首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
硝酸盐为本次调查的计划外选测项目,仅做了两航次的大面观测(1981年9月及10月)和一站次的周日连续观测(128站,1981年10月22日),因此只能对其时空分布作一粗略描述。硝酸盐含量测值的变化范围是0.37—18.3μmol NO_3-N/L(以下用μmol/L表示),比长江口同季节硝酸盐的测值低得多,均值3.74μmol/L。其在平面上的分布随海区和时间而有甚大的变化,但Ⅲ区的规律性较好,呈由湾内向外逐渐减小的趋势。其断面分布大致为:01,02和04断面的等值线较少,分布较为均匀;03和05断面等值线密集,并向海底倾斜。其垂直分布以上高下低的递减型分布为主,但Ⅰ,Ⅱ区的垂直梯度较小,Ⅲ区的则较大,并呈现由湾内向外垂直梯度逐渐减小的规律性变化。128站硝酸盐浓度的周日变化甚大,日较差达5.95μmol/L,并有明显的潮汐效应,与盐度有相当好  相似文献   

2.
莱州湾营养盐空间分布特征及年际变化趋势   总被引:1,自引:0,他引:1  
基于2004-2014年期间,在莱州湾5月及8月开展的22个航次调查结果,研究了莱州湾营养盐的时空分布特征及年际变化趋势。研究发现:莱州湾溶解态无机氮(DIN)、可溶性磷酸盐(PO_4-P)、可溶性硅酸盐(SiO_3-Si)高值区主要出现在莱州湾西南近岸尤其是小清河口海域,小清河及邻近区域陆源输入是影响莱州湾营养盐空间分布的主要因素。2004-2014年莱州湾DIN中位值变化范围8.14~53.98μmol/L,尽管2004年以来莱州湾DIN浓度呈现降低的年际变化趋势,但仍然高于历史数据。硝酸盐是DIN的主要形态,贡献了DIN组成的83%,亚硝酸盐和铵盐的含量占比分别为7%和10%。莱州湾PO_4-P年际变化呈下降趋势,中位值变化范围为0.03~0.49μmol/L。SiO_3-Si中位值变化范围8.5~52.9μmol/L,8月份年际变化呈下降趋势。小清河营养盐入海通量与莱州湾营养盐含量年际波动具有较好的吻合性,是影响莱州湾营养盐年际波动的重要因素。莱州湾DIN/PO_4、SiO_3/DIN、SiO_3/PO_4中位值变化范围分别为:78.9~1112.4、0.2~2.2、40.2~442.5,其中DIN/PO_4、SiO_3/PO_4年际变化呈升高趋势,SiO_3/DIN年际变化趋势不明显。2004-2014年调查期间,莱州湾存在严重的磷限制及季节性的硅限制,营养类型由20世纪80、90年代的贫营养转变为磷限制潜在性富营养,且磷限制的程度呈加剧趋势。  相似文献   

3.
长江口水域营养盐时空分布及其迁移过程   总被引:1,自引:1,他引:0  
根据2014年长江口水域4个季节航次水体中五项营养盐(硝酸盐_-N、亚硝酸盐NO_2-N、铵盐NH4-N、磷酸盐PO_4-P和硅酸盐SiO_3-Si)的调查数据,解析长江口水域营养盐的时空分布特征,结合盐度(S)、溶解氧(DO)、温度(T)、悬浮体(SPM)和叶绿素a等环境参数,探究其迁移过程的分布行为。结果表明:NO_3-N、SiO_3-Si和PO_4-P在长江口水域的时空分布主要受长江陆源输入的影响,随长江冲淡水扩展范围的季节变化而变化,除冬季外,在122°20′E以东,主要受到温盐跃层的影响,其在31°N断面出现明显的分层现象,冬季水体垂直混合均匀,其垂直分布较为均匀。春季长江陆源输入较高浓度的NO_3-N,40μmol/L的NO_3-N随长江冲淡水向东北方向最远扩展到123°E,垂直方向上扩展至水深10 m,而秋季长江陆源输入较高浓度的SiO_3-Si和PO_4-P,其浓度分别为40μmol/L和0.6μmol/L的等值线分别向东最远扩展到123°E、123°20′E和水深20 m、50 m。受到生物吸收,硝化作用等因素影响,NO_2-N和NH_4-N的时空分布比较复杂,季节分布规律不明显,而冬季自口门向外海浓度逐渐降低,且垂直分布也相较均匀。通过盐度这一保守性指标引入理论稀释线来研究营养盐的迁移过程,结合叶绿素a和SPM的数据表明:春、夏季营养盐浓度低于理论稀释浓度可能是由于生物吸收所致,而PO_4-P在春、夏和秋季均有散点高于理论稀释浓度可能与悬浮颗粒物释放有关。  相似文献   

4.
2009年4月对黄河口湿地4个站点沉积物间隙水中各营养盐成分含量及其随深度的变化进行了研究。结果表明:沉积物间隙水中PO4-P含量变化不大,变化范围是0.18~2.18μmol/L,呈现先降低后升高的趋势。NH4-N、NO3-N、NO2-N含量分别为4.51~348.1μmol/L、1.71~2002μmol/L、0.16~130.0μmol/L,其垂直分布为上高下低,这和土壤氮分布、所处氧化还原环境、植被类型等有密切关系;且无机N以高硝酸盐含量为主,这与黄河水的输入有很大关系。SiO3-Si的含量变化范围是59.7~256.1μmol/L,其垂直分布变化复杂。  相似文献   

5.
黄河下游溶解态营养盐季节变化及入海通量研究   总被引:1,自引:0,他引:1  
根据在2010-04—2011-03期间在黄河利津站进行的观测结果,分析了黄河下游营养盐的月际变化,估算了黄河营养盐的入海通量。结果表明:观测期间溶解无机氮(DIN)、硝酸盐(NO_3~--N)、亚硝酸盐(NO_2~--N)和氨氮(NH_4~+-N)浓度的变化范围分别为190.4~361.3、177.1~332.5、0.74~13.81和2.27~26.44μmol/L,平均浓度为277.5、269.3、4.90和5.26μmol/L;磷酸盐和硅酸盐浓度的变化范围为0.027~0.138和92.5~146.0μmol/L,平均浓度分别为0.094和118.1μmol/L。DIN的浓度表现为枯水期含量高、丰水期含量低,而磷酸盐的变化与其相反;硝酸盐是黄河下游水体中溶解无机氮的主要组成部分,且溶解无机氮的入海通量主要由NO_3~--N贡献;磷酸盐浓度与径流量显著正相关;丰水期黄河向渤海输送的溶解无机态营养盐是全年输送通量的主要贡献者,营养盐通量的主要控制因素是径流量。  相似文献   

6.
基于2013年7月(夏季)和11月(秋季)北黄海调查以及历史数据,对营养盐结构时空特征及变化趋势深入分析。结果表明:调查海域营养盐受洋流输入(残留)、冷水团温跃层、扰动混合及生物吸收利用等因素影响,呈现夏季低秋季高和上层低底层高的时空特征。夏季,DIN、PO_4-P和SiO_3-Si含量分别为(3.06±2.12)、(0.15±0.13)和(1.55±2.06)μmol/L,DIN主要组分为NO_3-N(52%)和NH_4-N(43%)。表层和10 m层(T16℃)存在DIN和P限制的站位分别达26.7%、66.7%和6.7%、33.3%,而SiO_3-Si在各水层均有低于阈值(2μmol/L)站位,限制状况严重。秋季受扰动以及矿化分解影响,DIN、PO_4-P和SiO_3-Si含量分别为(7.70±2.77)、(0.41±0.20)和(11.57±4.64)μmol/L,较夏季分别升高2.5、2.7和7.5倍,且DIN主要组分变为NO_3-N(80%)。DIN/P(21.88±8.93)和Si/P(33.83±20.38)比值较高,P潜在限制明显。夏季营养盐从渤海海峡、北黄海到山东半岛东部南黄海断面呈现逐渐升高的趋势,而秋季则呈现渤海海峡最高,北黄海最低的特征。北黄海受人类活动影响,1980年代以来PO_4-P和SiO_3-Si (2000年后)含量下降,DIN/P比值增高Si/P降低,使得北黄海营养盐结构呈从氮限制向硅磷限制变化趋势。  相似文献   

7.
黄河下游营养盐浓度季节变化及其入海通量研究   总被引:7,自引:0,他引:7  
2001年3月~2002年2月期间在黄河下游采集溶解及颗粒态营养盐样品,分析了黄河径流中各形态的营养盐的浓度及其月动态,估算此时段内黄河的营养盐入海通量。研究发现,溶解无机氮是溶解总氮的主要存在形式,硝酸盐是黄河中氮的最主要存在形态,其季节变化与水量变化趋势相反,年平均含量为(260.6±84.0)μmol/L,显著高于世界其它河流,为世界背景值(7.14μmol/L)的20多倍;黄河中磷主要以颗粒态存在,颗粒态磷含量变化规律与SPM的分布一致,其年平均含量为(16.2±22.9)μmol/L,磷酸盐含量较低,年平均含量为(0.42±0.20)μmol/L,与世界河流的平均水平相当。硅酸盐年平均含量为(122.0±18.2)μmol/L。每年约有17 200 t的总氮和1 600 t的总磷输入渤海,氮通量表现出在春季3月较高;磷通量在9月出现最高值,春季3,4月也较高;硅酸盐通量在3月出现最高值。  相似文献   

8.
本文根据1988年5月和10月的调查资料,讨论了化学要素的分布和它们的相互关系。结果表明,黑潮主干区深度大于100m,100m层溶解氧含量等值线由主干区向陆架减小,并形成锋区,表明了黑潮水的流径。约在200—100m等深线间形成了由4.20×10~(-3)(体积比)等值线包围的半封闭低氧区,其中于26°N、122°30′E出现了氧含量小于4.0×10~(-3)(体积比)的低氧中心,PO_4-P和NO_3-N含量分别出现高值区。这是黑潮次表层水涌升和冷涡存在的结果。 化学要素断面图显示了,在S_2和R_1断面分别以S_(2-8)和R_(1-11)站为中心存在着化学要素等值线下凹趋势,说明表层水在此下降。 诸化学要素相关分析给出了ΣN/P春秋季均为15.5,接近文献给出的ΣN/P=16的结果。PO_4-P,ΣN对AOU作图呈直线关系,相关系数γ均大于0.97, 表明N、P再生是完全的。而SiO_3-Si与AOU的曲线关系显示了部分硅藻类生物残体在下沉过程中没有完全分解,部分沉入海底。这些均表明黑潮水的特征。  相似文献   

9.
为了更好地了解长江流域城市化进程和三峡工程对长江口生态系统的影响及其响应,为长期观测提供参考,采用分光光度法对2003年5月19—26日采自长江口的水样中的溶解态无机氮、磷、硅进行了分析。结果表明,该海域营养盐的空间分布呈现出较好的规律性:SiO3-Si的浓度总体上沿长江径流入海方向递减,其在淡水端的浓度>100μmol/L,在离岸最远的海水端附近的浓度约为10μmol/L;NO3-N、NO2-N、NH4-N和PO4-P沿长江径流入海方向的浓度分布则呈现出先增加后降低的特征,最高值出现在咸淡水交界面附近,分别为130.0、3.14、31.43和2.06μmol/L。南北方向上各种形态营养盐的浓度总体上呈现出北部海域表、底层之间差异大于南部海域的分布特征。连续观测数据显示,NO3-N、NO2-N、PO4-P和SiO3-Si的浓度均可能在4h的时间里发生较大幅度的波动。在混合水区,由于水深较浅,水体混合较容易,垂直方向上各元素的浓度平均值差异不大;在水深较深的海水区,随着水深的增加,NO3-N和NO2-N的浓度平均值总体上呈下降趋势,PO4-P则相反,SiO3-Si变化不大。采用营养状态质量法和潜在性富营养化标准对调查海域的营养状况进行了分析,结果均显示,调查海域在长江径流入海方向上由淡水区的高营养水平逐渐过渡到海水区的贫营养水平。由于长江口水体中各营养元素浓度时空变化显著,准确计算其入海通量难度很大,需要足够多的高时空分辨率的数据。  相似文献   

10.
2008年黄海浒苔绿潮爆发区营养盐浓度化及分布特征   总被引:1,自引:0,他引:1  
根据2008年7月22-26日和8月5-14日2个航次对黄海浒苔绿潮爆发区的调查数据,研究了调查海域营养盐的浓度变化和分布特征.结果表明,第2航次NH4-N的平均浓度为0.34 μmol/L,低于第J航次,第2航次NO3-N、PO4-P和SiO3-Si的平均浓度分别为4.63 μmol/L、0.39 μmol/L和6....  相似文献   

11.
通过3个航次的调查,分析了2008年枯水季、丰水季和平水季广西铁山港附近海域无机氮、活性磷酸盐和活性硅酸盐的分布特征及营养盐结构特征,探讨该海域营养盐季节变化及其影响因素。结果表明,铁山港附近海域无机氮的浓度范围为1.03~44.99μmol/L,活性磷酸盐浓度为0.03~1.57μmol/L,活性硅酸盐的浓度为7.86~102.14μmol/L。高浓度的营养盐主要分布在铁山港湾内及靠岸站点,营养盐的浓度均从铁山港湾口向北海南部海域呈递减的趋势。无机氮、活性磷酸盐和活性硅酸盐显现了相近的季节变化特征,即枯水期到丰水期浓度增加之后从丰水期到平水期浓度降低。该海区无机氮主要以硝酸盐氮和氨氮占最主要比重,枯水期和丰水期以硝酸盐氮为主而平水期以氨氮为主。海区N/P和Si/P较高,表明该海区N限制减弱而P限制加重。铁山港营养盐的季节变化主要受到径流等输入的影响,浮游植物的消耗也可能是其季节变化的原因之一。  相似文献   

12.
基于中国第30次南极科学考察在南极半岛(60°~63°S)近岸海域获取的调查资料,分析了该海域生物化学要素中溶解有机碳(DOC)、总氮(TN)和总磷(TP)分布特征并讨论地形和水团对其的影响。结果表明:2014年夏季南极半岛近岸海域水体DOC浓度变化范围为40.5~78.1μmol/L,平均浓度为66.3μmol/L;TN浓度变化范围为4.2~29.5μmol/L,平均浓度为14.9μmol/L;TP浓度变化范围为0.8~2.9μmol/L,平均浓度为2.0μmol/L。表层DOC呈现研究海域西北部D1断面和东南部D5断面浓度较高,中部DOC浓度较低;表层TN与TP浓度高值区出现在研究海域西部D1断面北部以及南部,中部和东部浓度较低;DOC,TN和TP浓度的垂直分布与海底地形和水团交汇密切相关,水团运动受阻于地形致使生物化学要素在垂直方向再分布。DOC,TN和TP空间分布反映了南极半岛近岸海域生物化学要素复杂的流通,将为合理开发和利用南极资源及环境影响评价提供科学依据。  相似文献   

13.
卜世勋  张福崇  方笑  李永仁 《海洋科学》2022,46(10):150-158
为研究抚宁海湾扇贝养殖区浮游植物变化特征,探讨水质因子对浮游植物的影响,2020年5月—11月,每月测定该海域的主要水质因子,统计浮游植物。结果表明:共鉴定浮游植物69种,优势种33种;浮游植物密度(8.3~267.9)×104cell/L,5月份最高;生物多样性指数为0.458~3.747,均匀度指数0.099~0.796,丰富度指数0.933~4.755。海水水温范围11.8~26.8℃,盐度28.8~34.0,活性硅酸盐(SiO32–-Si)含量0.025~0.627mg/L,硝酸盐氮(NO3-N)浓度0.057~0.284mg/L,均呈“上升-下降”趋势;pH范围为7.867~8.190,化学需氧量(COD)为0.260~1.415mg/L,活性磷酸盐(PO43–-P)0.003~0.006mg/L,变化趋势为“下降—上升”;对优势种与水质因子的分析表明,影响该海域浮游植物变化的主要环境因子为活性硅酸盐、盐度、活性磷酸盐和硝酸盐氮;裸藻门与活性磷酸盐、盐度呈正相关,与活性硅酸盐、硝酸盐氮呈负相关;甲藻门与活性硅酸盐呈正相关,与活性磷酸盐、硝酸盐氮呈负相关;隐藻门与活性硅酸盐、盐度成正相关,与硝酸盐氮呈负相关。  相似文献   

14.
中国第一次南极考察时(1984—1985),由上海至合恩角往返两次横渡太平洋,途中在76个测点做了表层温度、盐度、营养盐(PO_4-P,SiO_3-Si,NO_3-N和NO_2-N),植物色素(叶绿素a和脱镁叶绿酸a)和颗粒有机物(0.89—114μm)含量的分析测定。计算了这些要素间的相关系数,并用主成份分析法分析了对分布格局起决定作用的主要因素。 营养盐、叶绿素a和POM的分布,表现了相似的分布格局,表明北太平洋和南太平洋的亚热带大涡漩区最贫瘠,赤道上升流区(宽约5个纬度)是相对高营养的,由北向南穿过亚热带辐合带进入亚南极区营养盐和生物量急剧增加。在叶绿素a与POM和NO_3-N之间;NO_3-N与PO_4-P之间存在很强的正相关。温度和盐度与上述几个要素则存在明显负相关。主成份分析表明,肥力特别是硝酸盐含量,是决定生物要素分布格局的重要因素。在热带和亚热带区,POM含量低,颗粒谱低平,各粒度级浓度趋向一致。亚南极区不仅POM浓度高,而且颗粒谱峰值明显,硅藻形成明显优势。  相似文献   

15.
分别于2010年7月和2011年7月,在沿长江冲淡水扩散方向的东海东北部海域进行了典型站点CTD参数的测定和营养盐样品的采集,旨在了解长江不同径流量条件下该区域对长江冲淡水的响应过程及其中营养盐的分布变化特点。结果显示:在长江径流量较大的2010年7月,长江冲淡水(盐度31)在研究区域表层自西向东的扩散范围明显大于径流量较小的2011年7月。而含有高浓度NO_3-N(如15μmol/L)海水扩散范围在两个航次的变化却相反。由于海水层化以及表层浮游植物的吸收,各站表层NO_3-N、SiO_3-Si、PO_4-P等浓度一般较低,温盐跃层和次表层叶绿素最大值层以下其浓度升高并逐渐趋于稳定。2010年7月NH_4-N在研究区域各站贯穿整个深度的浓度明显大于2011年7月。与长江冲淡水和长江口相比,东海东北部水体表层SiO_3-Si/NO_3-N和PO_4-P/NO_3-N等营养盐摩尔比值明显降低。黑潮次表层水和黑潮中层水等水团含有较高的营养盐浓度(NO_3-N,SiO_3-Si及PO_4-P),与长江冲淡水相比,可能构成了东海东北部另一个重要的营养盐来源。  相似文献   

16.
营养盐在东海春季大规模赤潮形成过程中的作用   总被引:3,自引:0,他引:3  
为研究营养盐在东海大规模赤潮形成过程中的作用,分别于2004,2005年春季在东海赤潮爆发前进行了2个航次的海上调查。调查结果显示:DIN,PO4-P,SiO3-Si浓度分别高达15,0.55,15μmol.L-1以上,调查海域整体上处于富营养化状态;受陆源输入影响,调查区域营养盐分布呈现出近岸高、外海低,等值线走向与岸线基本平行的特点。同2004年相比,2005年春季调查海域营养盐高值区明显外扩,营养盐水平整体升高:其中DIN浓度升高9%、PO4-P升高18%、SiO3-Si升高60%,硅磷比上升60%,硅氮比上升了47%。研究结果表明,较高的营养盐浓度水平,较高的硅酸盐含量以及较高的硅磷比、硅氮比值是2005年春季优先爆发大规模硅藻赤潮的重要原因之一。  相似文献   

17.
长江干流营养盐通量的初步研究   总被引:34,自引:4,他引:34  
沈志良 《海洋与湖沼》1997,28(5):522-528
分别于1988年2月(冬季)和1986年6月(夏季)利用比色法对长江干流上游至河口水中营养盐进行测定,根据所测定的营养盐含量和长江径流量计算营养盐通量。结果表明,冬季重庆至河口长江水中NO3-N,NH4-N,TIN,PO4-P和SiO3-Si的平均浓度分别为52.2±66μmol/L,51.8±16.9μmol/L,105.3±11.4μmol/L,0.55±0.06μmol/L和75.2±23.6μmol/L.夏季NO3-N,NH4-N,TIN和SiO3-Si的平均浓度分别为69.0±17.0μmol/L,4.0±1.7μmol/L,73.3±15.6μmol/L和55.8±16.4μmol/L。冬季营养盐通量(除NO2-N外)自上游至下游逐渐增加,它们主要来自中、下游流域。夏季NO3-N,TIN和SiO3-Si通量从上游至下游也有明显的增加趋势,NO3-N和TIN,上游和中、下游几乎各占一半,SiO3-Si主要来自中、下游。夏季NO3-N,TIN,PO4-P和SIO3-Si通量明显高于冬季。  相似文献   

18.
东海海水和沉积物间隙水中硅酸盐和磷酸盐的分布   总被引:3,自引:0,他引:3  
海洋中SiO_3-Si和PO_4-P的含量随时间和空间变化,在一定程度上反映了生命的消长过程。研究其分布规律对促进海洋水产事业具有重要意义,同时还能为海洋地球化学研究提供许多有价值的基础资料。 关于海水和沉积物间隙水中SiO_3-Si和PO_4-P的分布情况,国内外已有很多报道。1958—1961年,我国海洋工作者对124°E以西我国沿海各海区进行了全面调查。日本  相似文献   

19.
于2014年5月15日—6月13日对东海海水营养盐(DIN(溶解无机氮)、SiO_3~(2-)-Si、PO_4~(3-)-P)的水平和垂直分布进行了调查分析,并讨论了其影响因素。结果表明,在研究区域,无论是微表层还是表层,海水营养盐受陆地径流的影响近岸浓度较高。受黑潮次表层水涌升的影响,远海部分站位营养盐出现高值;受陆地径流的影响,长江口断面表层营养盐浓度自西向东递减,底层可能受有机质分解及富含营养盐沉积岩的溶解影响导致营养盐浓度较高。不同营养盐在微表层的富集因子计算结果表明,除PO_4~(3-)-P外,微表层对SiO_3~(2-)-Si、NO_2~--N、NO_3~--N、NH_4~+-N和DIN都产生明显的富集作用,富集因子中位数介于1.05~1.19之间。DH2-1站位的营养盐周日变化结果表明,藻类通过光合作用使得NH_4~+-N、PO_4~(3-)-P、SiO_3~(2-)-Si浓度降低,NH_4~+-N的光化学氧化和硝化作用使NO_2~--N与NO_3~--N浓度变高;DIN中NH_4~+-N对控制藻类细胞丰度起着重要作用。  相似文献   

20.
冬季南海北部陆架锋区悬浮颗粒态硅的分析   总被引:2,自引:1,他引:1  
对冬季南海北部陆架锋区的悬浮颗粒态生物硅(Particulate Biogenic Silica,PBSi)和成岩硅(Lithogenic Silica,LSi)含量进行了调查分析,讨论了悬浮颗粒态生物硅分布及其影响因素。结果表明,南海北部陆架区悬浮颗粒态生物硅和成岩硅平均含量分别为0.59和8.93μmol/dm3。生物硅分布与水团关系密切:在营养盐充足的沿岸水生物硅含量高(1.0μmol/dm3);而在营养盐缺乏的陆架表层水生物硅含量低(0.23μmol/dm3);在两种水团过渡区生物硅含量居中(0.65μmol/dm3)并与溶解硅酸盐(Dissolved Silicate,DSi)成显著正相关(R=0.48,N=44,P=0.001,a=0.01)。此外锋面位置也直接影响生物硅的含量与分布。大部分调查海区被高温高盐低营养盐海水占据,因此导致了调查海区以低浓度的生物硅和成岩硅为特征,且与世界其他海区相比,生物硅含量处于低值区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号