首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of the Greater Himalayan Sequence in the Himalaya and the paleogeographic position of the Lhasa terrane within Gondwanaland remain controversial. In the Eastern Himalayan syntaxis, the basement complexes of the northeastern Indian plate (Namche Barwa Complex) and the South Lhasa terrane (Nyingchi Complex) can be studied to explore these issues. Detrital zircons from the metasedimentary rocks in the Namche Barwa Complex and Nyingchi Complex yield similar U–Pb age spectra, with major age populations of 1.00–1.20 Ga, 1.30–1.45 Ga, 1.50–1.65 Ga and 1.70–1.80 Ga. The maximum depositional ages for their sedimentary protoliths are ~ 1.0 Ga based on the mean ages of the youngest three detrital zircons. Their minimum depositional ages are ~ 477 Ma for the Namche Barwa Complex and ~ 499 Ma for the Nyingchi Complex. Detrital zircons from the Namche Barwa Complex and Nyingchi Complex also display similar trace-element signatures and Hf isotopic composition, indicating that they were derived from common provenance. The trace-element signatures of 1.30–1.45 Ga detrital zircons indicate that the 1.3–1.5 Ga alkalic and mafic rocks belt in the southeastern India is a potential provenance. Most 1.50–1.65 Ga zircons have positive εHf(t) values (+ 1.2 to + 9.0), and most 1.70–1.80 Ga zircons have negative εHf(t) values (− 7.1 to − 1.9), which are compatible with those of the Paleo- to Mesoproterozoic orthogneisses in the Namche Barwa Complex. Provenance analysis indicates that the southern Indian Shield, South Lhasa terrane and probably Eastern Antarctica were the potential detrital sources. Combined with previous studies, our results suggest that: (1) the Namche Barwa Complex is the northeastern extension of the Greater Himalaya Sequence; (2) the metasedimentary rocks in the Namche Barwa Complex represent distal deposits of the northern Indian margin relative to the Lesser Himalaya; (3) the South Lhasa terrane was tectonically linked to northern India before the Cambrian.  相似文献   

2.
The Santa Catalina Mountains, SE Arizona, was one of the first metamorphic core complexes to be described. Despite its status as a type example, relatively little is known about precise ages and origins of the intrusive rocks that make up most of the crystalline core. U–Pb and Hf isotopic data by laser ablation–inductively coupled plasma–mass spectrometry from zircons and Nd isotopic results from whole rocks were obtained for 12 granitoids ranging from 1,440 to 26 Ma. Results confirm that the 1.44-Ga Oracle Granite extends through the Catalina Range as variably mylonitic granite and banded gneiss. Laramide intrusions (67–73 Ma) display initial εNd values ?5 to ?8 and εHf from ?7.5 to ?9. Magmatic ages for the prominent white granite sills of the Wilderness suite are 46–57 Ma, in agreement with Terrien (2012), and these granites have initial εNd values ?8 to ?10 and εHf from ?7 to ?14. Lastly, the undeformed Catalina Granite has an age of 26 Ma, with an initial εNd and εHf of ?6 and ?8, respectively. Our Nd results agree with limited results from Farmer and DePaolo (89:10141–10160, 1984). Although the Catalina Granite seems to have a significant juvenile component based on Nd and Hf, most of the Laramide and Wilderness intrusions contain Nd and Hf compositions lying close to the evolution of 1.44-Ga Oracle Granites, a fact that is confirmed by the U–Pb data, which show both 1.7- and 1.4-Ga zircon cores in these samples, with 1.4 Ga as the dominant core age. In order to become the dominant source of most of the 72–45-Ma magmas, the Oracle pluton must not only extend across the whole Catalina region, but also have abundant deep-seated equivalents to provide magma sources.  相似文献   

3.
Relatively successive sequences of Late Mesozoic are preserved and exposed in Luxi Uplift (LU), eastern North China block (NCB), which is an important region to study the late Mesozoic tectonic evolution of the eastern NCB. In this study, in situ U–Pb ages and Hf isotopic analyses on detrital zircons from the sandstones of Jurassic Fangzi and Santai Formations in LU combining the analysis of sandstone detrital modes were performed, with an aim to trace the Jurassic sediment provenances and the tectonic–paleogeographic configuration of eastern NCB. Three sandstone samples (one from Fangzi Formation and two from Santai Formation) have very similar U–Pb age spectrums which can be divided into three major groups: Phanerozoic (I), Paleoproterozoic (II), and Neoarchean (III). Detrital zircons of Group II and Group III broadly match the age spectra of the basement of NCC which exposed extensively in the northern part. No middle Neoproterozoic magmatic zircons or Triassic metamorphic zircons were found in this study, ruling out the clastic provenance transported from the Sulu orogen to LU. Dominant zircon populations of Group Iare Late Paleozoic (250–393 Ma) recording the corresponding magmatic activities which are not found both in LU and its peripheral tectonic terranes, but can be well compared with that of the northern NCB (NNCB) and the Xing-Meng Orogenic Belt (XMOB). Furthermore, Hf isotope compositions of the Phanerozoic detrital zircons can be distinctly divided into two clusters with εHf(t) values ranging from −1.0 to +12.7 and −21.9 to −3.0, respectively resemble those from the XMOB and NCB (mainly from NNCB). Sandstone detrital modes analysis indicates the provenance came from the areas that have been eroded deeply to expose the basement rocks which accords with the tectonic setting of the NNCB. This research proposes that an evident mountain or provenance region once increasingly developed along NNCB during Early to Late Jurassic (182–155 Ma) due to the continuous collision of the Siberia and North China–Mongolian plates, easily shed mass clastic materials southward into the inner NCB and became the major provenance of Jurassic sediments in LU.  相似文献   

4.
Identifying and dating large impact structures is challenging, as many of the traditional shock indicator phases can be modified by post-impact processes. Refractory accessory phases, such as zircon, while faithful recorders of shock wave passage, commonly respond with partial U–Pb age resetting during impact events. Titanite is an accessory phase with lower Pb closure temperature than many other robust chronometers, but its potential as indicator and chronometer of impact-related processes remains poorly constrained. In this study, we examined titanite grains from the Sudbury (Ontario, Canada) and Vredefort (South Africa) impact structures, combining quantitative microstructural and U–Pb dating techniques. Titanite grains from both craters host planar microstructures and microtwins that show a common twin–host disorientation relationship of 74° about <102>. In the Vredefort impact structure, the microtwins deformed internally and developed high- and low-angle grain boundaries that resulted in the growth of neoblastic crystallites. U–Pb isotopic dating of magmatic titanite grains with deformation microtwins from the Sudbury impact structure yielded a 207Pb/206Pb age of 1851?±?12 Ma that records either the shock heating or the crater modification stage of the impact event. The titanite grains from the Vredefort impact structure yielded primarily pre-impact ages recording the cooling of the ultra-high-temperature Ventersdorp event, but domains with microtwins or planar microstructures show evidence of U–Pb isotopic disturbance. Despite that the identified microtwins are not diagnostic of shock-metamorphic processes, our contribution demonstrates that titanite has great potential to inform studies of the terrestrial impact crater record.  相似文献   

5.
The Dexing porphyry copper deposit, part of the circum-Pacific porphyry copper ore belt, is the largest porphyry copper deposit in China. We present new LA–ICP–MS zircon U–Pb and molybdenite Re–Os dating, bulk-rock elemental and Sr–Nd–Pb isotopic as well as in situ zircon Hf isotopic geochemistry for these ore-bearing porphyries, in an attempt to better constrain their petrogenesis. LA–ICP–MS zircon U–Pb dating shows that the Dexing porphyries were emplaced in the early Middle Jurassic (~171 Ma); molybdenite Re–Os dating indicates that the associated Cu–Mo mineralization was contemporaneous (~171 Ma) with the igneous intrusion. The rocks are mainly high-K calc-alkaline and show adakitic affinities, including high Sr and low Y and Yb contents, high Sr/Y and La/Yb ratios, and high Mg# (higher than pure crustal melts). These porphyries have initial 87Sr/86Sr ratios of 0.7044?0.7047, ?Nd(T) values of –1.5 to?+0.6, and ?Hf(T) (in situ zircon) values of?+2.6 to?+4.6. They show unusually radiogenic Pb isotopic compositions with initial 206Pb/204Pb ratios up to 18.41 and 207Pb/204Pb up to 15.61. These isotopic compositions are distinctly different from either Pacific MORB or Yangtze lower crust but are similar to the subducting sediments in the western Pacific trenches. Detailed elemental and isotopic data suggest that the Dexing porphyries were emplaced in a continental arc setting coupled with westward subduction of the palaeo-Pacific plate. Partial melting involved the subducted slab (mainly the overlying sediments), with generated melts interacting with the lithospheric mantle wedge, thereby forming the investigated high-K calc-alkaline porphyry magmas.  相似文献   

6.
The Gawler Craton forms the bulk of the South Australian Craton and occupies a pivotal location that links rock systems in Antarctica to those in northern Australia. The western Gawler Craton is a virtually unexposed region where the timing of basin development and metamorphism is largely unknown, making the region ambiguous in the context of models seeking to reconstruct the Australian Proterozoic.Detrital zircon data from metasedimentary rocks in the central Fowler Domain in the western Gawler Craton provide maximum depositional ages between 1760 and 1700 Ma, with rare older detrital components ranging in age up to 3130 Ma. In the bulk of samples, ?Nd(1700 Ma) values range between ?4.3 and ?3.8. The combination of these data suggest on average, comparatively evolved but age-restricted source regions. Lu–Hf isotopic data from the ca 1700 Ma aged zircons provide a wide range of values (?Hf(1700 Ma) +6 to ?6). Monazite U–Pb data from granulite-grade metasedimentary rocks yield metamorphic ages of 1690–1670 Ma. This range overlaps with and extends the timing of the widespread Kimban Orogeny in the Gawler Craton, and provides minimum depositional age constraints, indicating that basin development immediately preceded medium to high grade metamorphism.The timing of Paleoproterozoic basin development and metamorphism in the western Gawler Craton coincides with that in the northern and eastern Gawler Craton, and also in the adjacent Curnamona Province, suggesting protoliths to the rocks within the Fowler Domain may have originally formed part of a large ca 1760–1700 Ma basin system in the southern Australian Proterozoic. Provenance characteristics between these basins are remarkably similar and point to the Arunta Region in the North Australian Craton as a potential source. In this context there is little support for tectonic reconstruction models that: (1) suggest components of the Gawler Craton accreted together at different stages in the interval ca 1760–1680 Ma; and (2) that the North Australian Craton and the southern Australian Proterozoic were separate continental fragments between 1760 and 1700 Ma.  相似文献   

7.
ABSTRACT

Recently identified Early Jurassic, Early Cretaceous, and Late Cretaceous granites of the Tengchong terrane, SW China, help to refine our understanding of the Mesozoic tectonic-magmatic evolutionary history of the region. We present new zircon U–Pb geochronological, Lu–Hf isotopic and geochemical data on these rocks. The zircon LA-ICP-MS U–Pb ages of the Mangzhangxiang, Laochangpo, and Guyong granites, and Guyong granodioritic microgranular enclaves are 185.6, 120.7, 72.9, and 72.7 Ma, respectively. Geochemical and Hf isotopic characteristics suggest the Mangzhangxiang and Laochangpo S-type granites were derived from partial melting of felsic crust and that the Guyong I-type granite and associated MMEs were generated through magma mixing/mingling. Mesozoic magmatism in the Tengchong terrane can be divided into three episodes: (1) the Triassic syn- and post-collisional magmatic event was related to the closure of the Palaeo-Tethyan Ocean, as represented by the Changning-Menglian suture zone; (2) the Jurassic to Early Cretaceous magmatism was related to the subduction of the Meso-Tethyan oceanic crust, as represented by the Myitkyina ophiolite belt; and (3) the Late Cretaceous magmatism was related to the subduction of the Neo-Tethyan oceanic crust, as represented by the Kalaymyo ophiolite belt.  相似文献   

8.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

9.
The Vazante Group show varied U–Pb provenance patterns along the basin. Zircon ages range from 936 to 3409 Ma, but Paleo- and Mesoproterozoic terrains constitute the main sources of the original sediments. The youngest population (~ 930 Ma) establishes the maximum depositional age of the group. Sm–Nd TDM data show the predominance of Paleoproterozoic ages (1.90–2.08 Ga) and also indicate some input from younger sources in rocks of the Lapa Formation (1.67 to 2.0 Ga) in the upper part of the group, whereas rocks of the Serra do Garrote Formation present the oldest model ages (2.03 to 2.76 Ga). Hf isotopic compositions of the detrital zircons indicate that they were derived mainly from recycled Paleoproterozoic crust with a minor Mesoproteroic juvenile component. Terranes within the São Francisco Craton represent the main sources of detrital sediments of this group and reinforce the interpretation that it may be a passive margin sequence developed along the western margin of the original continent. However, the origin of Mesoproterozoic grains remains uncertain. Slightly younger Sm–Nd model ages in the Lapa Formation, however, are not entirely consistent with derivation solely from the craton and may indicate contribution from younger sources, such as the Neoproterozoic Goiás Magmatic Arc.  相似文献   

10.
《International Geology Review》2012,54(13):1735-1754
Widespread granitic intrusions in the northeast part of the Wulonggou area were previously thought to be emplaced into the Palaeoproterozoic Jinshuikou Group during the Neoproterozoic. This contribution presents detailed LA-ICP-MS zircon U–Pb geochronology, major and trace element geochemistry, and zircon Hf isotope systematic on the Wulonggou Granodiorite and Xiaoyakou Granite from the Wulonggou area. Three granodiorite samples yielded U–Pb zircon ages of 247 ± 2, 248 ± 1, and 249 ± 1 Ma, and one granite sample yielded U–Pb zircon age of 246 ± 3 Ma. The granodiorite samples are metaluminous with an alumina saturation index of 0.90–0.96, as well as intermediate- to high-alkali contents of 5.49–6.14 wt.%, and low Zr+Nb+Ce+Y contents, and low Fe2O3T/MgO ratios, which suggest an I-type classical island arc magmatic source. The granite samples are peraluminous with an alumina saturation index of 1.02–1.03, Sr content of 305.00–374.00 ppm, Sr/Y ratios of between 17.68 and 28.77, (La/Yb)N values of 16.98–25.07, low HREEs (Yb = 1.10–2.00 ppm), and low Y (13.00–21.10 ppm), which suggest adakite-like rocks. All granodiorite samples have zircons εHf(t) values ranging from ?2.9 to +3.9, and granite samples have zircon εHf(t) values ranging from ?7.8 to +3.2. These Hf isotopic data suggest that the Early Triassic granites were derived from the partial melting of a mafic Mesoproterozoic lower crust, although the degree of ancient crustal assimilation may be higher for the Xiaoyakou Granite. It is suggested here that the ca. 246–248 Ma magma was generated during the northward subduction of the Palaeo-Tethys oceanic plate.  相似文献   

11.
12.
International Journal of Earth Sciences - Volcanic rocks are widely exposed within the Chiang Khong–Lampang–Tak igneous zone in NW Thailand. A representative rhyolite sample from the...  相似文献   

13.
The southern Qiangtang magmatic belt was formed by the north-dipping subduction of the Bangong–Nujiang Tethyan Ocean during Mesozoic. To better understand the petrogenesis, time–space distribution along the length of this belt, 21 samples of several granitoid bodies, from west to east, in the Bangong Co, Gaize, Dongqiao and Amdo areas were selected for in-situ zircon U–Pb dating, Hf isotopic and whole-rock chemical analyses. The results suggest a prolonged period of magmatic activity (185–84 Ma) with two major stages during the Jurassic (185–150 Ma) and the Early Cretaceous (126–100 Ma). Both the Jurassic and Cretaceous granitoids are high-K calc-alkaline I-type rocks, except the Cretaceous two-mica granite from Amdo in the east, which belongs to S-type. The granitoids are generated from different source materials as indicated by zircon Hf isotopic compositions. The Bangong Co and Dongqiao granitoids show high zircon εHf(t) values of − 1.3–13.6 with younger TDMC ages of 293–1263 Ma, suggesting a relatively juvenile source; whereas the Gaize and Amdo granitoids have low εHf(t) values of − 16.1–2.9 with older TDMC ages of 999–2024 Ma, indicating an old crustal contribution. These source rocks melt at different P–T conditions as suggested by Sr/Y ratio and TZr. The Sr/Y ratio of both stage granitoids increases with decreasing age. However, the TZr of the Jurassic granitoids decreases, whereas the TZr of the Cretaceous granitoids increases with decreasing age. The contrasting geochemical signatures of these granitoids may be controlled by the varying contribution of slab-derived fluids involved in the generation of the Jurassic and Cretaceous granitic magmas; i.e. increasing amount of fluids in the Jurassic, whereas decreasing amount of fluids in the Cretaceous. Therefore, it is proposed that the Jurassic and Cretaceous magmatism may be related to subduction and closure of the Bangong–Nujiang Tethyan Ocean, respectively. The age pattern of the Jurassic and Cretaceous granitoids suggests an oblique subduction of the Bangong–Nujiang Tethyan Ocean and a diachronous collision between the Lhasa and Qiangtang blocks.  相似文献   

14.
ABSTRACT

There are voluminous ultrahigh pressure-related orthogneisses and minor metamorphic supracrustal rocks in the northeastern Sulu UHP terrane (NSL), East China. The tectonic affinities of the supracrustal rocks are crucial for unravelling the deep continental subduction processes and locating the tectonic suture between the South China (SCB) and North China (NCB) blocks. In this contribution, we report new zircon U–Pb ages and Hf isotope data for the supracrustal rocks and metagabbros in the Zeku region of the NSL. In the Zeku region, the supracrustal rocks are spatially associated with granitic gneisses, metagabbros, and eclogites. Detrital zircon U–Pb analyses yield ages between 3.39 and 0.65 Ga that cluster as three major age populations including (1) 2.15–1.68 Ga with two subpeaks at ~1.83 Ga and~1.97 Ga, (2) 2.45–2.15 Ga with a peak at ~2.37 Ga, and (3) 0.79–0.65 Ga. In addition, there is a small age population between 3.39 and 2.61 Ga. The youngest age population of 0.79–0.65 Ga indicates that the Zeku supracrustal rocks must have been deposited after 650 Ma rather than during the Palaeoproterozoic as previously thought. The 210–190 Ma metamorphic ages suggest that the Zeku rocks were affected by Triassic collision–subduction and exhumation. Most of the Archaean-Palaeoproterozoic zircons have negative εHf(t) values and two-stage Hf model ages concentrating at 2.4–3.4 Ga (peak at ~2.9 Ga), indicating that source rocks of these zircons were mainly derived from recycling of ancient crustal material. These ages, together with the Hf isotopic compositions and rock assemblages, indicate that the Zeku supracrustal rocks were mainly derived from the Precambrian basement rocks of the northern Yangzte Block and have a tectonic affinity to the SCB, rather than the NCB. Our results, together with previously published data, suggest that there are two types of supracrustal rocks with different zircon U–Pb ages and tectonic affinities in the NSL. On the basis of new data, we suggest that the surface boundary between the SCB and NCB in the Jiaodong Peninsula is a complicated tectonic mélange zone rather than a single fault.  相似文献   

15.
Triassic A-type granites in eastern South China Block (SCB) are abundant in the Wuyi–Yunkai tectonic domain and provide an important opportunity to explore the early Mesozoic evolution of continental crust of the SE part of the SCB. We carried out U–Pb zircon dating, Lu–Hf isotope analyses of zircon, and whole-rock geochemical analyses for two granitic plutons, the Guiyantou (GYT) and Luoguyan (LGY) granites, from northwestern Fujian Province. LA–ICP–MS U–Pb zircon analyses yielded ages of 232 ± 4 to 231 ± 7 Ma and 221 ± 5 Ma (Middle-Late Triassic) for the GYT and LGY granites. These two granites belong to metaluminous to weakly peraluminous high K calc-alkaline A-type granite that are enriched in K, Al, light rare earth element and Rb, Th, U, and Pb, and depleted in Nb, Ta, P, and Ti. Their rare earth element patterns are highly fractionated with (La/Yb)N ratios of 2–21 and strong negative Eu anomalies (Eu/Eu* = 0.02–0.31). In situ Hf isotopic analysis of zircon from the GYT and LGY granites yielded εHf(t) values ranging from –11.5 to –1.1, with corresponding two-stage Hf model ages from 1.98 to 1.33 Ga, from which it is inferred that the GYT and LGY magmas formed by partial melting of Proterozoic metasedimentary rock in the Cathaysia block. The two granites were emplaced at 232 and 221 Ma and together with Triassic A-type granites in coastal region of the SCB, which is in agreement with an extensional tectonic setting in the Middle-Late Triassic. We suggest that the Middle-Late Triassic A-type granites in eastern SCB were probably formed in an intracontinental, post-orogenic extensional regime that collision was between the SCB and an ‘unknown block’ or the eastern extension of Indochina block.  相似文献   

16.
Post-orogenic mafic rocks from Northeast China consist of swarms of dolerite dikes. We report a new U–Pb zircon age, as well as whole-rock geochemical and Sr–Nd–Hf isotopic data. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb zircon analysis yielded an age of 210.3 ± 1.5 million years (i.e. Triassic) for these mafic dikes. Most Dalian mafic rocks exhibit low K2O + Na2O contents, and span the border between alkaline and calc-alkaline rock associations in the total alkali–silica diagram. The investigated dikes are also characterized by relatively high (87Sr/86Sr)i ratios (0.7061–0.7067) and negative ?Nd (t) (?4.7 to??4.3) and ?Hf (t) values (?4.1 to??1.1), implying that they were derived from an enriched lithospheric mantle source. The mafic dikes are characterized by relatively low MgO (4.65–5.44 wt.%), Mg# (41–44), and compatible element content [such as Cr (89.9–125 ppm) and Ni (56.7–72.2 ppm)], which are the features of an evolved mafic magma. No evidence supports the idea that the mafic rocks were affected by significant assimilation or crustal contamination during emplacement. We conclude that the dolerites formed in a post-orogenic extensional setting, related to lithospheric delamination or ‘collapse’ of the Central Asian Orogenic Belt (CAOB), also termed the Xingmeng Orogenic Belt in China.  相似文献   

17.
《International Geology Review》2012,54(13):1666-1689
ABSTRACT

The Wulonggou area in the Eastern Kunlun Orogen (EKO) in Northwest China is characterized by extensive granitic magmatism, ductile faulting, and orogenic gold mineralizations. The Shidonggou granite is located in the central part of the Wulonggou area. This study investigated the major as well as trace-element compositions, zircon U–Pb dates, and zircon Hf isotopic compositions of the Shidonggou granite. Three Shidonggou granite samples yielded an average U–Pb zircon age of 416 Ma (Late Silurian). The Late Silurian Shidonggou granite is peraluminous, with high alkali contents, high Ga/Al ratios, high (K2O + Na2O)/CaO ratios, and high Fe2O3T/MgO ratios, suggesting an A-type granite. The Shidonggou granite samples have zircon εHf(t) values ranging from ?7.1 to +4.4. The Hf isotopic data suggest that the Late Silurian granite was derived from the partial melting of Palaeo- to Mesoproterozoic juvenile mantle-derived mafic lower crust. Detailed geochronological and geochemical data suggest that the Late Silurian granite was emplaced in a post-collisional environment following the closure of the Proto-Tethys Ocean. Combining data of other A-type granitic rocks with ages of Late Early Silurian to Middle Devonian, such post-collisional setting related to the Proto-Tethys Ocean commenced at least as early as ~430 Ma (Late Early Silurian), and sustained up to ~389 Ma (Middle Devonian) in the EKO.  相似文献   

18.
The North Tianshan orogenic belt in Kyrgyzstan consists predominantly of Neoproterozoic to early Paleozoic assemblages and tectonically interlayered older Precambrian crystalline complexes and formed during early Paleozoic accretionary and collisional events. One of the oldest continental fragments of late Mesoproterozoic (Grenvillian) age occurs within the southern part of the Kyrgyz North Tianshan. Using SHRIMP zircon ages, we document two magmatic events at ~ 1.1 and ~ 1.3 Ga. The younger event is characterized by voluminous granitoid magmatism between 1150 and 1050 Ma and is associated with deformation and metamorphism. The older event is documented by ~ 1.3 Ga felsic volcanism of uncertain tectonic significance and may reflect a rifting episode. Geochemical signatures as well as Nd and Hf isotopes of the Mesoproterozoic granitoids indicate melting of still older continental crust with model ages of ca 1.2 to 2.4 Ga.The Mesoproterozoic assemblages are intruded by Paleozoic diorites and granitoids, and Nd and Hf isotopic systematics suggest that the diorites are derived from melts that are mixtures of the above Mesoproterozoic basement and mantle-derived material; their source is thus distinct from that of the Mesoproterozoic rocks. Emplacement of these plutons into the Precambrian rocks occurred between 461 and 441 Ma. This is much younger than previously assumed and indicates that small plutons and large batholiths in North Tianshan were emplaced virtually synchronously in the late Ordovician to early Silurian.The Mesoproterozoic rocks in the North Tianshan may be remnants of a once larger continental domain, whose fragments are preserved in adjacent blocks of the Central Asian Orogenic Belt. Comparison with broadly coeval terranes in the Kokchetav area of northern Kazakhstan, the Chinese Central Tianshan and the Tarim craton point to some similarities and suggests that these may represent fragments of a single Mesoproterozoic continent characterized by a major orogenic event at ~ 1.1 Ga, known as the Tarimian orogeny.  相似文献   

19.
Isotopic analyses of ancient mantle-derived magmatic rocks are used to trace the geochemical evolution of the Earth’s mantle, but it is often difficult to determine their primary, initial isotope ratios due to the detrimental effects of metamorphism and secondary alteration. We present in situ analyses by LA-MC-ICPMS for the Pb isotopic compositions of igneous plagioclase (An75–89) megacrysts and the Hf isotopic compositions of BSE-imaged domains of zircon grains from two mantle-derived anorthosite complexes from south West Greenland, Fiskenæsset and Nunataarsuk, which represent two of the best-preserved Archean anorthosites in the world. In situ LA-ICPMS U–Pb geochronology of the zircon grains suggests that the minimum crystallization age of the Fiskenæsset complex is 2,936 ± 13 Ma (2σ, MSWD = 1.5) and the Nunataarsuk complex is 2,914 ± 6.9 Ma (2σ, MSWD = 2.0). Initial Hf isotopic compositions of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 εHf units. In terms of Pb isotopic compositions of plagioclase, both anorthosite complexes share a depleted mantle end member yet their Pb isotopic compositions diverge in opposite directions from this point: Fiskenæsset toward a high-μ, more radiogenic Pb, crustal composition and Nunataarsuk toward low-μ, less radiogenic Pb, crustal composition. By using Hf isotopes in zircon in conjunction with Pb isotopes in plagioclase, we are able to constrain both the timing of mantle extraction of the crustal end member and its composition. At Fiskenæsset, the depleted mantle melt interacted with an Eoarchean (~3,700 Ma) mafic crust with a maximum 176Lu/177Hf ~0.028. At Nunataarsuk, the depleted mantle melt interacted with a Hadean (~4,200 Ma) mafic crust with a maximum 176Lu/177Hf ~0.0315. Evidence from both anorthosite complexes provides support for the long-term survival of ancient mafic crusts that, although unidentified at the surface to date, could still be present within the Fiskenæsset and Nunataarsuk regions.  相似文献   

20.
《Applied Geochemistry》2002,17(2):69-77
Sulfide precipitation in the context of carbonate-hosted base metal deposits has been previously explained by numerous processes including SO4 reduction in the presence of hydrocarbons. This model has been suggested for numerous deposits although clear criteria to support the model have not been systematically provided. Numerous oil-inclusions are encompassed by fibrous calcite crystals in finely laminated Carboniferous limestone at the base of the Windsor Group, a unit that hosts numerous base metal occurrences in Nova Scotia, particularly the hydrocarbon-rich Jubilee Pb–Zn deposit in Cape Breton Island. Oil from two inclusion-rich samples from this deposit have been characterised by gas chromatography, gas chromatography–mass spectrometry, gas chromatography–isotope ratio mass spectrometry and bulk stable C isotopes. As established in the authors' former publications, the Jubilee deposit is a clear metallogenic case for which the ground preparation and mineralisation stages involved reduction of SO4 by hydrocarbons. Here, the question of potential sources of these hydrocarbons is addressed. It is postulated that the hydrocarbons that were trapped in the sulfide-related calcites at the deposit, correlate with previously characterised oil seeps, and it is demonstrated that their source is not the marine host-carbonates but stratigraphically deeper lacustrine formations of the Horton Group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号