首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
长白山天池火山大约 1 000年前的大喷发,形成了巨厚的火山碎屑流堆积层,其主要组成是浮岩与火山灰。以往的研究普遍认为其中的浮岩为灰白色,属流纹质。笔者在考察中发现了不少黑色及少量其它颜色的浮岩,系统地采集了各色样品作浮岩化学成分分析,结果表明,灰白色浮岩与黑色浮岩分别为流纹质和粗面质,灰色浮岩属于粗面质但靠近流纹质端元。它们都来源于地壳岩浆房,是岩浆房内不同分异演化阶段的产物,它们同时喷出说明岩浆房内具有分带性及不同性质岩浆的混合  相似文献   

2.
3.
The distributions and alignments of over 200 prehistoric dykes exposed in the walls of the Valle del Bove caldera on Mount Etna have been plotted, and samples collected from some 10% of those occurring in the southern wall. Important tectonic trends are reflected by the dykes, along which magma movement was facilitated prior to the formation of the caldera. Close directional relations between the dyke trends and the orientations of historic fissures on the volcano, point to the existence of a plexus of interconnecting subsurface fissures immediately to the south-east of the summit. A model is envisaged within which magma enters this «clearing house» from depth, and is distributed via fissures to other parts of the volcano including the summit region. Here, the interaction of fissures with the conduits of the summit craters is put forward as a mechanism to explain the behaviour of recent activity.  相似文献   

4.
The 35 × 20 km Cerro Galán resurgent caldera is the largest post-Miocene caldera so far identified in the Andes. The Cerro Galán complex developed on a late pre-Cambrian to late Palaeozoic basement of gneisses, amphibolites, mica schists and deformed phyllites and quartzites. The basement was uplifted in the early Miocene along large north-south reverse faults, producing a horst-and-graben topography. Volcanism began in the area prior to 15 Ma with the formation of several andesite to dacite composite volcanoes. The Cerro Galán complex developed along two prominent north-south regional faults about 20 km apart. Dacitic to rhyodacitic magma ascended along these faults and caused at least nine ignimbrite eruptions in the period 7-4 Ma (K-Ar determinations). These ignimbrites are named the Toconquis Ignimbrite Formation. They are characterised by the presence of basal plinian deposits, many individual flow units and proximal co-ignimbrite lag breccias. The ignimbrites also have moderate to high macroscopic pumice and lithic contents and moderate to low crystal contents. Compositionally banded pumice occurs near the top of some units. Many of the Toconquis eruptions occurred from vents along a north-south line on the western rim of the young caldera. However, two of the ignimbrites erupted from vents on the eastern margin. Lava extrusions occurred contemporaneously along these north-south lines. The total D.R.E. volume of Toconquis ignimbrite exceeds 500 km3.Following a 2-Ma dormant period a single major eruption of rhyodacitic magma formed the 1000-km3 Cerro Galán ignimbrite and the caldera. The ignimbrite (age 2.1 Ma on Rb-Sr determination) forms a 30–200-m-thick outflow sheet extending up to 100 km in all directions from the caldera rim. At least 1.4 km of welded intracaldera ignimbrite also accumulated. The ignimbrite is a pumice-poor, crystal-rich deposit which contains few lithic clasts. No basal plinian deposit has been identified and proximal lag breccias are absent. The composition of pumice clasts is a very uniform rhyodacite which has a higher SiO2 content but a lower K2O content than the Toconquis ignimbrites. Preliminary data indicate no evidence for compositional zonation in the magma chamber. The eruption is considered to have been caused by the catastrophic foundering of a cauldron block into the magma chamber.Post-caldera extrusions occurred shortly after eruption along both the northern extension of the eastern boundary fault and the western caldera margin. Resurgence also occurred, doming up the intracaldera ignimbrite and sedimentary fill to form the central mountain range. Resurgent doming was centred along the eastern fault and resulted in radial tilting of the ignimbrite and overlying lake sediments.  相似文献   

5.
The 14.1 Ma old composite ignimbrite cooling unit P1 (45 km3) on Gran Canaria comprises a lower mixed rhyolite-trachyte tuff, a central rhyolite-basalt mixed tuff, and a slightly rhyolite-contaminated basaltic tuff at the top. The basaltic tuff is compositionally zoned with (a) an upward change in basalt composition to higher MgO content (4.3–5.2 wt.%), (b) variably admixed rhyolite or trachyte (commonly <5 wt.%), and (c) an upward increasing abundance of basaltic and plutonic lithic fragments and cognate cumulate fragments. The basaltic tuff is divided into three structural units: (I) the welded basaltic ignimbrite, which forms the thickest part (c. 95 vol.%) and is the main subject of the present paper; (II) poorly consolidated massive, bomb- and block-rich beds interpreted as phreatomagmatic pyroclastic flow deposits; and (III) various facies of reworked basaltic tuff. Tuff unit I is a basaltic ignimbrite rather than a lava flow because of the absence of top and bottom breccias, radial sheet-like distribution around the central Tejeda caldera, thickening in valleys but also covering higher ground, and local erosion of the underlying P1 ash. A gradual transition from dense rock in the interior to ash at the top of the basaltic ignimbrite reflects a decrease in welding; the shape of the welding profile is typical for emplacement temperatures well above the minimum welding temperature. A similar transition occurs at the base where the ignimbrite was emplaced on cold ground in distal sections. In proximal sections the base is dense where it was emplaced on hot felsic P1 tuff. The intensity of welding, especially at the base, and the presence of spherical particles and of mantled and composite particles formed by accretion and coalescence in a viscous state imply that the flow was a suspension of hot magma droplets. The flow most likely had to be density stratified and highly turbulent to prevent massive coalescence and collapse. Model calculations suggest eruption through low pyroclastic fountains (<1000 m high) with limited cooling during eruption and turbulent flow from an initial temperature of 1160°C. The large volume of 26 km3 of erupted basalt compared with only 16 km3 of the evolved P1 magmas, and the extremely high discharge rates inferred from model calculations are unusual for a basaltic eruption. It is suggested that the basaltic magma was erupted and emplaced in a fashion commonly only attributed to felsic magmas because it utilized the felsic P1 magma chamber and its ring-fissure conduits. Evolution of the entire P1 eruption was controlled by withdrawal dynamics involving magmas differing in viscosity by more than four orders of magnitude. The basaltic eruption phase was initially driven by buoyancy of the basaltic magma at chamber depth and continued degassing of felsic magma, but most of the large volume of basalt magma was driven out of the reservoir by subsidence of a c. 10 km diameter roof block, which followed a decrease in magma chamber pressure during low viscosity basaltic outflow.  相似文献   

6.
Seismological observations provided consistent information on the course and mechanism of the complicated large fissure eruption at Tolbachik volcano in Kamchatka from July 6, 1975 to December 10, 1976. Seismicity indicates that the initial magnesian basalts were rising ten days before the eruption from depths of more than 20 km. The formation of new feeding dykes was accompanied by earthquake swarms which decreased sharply one to two days before the opening of new eruptive fissures. The seismological data indicate that the main source of the different erupted basalts (2 km3) was a vast system (diameter ca. 80 km) of hydraulically connected magma chambers located in the lower crustal layers or in the crust-mantle transition layer.  相似文献   

7.
The Nyamaji volcano is a small eruptive complex of late Miocene age associated with the nearby Usaki ijolite and Sokolo carbonatite intrusion of Homa Bay in the Kavirondo Rift valley of Kenya. It is probably a satellite volcano to the major volcanic structure of Kisingiri - Rangwa which lies 25 km to the west. The Nyamaji volcanic complex is composed of agglomerates, breccias and tuffs erupted from a central vent, whilst at much the same time lavas were extruded from fissures which are now occupied by dykes. These two contemporaneous events gave rise to an interdigitated sequence of pyroclastic deposits and effusive lavas. The pyroclastic rocks of Vulcanian origin cover an area at least 30 km2 in extent, are poorly bedded, and usually are about 25 m (80ft.) thick though they often thin to zero over topographic highs in the pre-existing landscape. At Nyamaji itself, the Strombolian style pyroclastic pile exceeds 330 m (1100 ft.) in thickness over an area of 1 km2, and this marks the position of the original central vent. The fragmental material in the pyroclastic rocks includes ijolite, phonolite, nephelinite, trachyte, carbonatite, granite, and feldspathic and aegirine-bearing fenites; the matrix is sometimes calcareous, sometimes feldspathic. Nephelinitic lavas occur amongst the lowest lavas, but the lavas above are nearly all phonolitic. The oldest dykes are nephelinitic and are rare; the youngest dykes are phonolitic and are abundantly exposed. Both lavas and dykes contain xenoliths similar to those in the pyroclastic rocks. A series of volcanic plugs pierce the lavas. These plugs, mostly non-conduit type, average 200–500 m diameter, are mainly composed of glassy to very fine-grained phonolites, and show good flow structures. The plugs, especially those near the Ruri hills, tend to lie along N - S and E - W lines. The majority of the dykes also lie along these directions. The dominant structural directions within the nearby Usaki ijolite complex and the Wasaki carbonatite are also N - S and E - W, respectively. These directions are quite different from the axis of the Kavirondo rift valley which here is NE - SW, and from the strike of the Precambrian basement. The Nyamaji volcanic structure differs from nearly all the other East African volcanoes by its dominant phonolitic petrochemistry.  相似文献   

8.
The Rallier-du-Baty Peninsula forms the southwestern part of the Kerguelen Archipelago (Indian Ocean), whose magmatic activity is related to the long-lived 115-Ma Kerguelen plume. The peninsula is mostly made of alkaline rocks constituting two well-defined ring complexes. This paper focuses on the northern ring complex, which is not yet known. Recent field studies have revealed seven discrete syenitic ring dykes ranging in age from 6.2 to 4.9 Ma, and two later volcanic systems. 40Ar/39Ar dating of a trachytic ignimbrite linked to the Dôme Carva volcano complex yields an age of 26±3 Ka. This represents the last major eruptive event on the Kerguelen Archipelago. The volcanism is bimodal with trachybasalts and trachyandesites constituting the mafic lavas and trachytes and rhyolites constituting the felsic lavas. The volume of erupted felsic magma is by far the larger, and is represented by abundant pyroclastic deposits and lava flows. Boulders of plutonic rocks are found to the northwest of Dôme Carva, and represent intermediate rocks (i.e. monzogabbros and monzonites) that are not present at the surface. Basic rocks are mostly trachybasalts and trachyandesites, while true basalts are scarce. Their mineralogy consists chiefly of plagioclase, olivine, diopside and oxides. Sieve-textured plagioclase is common, as well as corroded olivine and diopside phenocrysts. Peralkaline commenditic trachytes are the most abundant type of acid volcanic rocks. They consist of abundant sanidine, augite and magnetite phenocrysts and interstitial quartz, aegerinic pyroxenes and Na-amphiboles. Ring dykes of quartz-poor alkali feldspar syenites display the same mineralogy, except hornblende is common and replaces diopside. Hornblende is particularly abundant in intermediate monzogabbros. Major and trace element variations of volcanic rocks emphasise the predominant role of fractional crystallisation with a general decrease of MgO, CaO, P2O5, TiO2, FeO, Ba, Sr and Ni from basic to felsic rocks. However, the scattering of the data from the basic rocks indicates that other processes have operated. The overall evolution from trachyte to rhyolite is in agreement with the fractionation of sanidine as the major control. An increase of incompatible elements from trachyte to rhyolite is observed. The felsic lavas display an increase of 87Sr/86Sr(i) without any significant variations in the Nd isotopic composition. The genesis of the basic rocks is complex and reflects concomitant processes of fractional crystallisation, mixing between different basic magmas and probable assimilation of Ba-rich oceanic crust. Major and trace element modelling confirms the possibility of producing the trachytes through continuous differentiation from a basaltic alkaline parent. Discrepancies observed for some trace elements can be explained by the crystallisation of amphibole at an intermediate stage of magma evolution. The overall evolution from trachyte to rhyolite is thought to be controlled by crystal fractionation. High 87Sr/86Sr(i) of the trachytes is interpreted to reflect interaction with an ocean-derived component, probably during assimilation of hydrothermally altered oceanic crust. Boulders of amphibole-bearing monzonites and monzogabbros found to the northwest of Dôme Carva are thought to represent intermediate magma composition that formed at depths but did not erupt.  相似文献   

9.
A geological, chemical and petrographical study of the Campanian ignimbrite, a pyroclastic flow deposit erupted about 30,000 years ago on the Neapolitan area (Italy), is reported. The ignimbrite covered an area of at least 7,000 km2; it consists of a single flow unit, and the lateral variations in both pumice and lithic fragments indicate that the source was located in the Phlegraean Fields area. Textural features, areal distribution and its morphological constraints suggests that the eruption was of the type of highly expanded low-temperature pyroclastic cloud. The original composition was strongly modified by post-depositional chemical changes involving most of the major and trace elements. No primary differences in the composition of the magma have been recognized. The Campanian ignimbrite is a nearly saturated potassic trachyte, similar to many other trachytes of the Quaternary volcanic province of Campania. Its chemistry indicates an affinity with the so-called «low-K association» of the Roman volcanic province.  相似文献   

10.
Flood basalts, such as the Deccan Traps of India, represent huge, typically fissure-fed volcanic provinces. We discuss the structural attributes and emplacement mechanics of a large, linear, tholeiitic dyke swarm exposed in the Nandurbar–Dhule area of the Deccan province. The swarm contains 210 dykes of dolerite and basalt >1 km in length, exposed over an area of 14,500 km2. The dykes intrude an exclusively basaltic lava pile, largely composed of highly weathered and zeolitized compound pahoehoe flows. The dykes range in length from <1 km to 79 km, and in thickness from 3 to 62 m. Almost all dykes are vertical, with the others nearly so. They show a strong preferred orientation, with a mean strike of N88°. Because they are not emplaced along faults or fractures, they indicate the regional minimum horizontal compressive stress (σ 3) to have been aligned ~N–S during swarm emplacement. The dykes have a negative power law length distribution but an irregular thickness distribution; the latter is uncommon among the other dyke swarms described worldwide. Dyke length is not correlated with dyke width. Using the aspect ratios (length/thickness) of several dykes, we calculate magmatic overpressures required for dyke emplacement, and depths to source magma chambers that are consistent with results of previous petrological and gravity modelling. The anomalously high source depths calculated for a few dykes may be an artifact of underestimated aspect ratios due to incomplete along-strike exposure. However, thermal erosion is a mechanism that can also explain this. Whereas several of the Nandurbar–Dhule dykes may be vertically injected dykes from shallow magma chambers, others, particularly the long ones, must have been formed by lateral injection from such chambers. The larger dykes could well have fed substantial (≥1,000 km3) and quickly emplaced (a few years) flood basalt lava flows. This work highlights some interesting and significant similarities, and contrasts, between the Nandurbar–Dhule dyke swarm and regional tholeiitic dyke swarms in Iceland, Sudan, and elsewhere. Editorial responsibility: J. White  相似文献   

11.
Three-dimensional seismic data from the Faeroe-Shetland Basin provides detailed information on the relationships between sills, dykes, laccoliths and contemporaneous volcanic activity. The data shows that sills are predominantly concave upwards, being complete or partial versions of radially or bilaterally symmetrical forms that possess flat inner saucers connected to a flat outer rim by a steeply inclined sheet. Such morphologies are only partially modified by pre-existing faults. Sills can be sourced from dykes or the steep climbing portions of deeper sills. Both sills and dykes can provide magma to overlying volcanic fissures and sills can be shown to feed shallow laccoliths. Magma flow patterns, as revealed by opacity rendering, suggest that sills propagate upwards and outwards away from the magma feeder. As an individual sill can consist of several leaves emplaced at different stratigraphic levels, and as a sill or dyke can provide magma to volcanic fissures, other sills and laccoliths, the data suggests that neutral buoyancy concepts may not provide a complete explanation for the mechanism and level of sill emplacement. Instead, the data suggests that the presence of lithological contrasts, particularly ductile horizons such as overpressured shales may permit sill formation at any level below the neutrally buoyant level. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ken Thomson–deceased, April 2007  相似文献   

12.
To determine the magma flow direction of the giant, 179 Ma Okavango dyke swarm of northern Botswana, we measured the anisotropy of magnetic susceptibility (AMS) of 23 dykes. Dykes are located in two sections (Shashe and Thune Rivers), which are about 300 km and 400 km from the presumed magma source respectively; the Nuanetsi triple point. We collected samples from the margins of the dykes in order to use the imbrication of magnetic foliation to determine magma flow direction. About half of the magnetic fabric in the dykes is inverse, i.e. with the magnetic foliation perpendicular to the dyke plane. Lateral flow to the west and vertical flow is in evidence in the Shashe section. However, the overall analysis of normal and inverse magnetic fabric data supports that lateral flow to the west was dominant in the Shashe section. Across the Thune section, a poorly defined imbricated magnetic foliation also suggests lateral flow to the west.  相似文献   

13.
This petrologic analysis of the Negra Muerta Volcanic Complex (NMVC) contributes to understanding the magmatic evolution of eruptive centres associated with prominent NW-striking fault zones in the southern Central Andes. Specifically, the geochemical characteristics and magmatic evolution of the two eruptive episodes of this Complex are analysed. The first one occurred as an explosive eruption at 9 Ma and is represented by a strongly welded, fiamme-rich, andesitic to dacitic ignimbrite deposit. The second commenced with an eruption of a rhyolitic ignimbrite at 7.6 Ma followed by effusive discharge of hybrid lavas at 7.3 Ma and by emplacement of andesitic to rhyodacitic dykes and domes. Both explosive and effusive eruptions of the second episode occurred within a short time span, but geochemical interpretations permit consideration of the existence of different magmas interacting in the same magma chamber. Our model involves an andesitic recharge into a partially cooled rhyolitic magma chamber, pressurising the magmatic system and triggering explosive eruption of rhyolitic magma. Chemical or mechanical evidence for interaction between the rhyolitic and andesitic magma in the initial stages are not obvious because of their difference in composition, which could have been strong enough to inhibit the interaction between the two magmas. After the initial explosive stages of the eruption at 7.6 Ma, the magma chamber become more depressurised and the most mafic magma settled in compositional layers by fractional crystallisation. Restricted hybridisation occurred and was effective between adjacent and thermally equivalent layers close to the top of the magma chamber. At 7.3 Ma, increments of caldera formation were accompanied by effusive discharge of hybrid lavas through radially disposed dykes whereby andesitic magma gained in importance toward the end of this effusive episode in the central portion of the caldera. Assimilation during turbulent ascent (ATA) is invoked to explain a conspicuous reversed isotopic signature (87Sr/86Sr and 143Nd/144Nd) in the entire volcanic series. Therefore, the 7.6 to 7.3 Ma volcanic rocks of the NMVC resulted from synchronous and mutually interacting petrological processes such as recharge, fractional crystallization, hybridisation, and Assimilation during Turbulent Ascent (ATA).Geochemical characteristics of both volcanic episodes show diverse type and/or depth in the sources and variable influence of upper crustal processes, and indicate a recurrence in the magma-forming conditions. Similarly, other minor volcanic centres in the transversal volcanic belts of the Central Andes repeated their geochemical signatures throughout the Miocene.  相似文献   

14.
Internal microtextures of ternary alkali feldspars in sanidine trachyte from Oki-Dogo Island were examined using an electron microprobe analyzer, a scanning electron microscope, a transmission electron microscope and cathodoluminescence instruments, to develop the understanding of volcanic processes of alkaline magmas related to feldspar crystallization. The examined trachyte is an evolved rock of the Oki-Dogo Pliocene trachyte group. Its phenocryst feldspars are commonly associated with lamellar-wavy-domain textures with scales approximately from 100 nm up to several hundreds of μm that show complex and gradual variations in composition: however, anti-rapakivi zoning textures common in other Oki-Dogo alkaline rocks are almost completely absent in the trachyte. These textures are produced by extensive magmatic ion-exchange replacement reactions progressively advanced in the evolved magma. Characteristic braided fluorite alignments are developed consistently with lamellar-wavy-domain textures in phenocryst feldspars, and similar braided alignments are also present in groundmass feldspars with complicated microtextures. Most of fluorite grains are <100 nm in diameter, and the patterns of braided fluorite alignments vary greatly in individual feldspars. The whole occurrence of the feldspar microtextures represents an extreme example of diffusion-controlled replacement reactions, progressively advanced in the dry (relatively anhydrous) trachyte magma. The genetic processes forming fluorite alignments in feldspars are related to magma compositions, especially F and P contents, and the crystallization of F-bearing minerals, especially of fluorapatite.  相似文献   

15.
Investigation of the rheology of magmas at high crystal concentrations by experimental means has proved problematic. An alternative approach is to study textures of igneous rocks that not only preserve evidence of the kinematics of magma flow, such as flow direction, but can also preserve evidence of rheology. Flow textures in multiply intruded trachyte dykes on Fraser Island, eastern Australia record evidence of dilatant flow during solidification. This conclusion is reached by interpretation of microscopic ductile shear zones that disrupt the groundmass of aligned feldspar laths. Detailed three-dimensional investigation demonstrates that the dihedral angle between conjugate micro-shear zones is approximately 65°. This conjugate angle is equivalent to that observed in dilatant granular materials such as sand. Dilatant behaviour is synonymous with shear thickening rheology indicating that the magma flow is time-dependent and resists high flow rates. Some of the dykes contain autobrecciation fragments that may represent localities where the ductile flow rate threshold was exceeded. Newtonian or pseudoplastic (shear thinning) rheology of crystal-poor magmas must progressively give way to shear thickening rheology during cooling and increasing crystal concentration.  相似文献   

16.
Glass-bearing plutonic fragments occur as rare accessory lithics within the ca. 64 ka Rotoiti and Earthquake Flat ignimbrites that were erupted from Okataina caldera complex, Taupo Volcanic Zone, New Zealand. Granitoid lithic fragments are only found in the Rotoiti ignimbrite and fall into two groups. Group 1 granitoids have textures consistent with a period of slow cooling followed by rapid quenching, and were excavated by the Rotoiti eruption from a single incompletely solidified magma body. Although isotopic ratios for the Group 1 granitoids are similar to the host ignimbrite, they are not cognate, having different chemistry, mineralogy, mineral chemistry and crystallisation history. It is more likely that they represent fragments of a separate incompletely solidified magma chamber that was intercepted by the erupting Rotoiti ignimbrite magma. Low LILE and high HFSE abundances favour a comagmatic link with the ca. 0.28 Ma Matahina ignimbrite and it is suggested they are derived from an isolated cupola of the Matahina magma chamber that remained at depth (between 3.5 and 5 kbar pressure) after eruption of the Matahina ignimbrite. Migration toward the surface probably accompanied development of the Rotoiti magma system in the upper crust. Most geochemical variation in Group 1 granitoids is related to the abundance of biotite, the concentration of which is controlled by differential shear. REE abundance is controlled by light REE-enriched accessory minerals preferentially included within biotite. Although Eun remains constant in the Group 1 granitoids, Eu/Eu* varies systematically with (La/Yb)n and is controlled by variations in Sm and Gd rather than in Eu. Group 2 granitoid fragments have a wide range of composition, comparable to many Okataina rhyolites, including those found as lithic fragments in the Rotoiti ignimbrite. Rare microdiorite fragments occur in both Rotoiti and Earthquake Flat ignimbrites and typically contain vesicular interstitial glass indicating that they were incompletely solidified prior to eruption. Those from the Rotoiti ignimbrite are comparable to the (>64 ka) Matahi basaltic tephra and probably represent part of the same magmatic event which generated the Matahi tephra.  相似文献   

17.
The Vulture complex is made up of foiditic, tephritic, phonolitic-trachytic and phonolitic products. New rock analyses have been performed in order to ascertain whether the various rock types derive from a unique parental magma and, if so, to define its nature. The data presented support that the Vulture suite originated from a foiditic melt which had differentiated at low pressures. The main process determining the foidite → → tephrite → phonolitic trachyte evolution seems to be the crystal fractionation of mainly clinopyroxenes, and opaques, with the contribution of plagioclases and haüyne too in the tephrite → trachyte evolution. Additionary role must have been played by a mixing of melts at different evolution stages occurred in a shallow seated magma chamber.  相似文献   

18.
New data extend our understanding of the 1912 eruption, its backfilled vent complex at Novarupta, and magma-storage systems beneath adjacent stratovolcanoes. Initial Plinian rhyolite fallout is confined to a narrow downwind sector, and its maximum thickness may occur as far as 13 km from source. In contrast, the partly contemporaneous rhyolite-rich ash flows underwent relatively low-energy emplacement, their generation evidently being decoupled from the high column. Flow veneers 1–13 m thick on near-vent ridge crests exhibit a general rhyolite-to-andesite sequence like that of the much thicker valley-confined ignimbrite into which they merge downslope. Lithics in both the initial Plinian and the ignimbrite are predominantly fragments of the Jurassic Naknek Formation, which extends from the surface to a depth of ca. 1500 m. Absence of lithics from the underlying sedimentary section limits to < 1.5 km the fragmentation level and the structural depth of the vent, which is thought to be funnel-shaped, flaring shallowly to a surface diameter of 2 km. Overlying the ignimbrite are layers of Plinian dacite fallout, > 100 m thick near source and 10 m thick 3 km away, which dip back into an inner vent <0.5 km wide, nested inside the earlier vent funnel of the ignimbrite. The dacite fallout is poor in Naknek lithics but contains abundant fragments of vitrophyre, most of which was vent-filling, densely welded tuff reejected during later phases of the 3-day eruption. Adjacent to the inner vent, a 225-m-high asymmetrical accumulation of coarse near-vent ejecta is stratigraphically continuous with the regional dacite fallout. Distensional faulting of its crest may reflect spreading related to compaction and welding. Nearby andesite-dacite stratovolcanoes, i.e., Martin, Mageik, Trident, and Katmai, display at least 12 vents that define a linear volcanic front trending N65°E. The 1912 vent and adjacent dacite domes are disposed parallel to the front and ca. 4 km behind it. Mount Griggs, 10 km behind the front, is more potassic than other centers, taps isotopically more depleted source materials, and reflects a wholly independent magmatic plumbing system. Geochemical differences among the stratovolcanoes, characteristically small eruptive volumes ( < 0.1 to 0.4 km3), and the dominance of andesite and low-SiO2 dacite suggest complex crustal reservoirs, not large integrated magma chambers. Linear fractures just outside the 1912 vent strike nearly normal to the volcanic front and may reflect dike transport of magma previously stored beneath Trident 3–5 km away. Caldera collapse at Mount Katmai may have taken place in response to hydraulic transfer of Katmai magma toward Novarupta via reservoir components beneath Trident. The voluminous 1912 eruption (12–15 km3 DRE) was also unusual in producing high-silica rhyolite (6–9 km3 DRE), a composition rare in this arc and on volcanic fronts in general. Isotopic data indicate that rhyolite genesis involved little assimilation of sedimentary rocks, pre-Tertiary plutonic rocks, or hydrothermally altered rocks of any age. Trace-element data suggest nonetheless that the rhyolite contains a nontrivial crustal contribution, most likely partial melts of Late Cenozoic arc-intrusive rocks. Because the three compositions (77%, 66–64.5%, and 61.5–58.5% SiO2) that intermingled in 1912 vented both concurrently and repeatedly (after eruptive pauses hours in duration), the compositional gaps between them must have been intrinsic to the reservoir, not merely effects of withdrawal dynamics.  相似文献   

19.
In volcanic areas occurring in zones of extension, basaltic magma rises up to the surface, through fissures, to form dykes which in depth are connected with one or several magmatic chambers located in the crust or the upper mantle. Starting form this geological situation, we propose models of increasing complexity to study cooling by heat conduction of a system composed of parallel dykes and underlying magmatic chamber. This work has been carried out 1) by numerical methods which take into account the variation with temperature of the thermic parameters and 2) by using an analytical solution of the Fourier equation (an initial fictive temperature is then calculated). The thermic individuality of the dykes disappears quickly and the dyke system may be replaced by a single « intrusion » which cools slowly from a temperature = =2/β θ0 much lower than θ00=initial temperature; 1/β=injection density). The temperature gradient due to the dyke system has been estimated for different time intervals after the intrusion. For the calculation of the thermal effect of a magmatic chamber, we have taken into account its size, depth and age. Numerical application for appropriate geological cases have been carried out and allow one to estimate the respective effects of dykes and magma chamber.  相似文献   

20.
The orientations of dykes from many of the islands of the Lesser Antilles island arc have been mapped. Most of these dykes can be interpreted in terms of local or regional swarms derived from specific volcanoes of known age, with distinct preferred orientations. Dykes are known from all Cenozoic epochs except the Palaeocene, but are most common in Pliocene, Miocene and Oligocene rocks. A majority of the sampled dykes are basaltic, intrude volcaniclastic host rocks and show a preference for widths of 1–1.25 m. Locally, dyke swarms dilate their hosts by up to 9% over hundreds of metres and up to 2% over distances of kilometres. The azimuths of dykes of all ages show a general NE-SW preferred orientation with a second NW-SE mode particularly in the Miocene rocks of Martinique. The regional setting for these minor intrusions is a volcanic front above a subduction zone composed of three segments: Saba-Montserrat, Guadeloupe-Martinique, St. Lucia-Grenada. The spacing of volcanic centres along this front is interpreted in terms of rising plumes of basaltic magma spaced about 30 km apart. This magma is normally intercepted at crustal depths by dioritic plutons and andesitic/dacitic magma generated there. Plumes which intersect transverse fracture systems or which migrate along the front can avoid these crustal traps. Throughout its history the volcanic front as a whole has migrated, episodically, towards the backarc at an average velocity of about 1 km/Ma. The local direction of plate convergence is negatively correlated with the local preferred orientation of dykes. The dominant NE-SW azimuth mode corresponds closely to the direction of faulting in the sedimentary cover of the backarc and the inferred tectonic fabric of the oceanic crust on which the arc is founded. A generalised model of the regional stress field that controls dyke intrusion outside of the immediate vicinity of central volcanic vents is proposed, in which the maximum horizontal stress parallels the volcanic front except in the northern segment where subduction of the Barracuda Rise perturbs the stress field. There is also evidence of specific temporal changes in the stress field that are probably due to large scale plate kinematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号