distance between the instrument and satellite to better than one centimeter. Such high precision instrumentation has fostered applications with centimeter-level requirements for satellite position knowledge. The determination of the satellite position to such accuracy requires a comparable modeling of the forces experienced by the satellite, especially when classical orbit determination methods are used. Geodetic satellites, such as Lageos, in conjunction with high precision ground-based laser ranging, have been used to improve for modeling of forces experienced by the satellite. Space-based techniques, such as Global Positioning System (GPS), offer alternatives, including kinematic techniques which require no modeling of the satellite forces, or only rudimentary models. This paper will describe the various techniques and illustrate the accuracies achieved with current satellites, such as TOPEX/POSEIDON, GPS/MET and the expectations for some future satellites.  相似文献   

18.
We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to  7 × 109 M  . Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2–5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5–1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1–0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since   z = 1  , 27 per cent of central galaxies (above  3 × 1010 M  ) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain 'central' objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.  相似文献   

19.
This paper investigates new families of displaced, highly non-Keplerian orbits in the two-body problem and artificial equilibria in the circular restricted three-body problem. The families of orbits presented extend prior work by using periodic impulses to generate displaced orbits rather than continuous thrust. The new displaced orbits comprise a sequence of individual Keplerian arcs whose intersection is continuous in position, with discontinuities in velocity removed using impulses. For frequent impulses the new families of orbits approximate continuous thrust non-Keplerian orbits found in previous studies. To generate approximations to artificial equilibria in the circular restricted three-body problem, periodic impulses are used to generate a sequence of connected three-body arcs which begin and terminate at a fixed position in the rotating frame of reference. Again, these families of orbits reduce to the families of artificial equilibria found using continuous thrust.  相似文献   

20.
研究了在高空电离层中运动的带电荷的卫星受电感应阻力后对轨道根数产生的摄动影响。研究结果表明 ,电感应阻力对带电卫星的轨道半长轴、轨道偏心率、近地点赤经、历元平赤经均有周期摄动影响 ,但除对半长轴有长期摄动效应外对其它轨道根数均无长期摄动。轨道倾角和升交点赤经不受摄动影响。文中以飞行在高度 1 50 0km的电离层中的导体卫星作为算例。计算结果显示 :带电导体卫星在高空电离层中带有一定电量时电感应阻力对轨道半长轴的缩短产生显著效应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号