首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The rocks of the early Precambrian proto-north China platform in general have an isotopic age of more than 1800–1900 Ma and thus belong to the Archaean and early Proterozoic.Based on a study of six representative regions, four evolutionary stages have been recognized in terms of volcano-sedimentary and/or sedimentary mega-cycles, two for the Archaean and two for the early Proterozoic. The geochronological division between the first and second mega-cycles is ca. 2800—3000 Ma, that between the second and third ca. 2500–2600 Ma, and that between the third and fourth ca. 2200–2300 Ma.Prior to ca. 2800–3000 Ma ago the area probably already possessed characteritics of a proto-crustal basement on which basaltic, dacitic and neritic clastic rocks had been deposited. This was followed during the second stage (cycle) by the formation of basaltic and intermediate volcanics, silty graywackes and even carbonate rocks. Most of these rocks were metamorphosed to granulite facies and amphibolite facies respectively during Archaean time. They were also influenced by an earlier sodic migmatization and a later potassic one and related magmatic activity and at least two episodes of folding. They probably produced an elevated, rather widespread sialic basement.The third stage was characterized by the accumulation of volcano-sedimentary rocks in local basins, troughs and rift-depressions which differ in actual setting from place to place. These rocks were later affected by varying degrees of tectonism and insignificant magmatism and were metamorphosed to amphibolite to greenschist facies.The last stage was one of deposition, near the earlier basins or troughs, of dominant clastic and dolomitic carbonate rocks with locally developed minor volcanics. This stage reflects comparatively stable tectonic conditions, seemingly transitional into those of the more stable middle to late Proterozoic. Most of the rocks were metamorphosed to greenschist facies before 1800–1900 Ma ago.  相似文献   

2.
Volcanism related to subduction of the Philippine Sea (PHS) plate began in Central Kyushu at 5 Ma, after a pause of igneous activity lasting about 10 m.y. It formed a large volcano-tectonic depression, the Hohi volcanic zone (HVZ), and has continued to the present at a decreasing eruption rate. The products are largely andesite and dacite, which became enriched in K with time. The proportion of tholeiitic to calc alkalic rocks also increases with time. Calc-alkalic high-Mg basaltic andesites (YbBs) were erupted in the early stage of the HVZ activity (5–3 Ma), and high-alumina basalts (KjBs) were erupted in the later stage (2–0 Ma). In contrast to the basalts in the HVZ, Northwest Kyushu basalts (NWKBs) have been erupted on the backarc side of the HVZ since 11 Ma, and hence are not related to the PHS plate subduction. They are mainly high-alkali tholeiitic to alkali basalt that shows no notable chemical change with time. NWKB, YbB, and KjB have MORB-normalized incompatible-element spectra that differ from each other, as is well expressed in both Nb and Sr anomalies. The patterns of KjB and NWKB are typical of those for island-arc basalt (IAB) and ocean-island basalt (OIB), respectively. YbB shows a pattern intermediate between the two. We suggest that the magma source beneath the HVZ changed in composition from an OIB-type mantle to an IAB-type mantle as the subduction of PHS plate advanced. However, the magma source remained fertile under Northwest Kyushu. In order to explain the temporal change of source mantle beneath the HVZ, we propose a model for progressive contamination of the mantle wedge, in which three processes (contamination by a slab-derived component, subtraction of magma from the mantle, and mixing of the mantle residue and slab-derived component) are repeated as subduction continues. As long as the progressive contamination of mantle wedge proceeds, its trace-element composition converges at a steady-state value for a short period. This value does not depend on the initial composition of the mantle wedge but instead on the composition of the slab-derived component. The trace-element composition of the magma produced in such a mantle wedge approaches that of the slab-derived component with time, but the major-element composition is determined by the phase relations of mantle peridotite. The slab-derived component may be basaltic liquid that is partially melted from rutile-bearing eclogite.  相似文献   

3.
Twenty-four K-Ar radiometric ages are presented for late Cenozoic continental volcanic rocks of the Cordillera Occidental of southernmost Perú (lat. 16° 57′–17° 36′S). Rhyodacitic ignimbrite eruptions began in this transect during the Late Oligocene and continued episodically through the Miocene. The development of andesitic-dacitic strato volcanoes was initiated in the Pliocene and continues to the present.The earliest ignimbrite flows (25.3–22.7 Ma) are intercalated in the upper, coarsely-elastic member of the Moquegua Formation and demonstrate that this sedimentary unit accumulated in a trough, parallel to Andean tectonic trends, largely in the Oligocene. More voluminous ash-flow eruptions prevailed in the Early Miocene (22.8–17.6 Ma) and formed the extensively preserved Huaylillas Formation. This episode was coeval with a major phase of Andean uplift, and the pyroclastics overlie an erosional surface of regional extent incised into a Paleogene volcano-plutonic arc terrain. An age span of 14.2–8.9 Ma (mid-Late Miocene) is indicated for the younger Chuntacala Formation, which again comprises felsic ignimbrite flows, largely restricted to valleys incised into the pre-Huaylillas Formation lithologies, and, at lower altitudes, an extensive aggradational elastic facies. The youngest areally extensive ignimbrites, constituting the Sencca Formation, were extruded during the Late Miocene.In the earliest Pliocene, the ignimbrites were succeeded by more voluminous calcalkaline, intermediate flows which generated numerous large and small stratovolcanoes; these range in age from 5.3 to 1.6 Ma. Present-day, or Holocene, volcanism is restricted to several large stratovolcanoes which had begun their development during the Pleistocene (by 0.7 Ma).The late Oligocene/Early Miocene (ca. 22–23 Ma) reactivation of the volcanic arc coincided with a comparable increase in magmatic activity throughout much of the Cordilleras Occidental and Oriental of the Central Andes.  相似文献   

4.
We document the thermal record of breakup of the conjugate Rio Muni (West Africa) and NE Brazil margins using apatite fission track analysis, vitrinite reflectance data and stratigraphic observations from both margins. These results permit determination of the timing of four cooling episodes, and the temperature of samples at the onset of each episode. All samples are interpreted to have experienced higher temperatures in the geological past due to i) elevated basal heatflow (palaeogeothermal gradient in Rio Muni-1 well decaying from 58 °C/km during the Mid Cretaceous to 21.5 °C/km in the Late Cenozoic) and ii) progressive exhumation from formerly greater burial depth. A well constrained history of changing palaeogeothermal gradient allows for much more precise quantification of the thickness of eroded section (exhumation) than if a constant heatflow is assumed. Cooling episodes identified from the palaeotemperature data at 110–95 Ma (both margins) and 85–70 Ma (Rio Muni only) coincide with major unconformities signifying, respectively, the cessation of rifting (breakup) and compressional shortening that affected the African continent following the establishment of post-rift sedimentation (drift). The interval between these separate unconformities is occupied by allochthonous rafts of shallow-water carbonates recording gravitational collapse of a marginal platform. The rift shoulder uplift that triggered this collapse was enhanced by local transpression associated with the obliquely divergent Ascension Fracture Zone, and thermal doming due to the coeval St Helena and Ascension Plumes. The data also reveal a c.45–35 Ma cooling episode, attributed to deep sea erosion at the onset of Eo-Oligocene ice growth, and a c.15–10 Ma episode interpreted as the record of Miocene exhumation of the West African continental margin related to continent-wide plume development. Integration of thermal history methods with traditional seismic- and stratigraphy-based observations yields a dynamic picture of kilometre-scale fluctuations in base level through the breakup and early drift phases of development of these margins. Major unconformities at ocean margins are likely to represent composite surfaces recording not only eustasy, but also regional plate margin-generated deformation, local ‘intra-basinal’ reorganization, and the amplifying effect of negative feedbacks between these processes.  相似文献   

5.
Analysis of seismic anisotropy in the crust and mantle wedge above subduction zones gives much information about the dynamic processes inside the Earth. For this reason, we measure shear wave polarization anisotropy in the crust and upper mantle beneath central and southwestern Japan from local shallow, intermediate, and deep earthquakes occurring in the subducting Pacific slab. We analyze S phases from 198 earthquakes recorded at 42 Japanese F-net broadband seismic stations. This data set yields a total of 980 splitting parameter pairs for central and southwestern Japan. Dominant fast polarization directions of shear waves obtained at most stations in the Kanto–Izu–Tokai areas are oriented WNW–ESE, which are sub-parallel to the subduction direction of the Pacific plate. However, minor fast polarization directions are oriented in NNE–SSW directions being parallel to the strike of the Japan Trench, especially in the north of Izu Peninsula and the northern Tokai district. Generally, fast directions obtained at stations located in Kii Peninsula and the Chubu district are oriented ENE–WSW, almost parallel to the Nankai Trough, although some fast directions have NW–SE trends. The fast directions obtained at stations in northern central Honshu are oriented N–S. Delay times vary considerably and range from 0.1 to 1.25 s depending on the source depth and the degree of anisotropy along the ray path. These lateral variations in splitting character suggest that the nature of anisotropy is quite different between the studied areas. Beneath Kanto–Tokai, the observed WNW–ESE fast directions are probably caused by the olivine A-fabric induced by the corner flow. However, the slab morphology in this region is relatively complicated as the Philippine Sea slab is overriding the Pacific slab. This complex tectonic setting may induce lateral heterogeneity in the flow and stress state of the mantle wedge, and may have produced NNE–SSW orientations of fast directions. The ENE–WSW fast directions in Kii Peninsula and the Chubu district are more coherent and may be partly induced by the subduction of the Philippine Sea plate. The N–S fast directions in northern central Honshu might be produced by the trench-parallel stretching of the wedge due to the curved slab at the arc–arc junction.  相似文献   

6.
The volcano-stratigraphic and geochronologic data presented in this work show that the Tenerife central zone has been occupied during the last 3 Ma by shield or central composite volcanoes which reached more than 3000 m in height. The last volcanic system, the presently active Teide-Pico Viejo Complex began to form approximately 150 ka ago. The first Cañadas Edifice (CE) volcanic activity took place between about 3.5 Ma and 2.7 Ma. The CE-I is formed mainly by basalts, trachybasalts and trachytes. The remains of this phase outcrop in the Cañadas Wall (CW) sectors of La Angostura (3.5–3.0 Ma and 3.0–2.7 Ma), Boca de Tauce (3.0 Ma), and in the bottom of some external radial ravines (3.5 Ma). The position of its main emission center was located in the central part of the CC. The volcano could have reached 3000 m in height. This edifice underwent a partial destruction by failure and flank collapse, forming debris-avalanches during the 2.6–2.3 Ma period. The debris-avalanche deposits can be seen in the most distal zones in the N flank of the CE-I (Tigaiga Breccia). A new volcanic phase, whose deposits overlie the remains of CE-I and the former debris-avalanche deposits, constituted a new volcanic edifice, the CE-II. The dyke directions analysis and the morphological reconstruction suggest that the CE-II center was situated somewhat westward of the CE-I, reaching some 3200 m in height. The CE-II formations are well exposed on the CW, especially at the El Cedro (2.3–2.00 Ma) sector. They are also frequent in the S flank of the edifice (2.25–1.89 Ma) in Tejina (2.5–1.87 Ma) as well as in the Tigaiga massif to the N (2.23 Ma). During the last periods of activity of CE-II, important explosive eruptions took place forming ignimbrites, pyroclastic flows, and fall deposits of trachytic composition. Their ages vary between 1.5 and 1.6 Ma (Adeje ignimbrites, to the W). In the CW, the Upper Ucanca phonolitic Unit (1.4 Ma) could be the last main episode of the CE-II. Afterwards, the Cañadas III phase began. It is well represented in the CW sectors of Tigaiga (1.1 Ma–0.27 Ma), Las Pilas (1.03 Ma–0.78 Ma), Diego Hernández (0.54 Ma–0.17 Ma) and Guajara (1.1 Ma–0.7 Ma). The materials of this edifice are also found in the SE flank. These materials are trachybasaltic lava-flows and abundant phonolitic lava and pyroclastic flows (0.6 Ma–0.5 Ma) associated with abundant plinian falls. The CE-III was essentially built between 0.9 and 0.2 Ma, a period when the volcanic activity was also intense in the ‘Dorsal Edifice' situated in the easterly wing of Tenerife. The so called ‘valleys' of La Orotava and Güimar, transversals to the ridge axis, also formed during this period. In the central part of Tenerife, the CE-III completed its evolution with an explosive deposit resting on the top of the CE, for which ages from 0.173 to 0.13 Ma have been obtained. The CC age must be younger due to the fact that the present caldera scarp cuts these deposits. On the controversial origin of the CC (central vertical collapse vs. repeated flank failure and lateral collapse of mature volcanic edifices), the data discussed in this paper favor the second hypothesis. Clearly several debris-avalanche type events exist in the history of the volcano but most of the deposits are now under the sea. The caldera wall should represent the proximal scarps of the large slides whose intermediate scarps are covered by the more recent Teide-Pico Viejo volcanoes.  相似文献   

7.
The Eastern Anatolia Region exhibits one of the world's best exposed and most complete transects across a volcanic province related to a continental collision zone. Within this region, the Erzurum–Kars Plateau is of special importance since it contains the full record of collision-related volcanism from Middle Miocene to Pliocene. This paper presents a detailed study of the volcanic stratigraphy of the plateau, together with new K–Ar ages and several hundred new major- and trace-element analyses in order to evaluate the magmatic evolution of the plateau and its links to collision-related tectonic processes. The data show that the volcanic units of the Erzurum–Kars Plateau cover a broad compositional range from basalts to rhyolites. Correlations between six logged, volcano-stratigraphic sections suggest that the volcanic activity may be divided into three consecutive Stages, and that activity begins slightly earlier in the west of the plateau than in the east. The Early Stage (mostly from 11 to 6 Ma) is characterised by bimodal volcanism, made up of mafic-intermediate lavas and acid pyroclastic rocks. Their petrography and high-Y fractionation trend suggest that they result from crystallization of anhydrous assemblages at relatively shallow crustal levels. Their stratigraphy and geochemistry suggest that the basic rocks erupted from small transient chambers while the acid rocks erupted from large, zoned magma chambers. The Middle Stage (mostly from 6–5 Ma) is characterised by unimodal volcanism made up predominantly of andesitic–dacitic lavas. Their petrography and low-Y fractionation trend indicate that they resulted from crystallization of hydrous (amphibole-bearing) assemblages in deeper magma chambers. The Late Stage (mostly 5–2.7 Ma) is again characterised by bimodal volcanism, made up mainly of plateau basalts and basaltic andesite lavas and felsic domes. Their petrography and high-Y fractionation trend indicate that they resulted from crystallization of anhydrous assemblages at relatively shallow crustal levels. AFC modelling shows that crustal assimilation was most important in the deeper magma chambers of the Middle Stage. The geochemical data indicate that the parental magma changed little throughout the evolution of the plateau. This parental magma exhibits a distinctive subduction signature represented by selective enrichment in LILE and LREE thought to have been inherited from a lithosphere modified by pre-collision subduction events. The relationships between magmatism and tectonics support models in which delamination of thickened subcontinental lithosphere cause uplift accompanied by melting of this enriched lithosphere. Magma ascent, and possibly magma generation, is then strongly controlled by strike-slip faulting and associated pull-apart extensional tectonics.  相似文献   

8.
The 1875-1840-Ma Great Bear magmatic zone is a 100-km wide by at least 900-km-long belt of predominantly subgreenschist facies volcanic and plutonic rocks that unconformably overlie and intrude an older sialic basement complex. The basement complex comprises older arc and back-arc rocks metamorphosed and deformed during the Calderian orogeny, 5–15 Ma before the onset of Great Bear magmatism. The Great Bear magmatic zone contains the products of two magmatic episodes, separated temporally by an oblique folding event caused by dextral transpression of the zone: (1) a 1875-1860-Ma pre-folding suite of mainly calc-alkaline rocks ranging continuously in composition from basalt to rhyolite, cut by allied biotite-hornblende-bearing epizonal plutons; and (2) a 1.85-1.84-Ga post-folding suite of discordant, epizonal, biotite syenogranitic plutons, associated dikes, and hornblende-diorites, quartz diorites, and monzodiorites. The pre-folding suite of volcanic and plutonic rocks is interpreted as a continental magmatic arc generated by eastward subduction of oceanic lithosphere. Cessation of arc magmatism and subsequent dextral transpression may have resulted from ridge subduction and resultant change in relative plate motion. Increased heat flux due to ridge subduction coupled with crustal thickening during transpression may have caused crustal melting as evidenced by the late syenogranite suite. Final closure of the western ocean by collision with a substantial continental fragment, now forming the neoautochthonous basement of the northern Canadian Cordillera, is manifested by a major swarm of transcurrent faults found throughout the Great Bear zone and the Wopmay orogen.Although there is probably no single evolutionary template for magmatism at convergent plate margins, the main Andean phase of magmatism, exemplified by the pre-folding Great Bear magmatic suite, evolves as larger quantities of subduction-related mafic magma rise into and heat the crust. This results in magmas that are more homogeneous, siliceous, and explosive with time, ultimately leading to overturn and fractionation of the continental crust.  相似文献   

9.
The integration of structural analyses with 40Ar/39Ar dating of fault-related pseudotachylytes provides time constraints for the reconstruction of the Alpine evolution of the central portion of the South Alpine orogenic wedge. In the northern sector of the belt a Variscan basement is stacked southward on the Permian to Mesozoic cover along regional faults (Orobic and Porcile thrusts). Fault zones, slightly postdating a first folding event of Alpine age, experienced a complex evolution through the ductile and brittle deformation regime, showing greenschist facies mylonites overprinted by a penetrative cataclastic deformation. Generation of fault-related pseudotachylyte veins marks the onset of brittle conditions, lasting up to the youngest episodes of fault activity. 40Ar/39Ar dating of the pseudotachylyte matrix of 9 samples give two separated age clusters: Late Cretaceous (80–68 Ma) and latest Palaeocene to Middle Eocene (55–43 Ma). These new data provide evidence that the pre-Adamello evolution of the central Southern Alps was characterised by the superposition of different tectonic events accompanying the exhumation of the deepest part of the belt through the brittle–ductile transition. The oldest pseudotachylyte ages demonstrate that south-verging regional thrusting in the central Southern Alps was already active during the Late Cretaceous, concurrently with the development of a synorogenic foredeep basin where the Upper Cretaceous Lombardian Flysch was deposited.  相似文献   

10.
Abstract The chronological characteristics of Alpine metamorphic rocks are described and Alpine metamorphic events are reinterpreted on the basis of chronological data for the western and central Alps from 1960 to 1992. Metamorphic rocks of the Lepontine, Gran San Bernardo, Piemonte, Internal Crystalline Massifs and Sesia-Lanzo mostly date Alpine metamorphic events, but some (along with granitoids and gneisses from the Helvetic and Southern Alps) result from the Variscan, Caledonian or older events and thus predate the Alpine events. Radiometric age data from the Lepontine area show systematic age relations: U-Pb monazite (23-29 Ma), Rb-Sr muscovite (15–40 Ma) and biotite (15–30 Ma), K-Ar biotite (10-30 Ma), muscovite (15–25 Ma) and hornblende (25-35 Ma), and FT zircon (10-20 Ma) and apatite (5-15 Ma), which can be explained by the different closure temperatures of the isotopic systems. A 121 Ma U-Pb zircon age for a coesite-bearing whiteschist (metaquartzite) from the Dora-Maira represents the peak of ultra-high pressure metamorphism. Coesite-free eclogites and blueschists related to ultra-high pressure rocks in the Penninic crystalline massifs yield an 40Ar-39Ar plateau age of about 100 Ma for phengites, interpreted as the cooling age. From about 50 Ma, eclogites and glaucophane schists have also been reported from the Piemonte ophiolites and calcschists, suggesting the existence of a second high P/T metamorphic event. Alpine rocks therefore record three major metamorphic events: (i) ultra-high and related high P/T metamorphism in the early Cretaceous, which is well preserved in continental material such as the Sesia-Lanzo and the Penninic Internal Crystalline Massifs; (ii) a second high P/T metamorphic event in the Eocene, which is recognized in the ophiolites and calcschists of the Mesozoic Tethys; and (iii) medium P/T metamorphism, in which both types of high P/T metamorphic rocks were variably reset by Oligocene thermal events. Due to the mixture of minerals formed in the three metamorphic events, there is a possibility that almost all geochronological data reported from the Alpine metamorphic belt show mixed ages. Early Cretaceous subduction of a Tethyan mid-ocean ridge and Eocene continental collision triggered off the exhumation of the high pressure rocks.  相似文献   

11.
Paleomagnetic measurements have been carried out on welded tuffs ranging in age between 58 Ma and 112 Ma from Yamaguchi and Go¯river areas in the central part of Southwest Japan. The new data, together with those of younger igneous rocks published previously, define the change of paleomagnetic field direction during the late Mesozoic/ Cenozoic period for Southwest Japan. The paleomagnetic direction from this area has pointed 56 ± 3° clockwise from the expected field direction estimated from APWP (apparent polar wandering path) of the whole of Eurasia during the period between 100 and 20 Ma. In comparison with the expected one from the eastern margin of Eurasia (Korea, China, Siberia), the Cretaceous field direction of Southwest Japan shows the clockwise deflection by 44–49°. These results establish that while the eastern margin of Eurasia, including Southwest Japan, was rotated more or less with respect to the main part of Eurasia during last 100 Ma, Southwest Japan was rotated clockwise through more than 40° with respect to the eastern margin of Eurasia since 20 Ma. The large amount of rotation for Southwest Japan implies that it is rotated by an opening of the southwestern part of the Japan Sea, which widens northeastward (fan shape opening). The tectonic feature of Southwest Japan and the Japan Sea is analogous to that of Corso-Sardinia and the Ligurian Sea in the Mediterranean, indicating that the fan shape opening is a specific feature of the rifting of the continental sliver at the continental rim.  相似文献   

12.
We report the first 39Ar–40Ar ages from the three early basic shield-like massifs of Tenerife, Canary islands, and couple these with detailed major and trace element chemistry to constrain the nature and timing of the mantle melting processes. The massifs have chemically different sources, and independent evolutionary histories. The Teno and Roque del Conde massifs appear chemically to represent the products of single mantle melting cycles, with progressive decrease in mean melt fraction and increase in mean melting depth in younger rocks. The Teno massif (NW) was erupted in a short time period around 6.0–6.4 Ma, while at least the lower half of the Roque del Conde massif (SW) is older than 11 Ma. In contrast, the Anaga massif (NE) is polygenetic, with 39Ar–40Ar ages ranging from 8.0–4.2 Ma, and no simple stratigraphic chemical progression. These ages run counter to published suggestions of progressive younging of Canary shield stages to the southwest. Basic rocks in all three massifs are the result of much deeper melting and smaller melt fractions than equivalent units in Gran Canaria, but nevertheless the melting column must have extended significantly into the spinel facies, requiring substantial disruption of the local lithosphere. The age and melting relationships broadly support the mantle blob model for Canary magmatism proposed by Hoernle and Schmincke (Hoernle, K., Schminke, H.-U., 1993. The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J. Petrol. 34, 599–626). In all three massifs, extensive fractional crystallisation has taken place at crustal levels so that mean MgO contents are only some 6–7%. The fractionation sequence is olivine–clinopyroxene–magnetite in basaltic compositions, with the involvement of plagioclase, amphibole and apatite only to generate the infrequent more evolved hawaiites to benmoreites. Despite the abundance of basanitic magmas in the Tenerife older massifs, these follow a differentiation trend towards weakly undersaturated benmoreite rather than to phonolite. This probably reflects early crystallisation of magnetite, perhaps resulting from somewhat high oxygen fugacity. The chemical evidence for replenished magma chambers in Tenerife described by Neumann et al. (Neumann, E.R., Wulff-Oedersen, E., Simonsen, S.L., Pearson, N.J., Martí, J., Mitjavila, J., 1999. Evidence for fractional crystallisation of periodically refilled magma chambers in Tenerife, Canary Islands. J. Petrol. 40, 1089–1123) is a consequence of treating as a single cogenetic suite the products of several magmatic systems that differ in parental melt fraction.  相似文献   

13.
14.
Occurrences of debris avalanche deposits newly identified in Tahiti (Society Islands) and Ua Huka (Marquesas Archipelago) are described and interpreted here. In both islands, the breccias are located within horseshoe-shaped residual calderas. In Tahiti, the epiclastic formations, up to 500 m thick, lie on the floor of the central depression and in the valley of the northwards running Papenoo River. In Ua Huka, the breccias crop out within a depression limited by a semicircular crest in four bays along the southern coast. Their thickness is ca. 100 m. A few clasts collected in the Tahitian breccias and some rocks forming their substratum have been dated (K–Ar datings) and analysed (major and trace elements, Sr–Nd isotopes) for this study. Using these data, we show that the debris avalanche(s) occurred in Tahiti Nui at the end of the growth of the shield volcano (between 570 000 and 390 000 years ago), maybe in consequence of the emplacement of the plutonic body which occupies the central part of the caldera. In Ua Huka, the collapse took place nearly 3 Ma ago, between the construction of the shield volcano and that of the inner one. The southwards orientation of the caldera, like that of the neighbouring island Nuku Hiva, might reflect a preferential direction of weakness in the substratum of the central Marquesas.  相似文献   

15.
The Torfajökull central volcano in south-central Iceland contains the largest volume of exposed silicic extrusives in Iceland (225 km3). Within SW-Torfajökull, postglacial mildly alkalic to peralkalic silicic lavas and lava domes (67–74 wt.% SiO2) have erupted from a family of fissures 1–2.5 km apart within or just outside a large caldera (12×18 km). The silicic lavas show a fissure-dependent variation in composition, and form five chemically distinct units. The lavas are of low crystallinity (0–7 vol.%) and contain phenocrysts in the following order of decreasing abundance: plagioclase (An10-40), Na-rich anorthoclase (<Or23), clinopyroxene (Fs37-20), FeTi oxides (Usp32-60; Ilm93-88), hornblende (edenitic–ferroedenitic) and olivine (Fo22-37), with apatite, pyrrhotite and zircon as accessory phases. The phenocryst assemblage (0.2–4.0 mm) consistently exhibits pervasive disequilibrium with the host melt (glass). Xenoliths include sparse, disaggregated, and partially fused leucocratic fragments as well as amphibole-bearing rocks of broadly intermediate composition. The values of the silicic lavas are in the range 3.6–4.4, and these are lower than the values of comagmatic, contemporaneous basaltic extrusives within SW-Torfajökull, implying that the former can not be derived from the latter by simple fractional crystallization. FeTi-oxide geothermometry reveals temperatures as low as 750–800°C. To explain the fissure-dependent chemical variations, depletions, low FeTi-oxide temperatures and pervasive crystal-melt disequilibrium, we propose the extraction and collection of small parcels of silicic melt from originally heterogeneous basaltic crustal rock through heterogeneous melting and wall rock collapse (solidification front instability, SFI). The original compositional heterogeneity of the source rock is due to (1) silicic segregations, in the form of pods and lenses characteristically formed in the upper parts of gabbroic intrusives, and (2) extreme isostatic subsidence of the earlier, less differentiated lavas of the Torfajökull central volcano. Ridge migration into older crustal terranes, coupled with establishment of concentrated volcanism at central volcanoes like Torfajökull due to propagating regional fissure swarms, supplies the heat source for this overall process. Continued magmatism in these fissures promotes extensive prograde heating of older crust and the progressive vitality and rise of the central volcano magmatic system that leads to, respectively, SFI and subsidence melting. The ensuing silicic melts (with relict crystals) are extracted, collected and extruded before reaching complete internal equilibrium. Chemically, this appears as a two-stage process of crystal fractionation. In general, the accumulation of high-temperature basaltic magmas at shallow depths beneath the Icelandic rift zones and major central volcanoes, coupled with unique tectonic conditions, allows large-scale reprocessing and recycling of the low- , hydrothermally altered Icelandic crust. The end result is a compositionally bimodal proto-continental crust.  相似文献   

16.
Detailed field mapping in the Güvem area in the Galatia province of NW Central Anatolia, Turkey, combined with K–Ar dating, has established the existence of two discrete Miocene volcanic phases, separated by a major unconformity. The magmas were erupted in a post-collisional tectonic setting and it is possible that the younger phase could be geodynamically linked to the onset of transtensional tectonics along the North Anatolian Fault zone. The Early Miocene phase (18–20 Ma; Burdigalian) is the most voluminous, comprising of over 1500 m of potassium-rich intermediate-acid magmas. In contrast, the Late Miocene volcanic phase (ca. 10 Ma; Tortonian) comprises a single 70-m-thick flow unit of alkali basalt. The major and trace element and Sr–Nd isotope compositions of the volcanics suggest that the Late Miocene basalts and the parental mafic magmas to the Early Miocene series were derived from different mantle sources. Despite showing some similarities to high-K calc-alkaline magma series from active continental margins, the Early Miocene volcanics are clearly alkaline with higher abundances of high field strength elements (Zr, Nb, Ti, Y). Crustal contamination appears to have enhanced the effects of crystal fractionation in the petrogensis of this series and some of the most silica-rich magmas may be crustal melts. The mantle source of the most primitive mafic magmas is considered to have been an asthenospheric mantle wedge modified by crustally-derived fluids rising from a Late Cretaceous–Early Tertiary Tethyan subduction zone dipping northwards beneath the Galatia province. The Late Miocene basalts, whilst still alkaline, have a Sr–Nd isotope composition indicating partial melting of a more depleted mantle source component, which most likely represents the average composition of the asthenosphere beneath the region.  相似文献   

17.
For selecting possible hot dry rock extraction sites for geothermal energy applications, the following criteria have been considered: (i) depth to the crystalline basement, (ii) temperatures at depth, (iii) pattern of regional stress field and (iv) natural permeability (=degree of fracturing) of basement rocks. A contour map of the basement topography is presented. From outcrops at the nothern border of Switzerland (crystalline rocks of the Black Forest massif, mainly granites and gneisses of Hercynian age) the basement dips gently toward the SE under the Mesozoic and Tertiary sediments of the Molasse Basin and reaches its maximum depth (7 km) underneath the front of the Alps. Some 30 km further SE the basement rocks appear at the surface (Aar- and Gotthard-massif, Penninic units), where they are deformed and fractured to a great extent. Temperature-depth profiles have been obtained by model calculations. Locally increased heat product on (in granite batholiths) at the base of the Molasse Basin, combined with the blanketing effect of the overlying sediments, could raise the temperatures to 150–170°C at a depth of 5 km. According to earthquake fault-plane solutions (P-axes) the regional stress field in the area of the Swiss Alps and in its northern Foreland is characterized by the maximum horizontal compression oriented N(150±20)°E in the upper crust.In situ stress determinations (overcoring experiments) show that considerable excess horizontal compressive stress is present in the Alpine crust (up to 200 bar). The deep Alpine tunnels exhibited considerable fracturing of crystalline rocks at depths greater than 1–2 km. Information about the degree of fracturing has also been obtained by refraction profiles. The velocitydepth functions show lower than normal velocities in the uppermost 1.5 km, indicating that the rocks there are fractured. A 30–40 km wide region, running along the axis of the Molasse Basin (which coincides with the majority of the population and most of the industry of Switzerland) would provide the best hot dry rock sites.Paper presented at the Second NATO-CCMS Meeting on Dry Hot Rock Geothermal Energy, 28–30 June 1977, Los Alamos, New Mexico, USA. Contribution No. 198, Institute of Geophysics ETH Zurich.  相似文献   

18.
During the Oligocene–Middle Miocene period widespread magmatic activity developed in Western Anatolia, following the continental collision between the Sakarya continent and the Tauride–Anatolide platform. This produced both intrusive and extrusive rocks, which appear to be associated in space and time, as exemplified from the Bayramiç area. In the Bayramiç area, the magmatic activity started with the intrusion of the Evciler granite, and the coeval lower volcanic association. This was followed by the development of the upper volcanic association. These rock groups form collectively the Bayramiç magmatic complex, which was generated under an on-going north–south compressional regime. The Bayramiç magmatic complex has a subalkaline composition, displaying a calcalkaline trend. Trace elements and REE contents resemble to island-arc and collision-related magmas. According to the isotope values the Bayramiç magmatic complex was derived from the magmas of lithospheric mantle origin, which were later contaminated, while passing through the thick continental crust, in a post-collisional tectonic setting, during the Oligocene–Early Miocene period. The latest product of the magmatism is the Late Miocene–Pliocene basalt lavas. Their geochemical properties are clearly different from the Oligocene–Early Miocene magmatic rocks. The basalts were generated when the north–south compression gave way to the north–south extensional regime.  相似文献   

19.
Widespread Mesozoic magmatism occurs in the Korean Peninsula (KP). The status quo is poles apart between the northern and southern parts in characterizing its distribution and nature, with the nearly absence of any related information in North Korea. We have the opportunity to have conducted geological investigations in North Korea and South Korea during the past ten years through international cooperation programs. This led to the revelation of a number of granitoids and related volcanic rocks and thus facilitates the comparison with those in East China and Japan. Mesozoic granitoids in the KP can be divisible into three age groups: the Triassic group with a peak age of ~220 Ma, the Jurassic one of ~190–170 Ma and the late Early Cretaceous one of ~110 Ma. The Triassic intrusions include syenite, calc-alkaline to alkaline granite and minor kimberlite in the Pyeongnam Basin of North Korea. They have been considered to form in post-orogenic settings related to the Central Asian Orogenic Belt (CAOB) or the Dabie-Sulu Orogenic Belt (DSOB). The Jurassic granitoids constitute extensive occurrence in the KP and are termed as the Daebo-period magmatism. They correlate well with coeval counterparts in NE China encompassing the northeastern part of the North China Craton (NCC) and the eastern segment of the CAOB. They commonly consist of biotite or two-mica granites and granodiorites, with some containing small dark diorite enclaves. On one hand, Early Jurassic to early Middle Jurassic magmatic rocks are rare in most areas of the NCC, whilst Middle-Late Jurassic ones are not developed in the KP. On the other hand, both NCC and KP host abundant Cretaceous granites. However, the present data revealed contrasting age peaks, with ~130–125 Ma in the NCC and ~110–105 Ma in the KP. Cretaceous granites in the KP comprise the dominant biotite granites and a few amphibole granites. The former exhibit mildly fractionated REE patterns and zircon ε Hf(t) values from -15 to -25, whereas the latter feature strongly fractionated REE patterns and zircon ε Hf(t) values from -10 to -1. Both granites contain inherited zircons of ~1.8–1.9 or ~2.5 Ga. These geochemical characters testify to their derivation from re-melting distinct protoliths in ancient basement. Another Cretaceous magmatic sub-event has been entitled as the Gyeongsang volcanism, which is composed of bimodal calc-alkaline volcanic rocks of 94–55 Ma and granitic-hypabyssal granitic bodies of 72–70 Ma. Synthesizing the Mesozoic magmatic rocks across the KP, NCC and Japan can lead to the following highlights: (1) All Triassic granites in the NCC, KP and Japan have similar characteristics in petrology, chronology and geochemistry. Therefore, the NCC, KP and Japan tend to share the same tectonic setting during the Triassic, seemingly within the context of Indosinian orogensis. (2) Jurassic to earliest Cretaceous magmatic rocks in the NCC seem to define two episodes: episode A from 175 to 157 Ma and episode B from 157 to 135 Ma. Jurassic magmatic rocks in the KP span in age mainly from 190 to 170 Ma, whereas 160–135 Ma ones are rare. With the exception of ~197 Ma Funatsu granite, Jurassic magmatic rocks are absent in Japan. (3) Cretaceous granites in the KP have a peak age of ~110, ~20 Ma younger than those in the NCC, while Japan is exempt from ~130–100 Ma granites. (4) The spatial-temporal distribution and migratory characteristics of the Jurassic-Cretaceous magmatic rocks in Japan, KP, and NE China-North China indicate that the subduction of the Paleo-Pacific plate might not be operative before Late Cretaceous (~130–120 Ma). (5) Late Cretaceous magmatic rocks (~90–60 Ma) occur in the southwestern corner of the KP and also in Japan, coinciding with the metamorphic age of ~90–70 Ma in the Sanbagawa metamorphic belt of Japan. The magmatic-metamorphic rock associations and their spatial distribution demonstrate the affinities of sequentially subduction zone, island arc and back-arc basin from Japan to Korea, arguing for the Pacific plate subduction during Late Cretaceous. (6) This study raises another possibility that the Mesozoic cratonic destruction in the NCC, which mainly occurred during ~150–120 Ma, might not only be due to the subduction of the Paleo-Pacific Plate, but also owe much to the intraplate geodynamic forces triggered by other adjacent continental plates like the Eurasian and Indian plates.  相似文献   

20.
Z. J. Zhang 《Island Arc》1999,8(2):259-280
Garnet–clinopyroxene–amphibole rocks from the Songshugou mafic–ultramafic complex ( ca 1029 Ma) in the Qinling Mountains, central China, occur in a metabasite unit that is situated structurally beneath the peridotite body. These rocks have many records testifying to a multistage metamorphic history for the metabasites. Through petrographic and mineralogic investigations, at least three metamorphic stages were recognized: (i) a pre-eclogite stage of the amphibolite-facies condition as inferred from inclusions in garnet; (ii) an eclogite-facies stage as inferred from Pl-Cpx symplectites and from their reconstructed omphacite compositions (Jd17–35); and (iii) a post-eclogite stage characterized by various reaction textures such as coronas and reaction zones around garnets, clinopyroxenes and fine-grained mineral aggregates after garnets and clinopyroxenes. A textural relationship observed in the field and thin-section scales indicates that a breakdown of the Grt–Cpx–Amp assemblage led to the Grt-free and the Cpx-free assemblages, that is, Amp + Pl assemblage at the end. The eclogite-facies metamorphism of the metabasites, discussed in the present report, was related to subduction at the age intervening between ca 983 and ca 1029 Ma. Regional geologic data indicate that the eclogite-related subduction took place during the opening of the Kuanping marginal basin in the southern margin of the North China craton, and slightly before the formation of the Danfeng magmatic arc ( ca 984 Ma). The exhumation and emplacement of the eclogite-facies domain probably resulted from a collision between the Danfeng magmatic arc terrain and a fragment of the North China craton (i.e. the Qinling Complex) during 790–890 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号