首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of tectonites were formed in the shear zone array of the Tongbai--Dabie Orogenic Belt, including mylonites, blastomylonites, semi--plastic mylonites and foliated cataclasitesas a result of multiple strain localization, strain softening and deformation partitioning.  相似文献   

2.
The Qinling Mountains separating the northern from the southern China plate is a key region for the study of structural evolution of eastern Asia. It is composed of the Palaeozoic fold belt in its northern part and the Variscan and Indosinian fold belts in its southern part. The evolution of the former is marked by the closure of a northward subducting oceanic basin in the early stage, followed by southward obduction of ophiolites and intracontinental thrusting during the Variscan; whereas that of the latter is represented by intracontinental, shallow crustal deformation on the basis of a large-scale detachment structure(with a horizontal slip of at least of 100 km). Since the late Palaeozoic, however, both of the belts have been cut by a series of east-west sinistral strike-slip faults.  相似文献   

3.
4.
The Tuva–Mongolian terrane of the Central Asian Orogenic Belt is a composite structure with a Vendian–Cambrian terrigenous–carbonate cover. The Sangilen block in the southern part of the belt is a smaller composite structure, in which tectono–stratigraphic complexes of different age that were produced under various conditions were amalgamated in the course of Early Paleozoic tectonic cycle. The P–T parameters of the Early Paleozoic metamorphism in the western part of the Sangilen block corresponded to the amphibolite facies. The gneisses of the Erzin Complex contain relict granulite-facies mineral assemblages. The granulites are dominated by metasediments typical of deep-water basins on passive continental margins. The only exception is granulites of the Lower Erzin tectonic nappe of the Chinchlig thrust system: these rocks are metatholeiites, tonalites, and trondhjemites, whose REE patterns are similar to those of MORB. The composition of these granulites and their high Sm/Nd ratios indicate that the rocks were derived from juvenile crust that had been formed in an environment of a mature island arc or backarc basin. It is reasonable to believe that these rocks are fragments of the Late Riphean basement of the Sangilen block. The average 206Pb/238U zircon age of the garnet–hypersthene granulites is 494 ± 11 Ma. With regard for the zircon age of the postmetamorphic granitoids, the granulite-facies metamorphism occurred within the age range of 505–495 Ma. The peak metamorphic temperature reached 910–950°C, and the pressure was 3–4 kbar, which corresponds to ultrahigh-temperature/low-pressure (UHT–LP) metamorphism. The garnet–hypersthene orthogranulites were formed at a temperature that decreased to ~850°C and pressure that increased to ~5.5?7 kbar. It can be hypothesized that the earlier UHT–LP granulites were produced at an elevated heat flux and were later (in the course of continuing collision) overlain by a relatively cold tectonic slab, and this leads to a certain temperature decrease and pressure increase. This relatively cold slab could consist of fragments of the Vendian elevated-pressure metamorphic belt whose development terminated at the Vendian–Cambrian boundary before the onset of the Early Paleozoic regional metamorphism.  相似文献   

5.
A systematic geological and geochemical study was conducted for the granitoids of different periods in the western Kunlun erogenic belt. The study indicates that the granitoids belong to tholeiitic, calc-alkaline, high-K calc-alkaline, alkaline and shoshonitic series, and that there are 5 genetic types, i.e., I-, S-, M-, A- and SH-type, of which SH-type is first put forward in this paper, which corresponds to shoshonitic granitoids.  相似文献   

6.
INTRODUCTION Inrecentyears,greatprogressonthegeologic tec tonicevolutionandmineralresourcesofXinjianghas beenachieved.However,manyissuesarestilldebated, suchasancienttectonicpatternsandtheclosuretimeof theancientoceanicbasin(LiandXu,2004).Theseis sueshavelimitedourknowledgeoftheformationande volutionofAsiancontinents,aswellastheexploration anddevelopmentofmineralresources. Recently,theHilaketehalasuporphyrycopperde positwasdiscoveredinthestrataoftheMiddleDevoni anBeitashanFormatio…  相似文献   

7.
A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in thecourse of the Caledonian-Indosinian ductilc and brittle-ductile reworking. The study on their petrography. va-riations in composition and conditions of formation is conducive to revealing the metamorphism-deformationhistory of the core of the Qinling orogenic belt and further to understanding the dynamic mechanism of its evo-lution.  相似文献   

8.
9.
This paper reports 48 feldspar lead isotope analyses from 27 granitic intrusions,which formed from the Late Proterozic to Mesozoic within the Eastern Qinling oregenic belt. Itis found that the granitic rocks of South Qinling are characterized by a strong block-effect anddepletion in U-Pb and Th-Pb, showing that these rocks came from the same lead isotopetectono-geochemical province, while those of North Qinling are characterized by higher U-Pband Th-Pb for Late Proterozoic to Early Paleozoic ones and lower U-Pb and Th-Pb forLate-Palaeozoic and younger ones in their feldspar lead isotopic composition. In the NorthQinling block, lead isotopic signatures reflect that the source of granitic magma had changedsince the Late Palaeozoic. Comparison of feldspar lead isotopic composition between SouthQinling and North Qinling shows that there is marked difference in lead isotopic compositionfor pre-Palaeozoic granitoids, indicating that the South Qinling and the North Qinling blocksbelong to different tectonic units, but the similarities in lead isotopic composition are quiteclear, which indicates that the South Qinling block had been welded with the North Qinlingblock and that the magma sources of both blocks were identical. The analysis provides directevidence for underplating of the continental crust of South Qinling beneath the North Qinlingblock in the continent-continent interaction stage of the Eastern Qinling oregenic belt.  相似文献   

10.
The Tongbai granulites are present mainly as xenoliths in granodioritic gneisses. The xenoliths with a zircon age of 470Ma are older than the host rocks of granodioritic gneisses which yield a zircon age of 435Ma. It is suggested that the granulites were transported from the lower crust to the upper level along with granodioritic magma. Geothermometrical and geobarometrical studies based on the coexisting minerals (Opx-Cpx and Opx-Gar) show that the granulites were crystallized at 818 –840 °C and 9.5−9.8 × 108 Pa corresponding to the lower crust. Tectonically, the Shangdan suture zone constitutes the boundary between the North China and Yangtze plates. The zone is char acterized by the occurrence of ophiolites in the western part and by that of granulites in the eastern part. So the western part marks the upper crustal level of the Qinling belt, while the eastern part represents the exposure of a deeper level. The results of isotopic dating and the geochemical characteristics of the xenoliths are consistent with those of metatholeiites of the ophiolites in the western part. Therefore, it is assumed that both ophiolites found in the west and granulites found in the east all represent the remnants of the ancient Qinling ocean plate. The difference is that the ophiolites are pieces of obducted fragments from the ocean floor during the subduction in the Early Palaeozoic. However, in the Tongbai area, when the ocean floor was subducting towards the lower crust, it underwent a granulite fades metamorphism. Subsequently, granodioritic magma formed by partial melting trapped some fragments of granulite upwards. This project was jointly granted by the National Natural Science Foundation of China and Stiftung Volkswagenwerk of Germany  相似文献   

11.
The eclogite gravels, which were found in the Mesozoic Fenghuangtai and Maotanchang formations on the northern margin of the Dabie orogenic belt, are rich in K2O(1.21%),∑REE (278μg/g) ,and LILE(such as Rb, Ba, K, Th, etc.) , with high (La/Yb)N ratios(14.4),on the basis of the analyses of major elements, rare-earth elements (REE) and trace elements. Their enrichment in LILE, notable Nb-Ta depletion through, and depletion in HFSE relative to REE in comparison with the primitive mantle and N-MORB indicate that the protoliths of the eclogite gravels were formed in an island-arc setting. According to the Th-Hf-Ta discrimination diagram, the protoliths of the eclogite gravels are characterized by volcanic arc basalts.Trace element data indicate that the subducted marine sediments were assimilated in the magma chamber, resulting in the enrichment of LILE in the protoliths. Therefore, the protoliths of the eclogite gravels are considered to have been formed in an inland-arc setting, indicating that there had developed a paleo-inland arc before Triassic collision between the North and South China blocks in the Dabie orogenic belt. There is a marked difference between the eclogite gravels and the eclogites developed along the Dabie orngenic belt, solely based on their geochemical data,especially REE. Therefore, the eclogite gravels may not be derived from eclogite terrains preserved in the Dabie orogenic belt.  相似文献   

12.
The Tianshan–Xingmeng molybdenum belt is part of a larger E–W-trending metallogenic belt in northern China. Most of these molybdenum deposits occur as porphyry or porphyry-skarn type, but there are also some vein-type deposits. Following systematic Re-Os dating of molybdenite from four deposits and comparisons with two previously dated deposits, we conclude that molybdenum mineralization in the Tianshan–Xingmeng Orogenic Belt resulted from hydrothermal activity linked to the emplacement of granitoid stocks. Three pulses of granitoid magmatism and Mo mineralization have been recognized in this study, corresponding to tectonic events in the Tianshan–Xingmeng Orogenic Belt. We identify five distinct stages of Mo mineralization events in the Tianshan–Xingmeng Orogenic Belt: 320–250 Ma, 250–200 Ma, 190–155 Ma, 155–140 Ma, and 140–120 Ma. Late Palaeozoic (320–250 Ma) Mo mineralization was closely related to closure of the Palaeo-Asian Ocean and collision between the Siberia and Tarim cratons. Triassic (250–200 Ma) Mo mineralization occurred in a post-collisional tectonic setting. The Early–Middle Jurassic (190–155 Ma) Mo mineralization was related to subduction of the Palaeo-Pacific Ocean on the eastern Asian continental margin, whereas in the Erguna block, the Mo mineralization events were associated with the subduction of the Mongol–Okhotsk Ocean. From 155 to 120 Ma, large-scale continental extension occurred in the Tianshan–Xingmeng Orogenic Belt and surrounding regions. However, the Late Jurassic (150–140 Ma) Mo mineralization events in these areas evolved in a post-orogenic extensional environment of the Mongol–Okhotsk Ocean subduction system. The Early Cretaceous (140–120 Ma) Mo mineralization occurred under the combined effects of the closure of the Mongol–Okhotsk Ocean and subduction of the Palaeo-Pacific Ocean.  相似文献   

13.
The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud  相似文献   

14.
The Xiaotian–Mozitan Shear Zone(XMSZ) is the boundary of the Dabie High-grade Metamorphic Complex(DHMC) and the North Huaiyang Tectonic Belt. It was deformed in ductile conditions with a top-to-NW/WNW movement.Geothermometers applied to mineral parageneses in mylonites of the shear zone give a temperature range of 623–691°C for the predeformation and 515–568°C for the syndeformation, respectively, which indicates a retrograde process of evolution.A few groups of zircon U-Pb ages were obtained from undeformed granitic veins and different types of deformed rocks in the zone. Zircons from the felsic ultramylonites are all magmatic, producing a weighted mean 206 Pb/238 U age of 754 ± 8.1 Ma, which indicates the time of magmatic activities caused by rifting in the Neoproterozoic. Zircons from the granitic veins, cutting into the mylonites, are also of magmatic origin, producing a weighted mean 206 Pb/238 U age of 130 ± 2.5 Ma,which represents the time of regional magmatic activity in the Cretaceous. Zircons from the mylonitic gneisses are of anatectic-metamorphic origins and are characterized by a core-mantle interior texture, which yielded several populations of ages including the Neoproterozoic ages with a weighted mean 206 Pb/238 U age of 762 ± 18 Ma, similar to that of the felsic ultramylonites and the Early Cretaceous ages with a weighted mean 206 Pb/238 U age of 143 ± 1.8 Ma, indicating the anatectic metamorphism in the Dabie Orogenic Belt(DOB). Based on integrated analysis of the structure, thermal conditions of ductile deformation and the contact relations of the dated rocks, the activation time of the Xiaotian–Mozitan Shear Zone is constrained between ~143 Ma and 130 Ma, during which the DOB was undergoing a transition in tectonic regime from compression to extension. Therefore, the deformation and evolution of this shear zone plays an instrumental role in fully understanding this process. This research also inclines us to the interpretation of it as an extensional detachment, with regard to the tectonic properties of the shear zone. It may also be part of a continental scale extension in the background of the North China Block's cratonic destruction, dominated by the subduction and roll-back of the Paleo-Pacific plate, but more detailed work is needed in order to unravel its complicated development.  相似文献   

15.
Altay granulite (AG), which represents the product of high-grade metamorphism in the lower crust, was newly found in the Wuqiagou area, Fuyun County in the Altay orogenic belt, Northwest China. It is composed mainly of hypersthene, augite, basic plagioclase, amphibole and brown biotite. Its mineral compositions of amphibole and biotite are rich in Mg/(Mg+Fe2+) and Ti. Geochemically, the AG is enriched in Mg/(Mg+Fe2+) and A12O3, and poor in CaO, with depletion of U, Th, K and Rb contents. Furthermore, geochemical data reflect that the protolith of the AG is igneous-genetic calc-alkaline basalt formed under an island arc environment. The AG has ZREE of 92.38-96.58 ppm and enriched LREE model with weak positive Eu anomaly of 1.09-1.15. In the MORB normalized spider diagram, the AG shows tri-doming pattern with a strong negative Nb anomaly and medium negative P and Ti anomalies, reflecting that the AG has tectonic relation with subduction or subduction-related materials. The P-T conditions of peak metamorphi  相似文献   

16.
17.
GeochemicalFeaturesofOphioliteinMianxianLueyangSutureZone,QinlingOrogenicBeltLaiShaocong;ZhangGuowei(DepartmentofGeology,Nort...  相似文献   

18.
Crustal Texture and Rheological Evolution ofTongbai-Dabie Orogenic Belt,China¥SuoShutian(FacultyofEarthSciences,ChinaUniversi...  相似文献   

19.
《地学前缘(英文版)》2020,11(4):1415-1429
As the southernmost segment of the Central Asian Orogenic Belt (CAOB), the northern Alxa orogenic belt (NAOB) connects the southeastern and southwestern segments of the CAOB. The NAOB amalgamated with the closure of the Paleo-Asian Ocean; however, the closure time of the Paleo-Asian Ocean is still on great debate. In this study, we reported new detrital zircon U–Pb geochronology and Hf–O isotopes for the Permo–Carboniferous sediments in the northern Alxa to constrain the provenance and its tectonic implications. The Permo–Carbonifereous Amushan Formation is composed of volcanic-carbonite-clastic rocks and was deposited in a shallow marine environment. Based on the zircon U–Pb geochronology, the Amushan Formation was deposited in the late Carboniferous to early Permian, but some outcrops of volcanic and clastic rocks in the Quaganqulu area were likely formed in the middle to late Permian. The integrated zircon age spectrum for the clastic rocks shows a wide range from late Archean to Paleoproterozoic, Mesoproterozoic (with a peak age at 1458 ​Ma), early Neoproterozoic (with peak ages of 988 ​Ma and 929 ​Ma), early Paleozoic (with a peak age at 447 ​Ma) and late Paleozoic (with a peak age at 294 ​Ma). Combined with the zircon Hf–O isotopes, the provenance was considered to be the Alxa Block, the Shalazhashan terrane and the Zhusileng–Hangwula block (and the southern Beishan orogenic belt). The multiple source regions to the south and north of the Paleo-Asian Ocean indicate the closure of this ocean before the late Carboniferous. The absence or small proportion of depositional age-approximated zircons in most samples makes their age spectra similar to extensional basins. Combined with the intra-plate volcanism, the deposits were considered to be formed in extensional settings. Accordingly, after the closure of the Paleo-Asian Ocean, the NAOB stepped into an extensional stage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号