首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On rimmed shelves of Bahamian-type, characterized by chlorozoan associations and typical of tropical seas, carbonate production keeps pace with normal sea-level rise except when rapid rise or drastic environmental changes occurs. On the other hand, open temperate carbonate shelves are characterized by low carbonate production of the foramol association (molluscs, benthic foraminifera, bryozoans, coralline algae, etc.) and generally show seaward relict sediments, because carbonate production cannot keep pace with normal rate of sea-level change.

Several examples of recent drowning foramol carbonate platforms (e.g., large areas of the Mediterranean Sea, eastern-northeastern Yucatan Shelf) as well as analogous ancient drowned foramol-type carbonate platforms (e.g., early to middle Miocene of the Southern Apennines; Miami Terrace) may support the idea that the drowning of many ancient carbonate platforms has been favoured by their biogenic (foramol sensu lato) constitution. Because of their typically low rate of growth, foramol carbonate platforms are fated to be drowned even if the sea-level rise is one with which the normal growth of chlorozoan platforms can keep pace. Similar conditions may also occur in tropical areas where variations in environmental conditions, such as the presence of cold waters, changes in salinity and increased nutrients, preclude the development of chlorozoan associations.  相似文献   


2.
Detailed study of Miocene carbonates in the Mediterranean region and their analogues on modern carbonate shelves (in the Mediterranean Sea, Brazil and other areas) reveals at least three major types of carbonate platform lithofacies in addition to the classic tropical coral reef (chlorozoan) lithofacies: (a) chloralgal lithofacies, similar to the chlorozoan, but without hermatypic corals; (b) rhodalgal lithofacies, characterized by abundant encrusting coralline algae; and (c) molechfor lithofacies, consisting of benthic foraminifers, molluscs, echinoids, bryozoans and barnacles. These carbonate lithofacies present complex distribution patterns seemingly related primarily to latitude and depth that control water temperature, although other factors (e.g., water circulation, river discharge, suspended sediment) controlling water salinity and temperature, nutrient content, light penetration, etc., also play important roles. Chloralgal and rhodalgal lithofacies can be considered two transitional terms between the two end-members: the chlorozoan lithofacies, which characterizes shallow tropical shelves; and the molechfor lithofacies, which characterizes colder and/or deeper areas. Detailed textural and sequential analysis are required for satisfactory interpretation of these lithofacies in ancient rocks.  相似文献   

3.
The origin of oceanic islands has been the subject of much speculation, starting with Darwin almost two centuries ago. Two classes of oceanic islands can be identified: ‘volcanic islands’, which form due to excess volcanism caused by melting anomalies in the suboceanic mantle, and ‘tectonic islands’, which form due to transpressive and/or transtensional tectonics of blocks of oceanic lithosphere along transform faults. Modern and sunken tectonic islands from the Atlantic Ocean and Indian Ocean and the Caribbean Sea and Red Sea expose mantle and lower‐crust lithologies and display an elongated narrow morphology; in contrast, volcanic islands expose basalts and have near‐circular morphology. Both are often capped by carbonate platforms. The life cycle of tectonic islands tends to be more complex than that of most volcanic islands; their elongated narrow morphology, together with their tectonic instability and high seismicity, affect the architecture of the carbonate platforms capping them, limiting coral reef development and favouring rhodalgal–foramol biota associations.  相似文献   

4.
During the late Miocene, the Guadalquivir Basin and its satellite basin, the Ronda Basin, were under Atlantic cool-water influence. The aim of our study is to develop a sequence stratigraphic subdivision of the Ronda Basin fill and to provide models for the cool-water carbonates. The Upper Miocene of the Ronda Basin can be divided into three depositional sequences. Sequence 1 is early Tortonian, Sequence 2 late Tortonian to earliest Messinian, and Sequence 3 Messinian in age. The sediments were deposited in a ramp depositional system. Sequence 1 is dominated by conglomerates and marls. In Sequence 2 and Sequence 3, carbonate deposits dominate in the inner ramp whereas siliciclastics preferentially occur in the middle and outer ramp. Bryomol carbonate sediments occur in all sequences whereas rhodalgal carbonates are restricted to Sequence 3. In bays protected from siliciclastic influx, rhodalgal deposits formed under transgressive conditions. A bryomol factory occurs in zones of continuous siliciclastic supply. This distribution results from facies partitioning during the flooding of the Ronda Basin, which has a rugged and irregular relief. Embayments were protected from siliciclastic influx and provided regions with less hydraulic energy.  相似文献   

5.
This work discusses and interprets the factors responsible for the Oligocene–Miocene drowning of the Central Apennine platform deposits, based on facies and stable‐isotope analyses of two representative stratigraphic sections. The Mediterranean carbonate platforms were affected during the Oligocene–Miocene boundary by a carbonate production crisis that was induced by global factors and amplified by regional events, such as volcanic activity. The positive δ13C shift observed in the studied sections corresponds to vertical facies changes reflecting the evolution from middle carbonate ramp to outer ramp‐hemipelagic depositional environments. This drowning event is recorded not only in the Apennine platforms, but also in other Mediterranean platforms such as in southern Apulia, Sicily and Malta, and outside the Mediterranean Basin. The ~24–23.5 Ma Mi‐1 glacial maximum may have had a significant influence on this drowning event because it was associated with high rates of accumulation of continent‐derived sediments. The increased continental weathering and runoff sustained high trophic conditions. These probably were a consequence of the Aquitanian–Burdigalian volcanic activity in the Central‐Western Mediterranean, that may have led to an increase in nutrient content in seawater and an increase in atmospheric and marine CO2 concentrations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
《Sedimentary Geology》1999,123(1-2):103-127
The uppermost Oligocene/Lower Miocene to Upper Miocene ramp carbonates from Montagna della Maiella (Italy) form a supersequence bounded by deeply incised truncation surfaces. This supersequence is subdivided into four sequences. Each sequence is composed of skeletal limestones in its lower part and marly limestones in its upper part. The lower parts of the sequences are foramol limestones, which suggest deposition in the warm-temperate climate zone. Changes in climate, oceanography and relative sea level combined to control sedimentation in the four sequences. In the lower parts of the two older sequences, the skeletal sands built dunes, suggesting high-energy conditions. The dominant skeletal grains in the oldest sequence are larger foraminifers and in the next sequence they are bryozoans; this change reflects cooling around the time of the Aquitanian/Burdigalian boundary. In the lower parts of the two younger sequences, of Middle and Late Miocene age, sediment sheets with red-algal–bryozoan oncoids suggest deposition under calmer conditions. Transgressive and highstand systems tracts are recognized in all sequences; a shelf margin systems tract may be exposed in the second oldest sequence. In contrast to the situation that exists when warm-water carbonates are deposited, sedimentation of the foramol limestones on this isolated ramp was unable to balance accommodation during sea-level rise; this led to hemipelagic sedimentation during sea-level highstands. Conglomerates resulted from reworking along flooding surfaces.  相似文献   

7.
In order to evaluate the geological record of climatic change in neritic carbonates, we studied Late Miocene rock outcrops in southern Spain. Six episodes of reef growth are documented (Burdigalian to Messinian) in Neogene basins of the Betic Cordillera, which were located close to the margin of the global reef belt. The reefs are characterized by various zooxanthellate corals which decrease in diversity with time, andHalimeda; the youngest reefs of the latest Messinian are characterized by the dominance of the genusPorites. Late Miocene coral reefs and reef-rimmed platforms alternate over time with non-reefal carbonate ramps characterized by skeletal calcirudites or with gypsum such as that formed during the Messinian salinity crisis. The calcirudites lack reef corals, calcified green algae and extensive marine cement, but exhibit skeletal components described from both modern and fossil nontropical carbonates. These include bryozoans, mollusks, foraminifers, echinoderms and minor balanids, as well as coralline algae of a bryomol association. The presence of some larger foraminifers indicates high temperatures, close to the lower temperature threshold of the reef assemblage. Sea level lowstands and highstands are documented by wedges of bryomol carbonate and chlorozoan patch reefs or prograding platforms. Thus, temperate climate depositional modes correspond to relatively low sea levels, and warm-water modes to high sea levels. The Neogene infill of the Agua Amarga and Sorbas basins documents two of these cycles. Other climate/sea-level cycles (including Messinian gypsum in the cool water depositional mode) are well established in adjacent Neogene basins in southern Spain. This type of composite sequence seems to occur only along the margin of the global reef belt and indicates an oscillatory latitudinal movement of the margin, which is associated with global climatic change. The analysis of turnover in neritic depositional carbonate systems may therefore be considered a sensitive tool for reconstructing climatic change from the fossil record. However, warm-water modes and temperate-water modes of carbonate sedimentation and diagenesis differ significantly. For this reason the interpretation of composite system sequences by sequence stratigraphy requires an extended concept. The particular type of mixed bryomolchlorozoan depositional sequence also bears some potential for drowning, because sea level rise may be faster than the net production rate of temperate carbonate systems.  相似文献   

8.
Seagrasses are marine angiosperms that form extensive submarine meadows in the photic zone where carbonate producing biota dwell as epiphytes on the leaves or as infaunal forms, and act as prolific carbonate sediment factories. Because seagrasses have a low preservation potential and records of exceptionally well‐preserved and plant material from marine settings are rare, these palaeoenvironments are difficult to identify in the rock record. Consequently, sedimentological and palaeontological proxies are the main indicators of the presence of seagrass‐dominated ecosystems. This work investigates the skeletal assemblage of Modern (Maldivian and western Mediterranean) and fossil (Eocene; Apula and Oman carbonate platforms and Oligocene; Malta platform) seagrass examples to characterize the skeletal assemblage of modern and fossil seagrasses. Two main types of grains, calcareous algae and foraminifera, constitute around 50% of the bioclastic sediment in both tropical Maldivian and temperate Mediterranean scenarios. However, in the tropical setting they are represented by green algae (Halimeda), while in the Mediterranean they are represented by corallinacean red algae. In contrast, in the Eocene examples, the foraminifera are the most conspicuous group and the green algae are also abundant. The opposite occurs in the Maltese Chattian, which is dominated by coralline algae (mean 42%), although the foraminifera are still abundant. It is suggested to use the term foralgal to identify the seagrass skeletal assemblage. To discriminate between red algae and green algae dominance, the introduction of the prefixes ‘GA’ (green algae) and ‘RA’ (red algae) is proposed. The investigated examples provide evidence that the green algae–foralgal assemblage is typical of tropical, not excessively dense seagrass meadows, characterized by a well‐illuminated substrate to support the development and calcification of the Halimeda thallus. Contrarily, the red algae‐foralgal assemblage is typical of high density tropical to subtropical seagrass meadows which create very dense oligophotic conditions on the sea floor or in temperate settings where Halimeda cannot calcify.  相似文献   

9.
Miocene carbonate platforms cover a large part of the Central Vietnamese South China Sea margin. Early carbonate deposition took place on two regional platforms separated by a narrow depression developed along the trace of the East Vietnam Boundary Fault Zone. West of the East Vietnam Boundary Fault Zone, the Tuy Hoa Carbonate Platform fringes the continental margin between Da Nang and Nha Trang. Here, platform growth initiated during the Early Miocene and continued until Middle Miocene time when regional uplift led to subaerial exposure, termination of platform growth and karstification. East of the fault zone, the Triton Carbonate Platform was also initiated during the Early Miocene. Carbonate growth thrived during Early and part of Middle Miocene time and a thick, clean Lower and Middle Miocene carbonate succession cover the Triton Horst and the Qui Nhon Ridge. During the Middle Miocene, partial drowning resulted in the split-up of the Triton Carbonate Platform. Repeated partial drowning events throughout the Middle and Late Miocene resulted in westwards retreat of platform growth and eventual platform drowning and termination of carbonate deposition. Modern carbonate growth continues on isolated platforms hosting the Paracel Islands farther seawards. The onset of widespread carbonate deposition largely reflects the Early Miocene transgression of the area linked with early post-rift subsidence and the opening of the South China Sea. The mid-Neogene shift in carbonate deposition is interpreted as a consequence of regional uplift and denudation of central and south Indochina starting during Middle Miocene time when the Tuy Hoa Carbonate Platform became subaerially exposed. Stressed carbonate growth conditions on the Triton Carbonate Platform probably resulted from increased inorganic nutrient input derived from the uplifted mainland, possibly enhanced by deteriorated climatic conditions and rapid sea-level fluctuations promoting platform drowning.  相似文献   

10.
The rhodolith-bearing biostromes described in this paper form part of an episode of exclusively carbonate sedimentation, restricted in time (Aquitanian) but relatively extensive in space, within a molasse sedimentation basin. The biostromes correspond to an algal biocoenosis on a bar or structural high, are of cyclic character, and make up a minor sequence within the Miocene molasse megasequence.

The foramol skeletal assemblage, paleogeographic conditions of the area, and resemblance of the deposits to other documented mid-latitude limestones suggest that the biostromes are examples of non-tropical carbonate sedimentation.

Trace element contents (Mg, Sr, Mn, Fe) show two distinct diagenetic phases. The first was due to active circulation of oxygenated solutions in a phreatic marine environment, the second to poor circulation of reducing solutions in a fresh-water phreatic environment.  相似文献   


11.
Cool-water skeletal carbonate sediments are forming in Spencer Gulf, South Australia, an area of high salinity and moderate tidal range. Four environments can be distinguished: deeper marine areas (10–20 m); shallow subtidal platforms and banks (2–10 m); intertidal and supratidal zones; and coastal springs and lakes fed by saline continental groundwaters. The sediments are predominately bioclastic carbonate sands; muddy sediments occur in protected intertidal environments. The most common grain types are gastropods, bivalves, foraminifera, coralline algae and quartz. Indurated non-skeletal carbonate grains have not been seen. Composition of the sediment varies little between environments, but considerable textural variation results from variation in the stability of the substrate, hydrodynamic conditions, depth of water, period of tidal inundation, supply of terrigenous grains, temperature, and salinity. The Spencer Gulf data suggests that temperature, and particularly minimum temperature, controls the distribution of skeletal and non-skeletal grain associations in high-salinity environments. The textures of the sedimentary facies of Spencer Gulf closely parallel those of equivalent environments in warm-water carbonate provinces.  相似文献   

12.
13.
Tertiary syntectonic carbonate platform development in Indonesia   总被引:2,自引:0,他引:2  
Cenozoic tropical carbonate sedimentation was strongly influenced by local and regional tectonics in SE Asia. This paper outlines the evolution of the syntectonic Eocene to middle Miocene Tonasa Formation of South Sulawesi, evaluating controls on sedimentation, facies distribution and sequence development. Development of a facies model for this Cenozoic tropical carbonate platform provides a meaningful analogue for similar, less well‐studied SE Asian carbonates, which commonly comprise targets for hydrocarbon exploration. This study also has considerable implications for the study of syntectonic carbonates, controls on carbonate sedimentation, carbonate platform development in backarc areas and SE Asian tectonics. Detailed facies mapping, logging, petrographic and biostratigraphic analyses indicate that the Tonasa Formation was deposited initially as part of a transgressive sequence in a backarc setting. By late Eocene times, shallow‐water carbonates were being deposited over much of South Sulawesi forming a widespread (100‐km long) platform area. Shallow‐water sedimentation continued unabated in some areas of the platform until the middle Miocene. Elsewhere, active normal faulting resulted in fault‐block platforms, with local subaerial exposure of footwall blocks and the formation of basinal graben in adjacent hangingwall areas. Platform‐top facies were aggradational and dominated by larger benthic foraminifera. Low‐angle slopes, particularly hangingwall dip slopes, were characterized by the development of ramps. Faults, controlled in part by pre‐existing structures, were periodically active and formed steep escarpment margins. Variable regional subsidence strongly influenced the development of the Tonasa Carbonate Platform, whereas platform‐wide effects caused by regional eustacy have not been identified. Computer modelling of the Tonasa Platform confirms that the accommodation space and sedimentary geometries observed can be produced by block faulting and regional subsidence alone. Modelling also reveals that regional subsidence and extension, oblique to the main stretching direction, were low on the margins of the backarc basin. Shallow‐water accumulation rates for this foraminifera‐dominated tropical carbonate platform were an order of magnitude lower than those for modern warm‐water platforms dominated by corals or ooids.  相似文献   

14.
Micropalaeontological investigation of samples from Scott Reef No. 1 has revealed a thick Cainozoic carbonate sequence. Rich planktonic faunas have enabled the identification of Lower Miocene to Oligocene (N6 to P19) and Lower Eocene to Lower Palaeocene intervals (P6 to Pic). The remainder of the succession has been dated on benthonic evidence and spot age‐determinations on isolated planktonic occurrences. The palaeoenvironmental history of the Cainozoic sequence appears to be regressive from a bathyal situation in the Palaeocene through indeterminate marine Eocene, bathyal to inner shelf Oligocene to Middle Miocene, to reefal conditions which have persisted from the Middle Miocene to the present day.  相似文献   

15.
The Beikang Basin is located in the southern part of the South China Sea (SCS), which is one of most tectonically complex sea areas. It is a deepwater sedimentary basin that was mainly deposited during the Cenozoic era. Owing to data restrictions, the research on carbonate platforms of this area is still in its infancy. High-resolution seismic data are analyzed to identify the Miocene carbonate platforms and reconstruct the architecture and growth history. The carbonate platforms of Beikang Basin began to develop in the Late Oligocene-Early Miocene, were extended in the Middle Miocene, and declined in the Late Miocene. The carbonate platform mainly developed during two periods: the Oligocene to the Early Miocene, and the Middle Miocene. The carbonate platforms that developed in the Middle Miocene were the most prosperous. The Middle Miocene carbonate platform in the Beikang Basin can be divided into three stages. In the first stage, the platforms had wide range which were thin. During the second stage, the platforms had a smaller range that was controlled by faults. In the third stage, the platforms were gradually submerged. The platform structure developed in the Middle Miocene at the Beikang Basin was controlled by the rate of rising/falling of the sea level and the carbonate growth rate. Based on an analysis of these changes and relationship, the platform can be divided into several patterns: retrogradation, submerged, aggradation, progradation, outward with up-stepping, outward with down-stepping, and down-stepping platforms. At the top of the carbonate platforms in the Beikang Basin a set of carbonate wings or mushrooms usually appeared. These were formed during a period of relative sea-level decline. It is believed that the Miocene carbonate platforms in the Beikang Basin are mainly controlled by tectonic and sedimentary environments, and are also affected by terrestrial detritus.  相似文献   

16.
The identification and interpretation of drowning events in the geologic record can aid significantly to the reconstruction of the depositional, tectonic and eustatic history of a study area and often improve reservoir and seal prediction in carbonate rocks. The differentiation between drowned platforms showing a record of continuous deepening and those with a record of exposure followed by rapid deepening remains, however, problematic. The Zhujiang carbonate platform (Liuhua 11-1 field, South China Sea) study shown here provides an example of an integrated approach combining high-resolution geochemistry, microfacies analyses and foraminiferal biostratigraphy in order to improve the reconstruction of environmental conditions prior, during and after platform demise and drowning. The Zhujiang carbonate platform displays the following vertical succession of four facies types i) skeletal grain facies with a miogypsinid/lepidocyclinid-dominated fauna deposited in a moderately deep (< 50 m), oligotrophic back-reef setting; ii) in situ corals in patch-reef facies in an oligotrophic lagoon (< 10 m); iii) rhodoid facies with in situ red algal crusts, dominated by Heterostegina sp. and spiroclypeids, possibly capped by a subaerial exposure surface. Well-rounded rhodoids representing a mesotrophic lagoon dominate the upper portions of the rhodoid facies; iv) pelagic marine shales of the Hanjiang Formation burying the carbonate platform after drowning. This facies succession, in combination with geochemical evidence suggests a deepening-upward trend. This trend might have been interrupted by transient subaerial exposure but no evidence for meteoric diagenesis was found at the drowning unconformity topping the carbonate platform. Instead, microfacies analyses suggest that platform demise may be related to progressive changes in environmental conditions, including increasing nutrient-levels and/or decreasing temperature up-core towards the drowning unconformity. These findings are of significance for those concerned with Miocene carbonate factories and, more specifically, the demise of carbonate platforms in general.  相似文献   

17.
Carbonate environments inhabit the realm of the surface, intermediate and deep currents of the ocean circulation where they produce and continuously deliver material which is potentially deposited into contourite drifts. In the tropical realm, fine‐grained particles produced in shallow water and transported off‐bank by tidal, wind‐driven, and cascading density currents are a major source for transport and deposition by currents. Sediment production is especially high during interglacial times when sea level is high and is greatly reduced during glacial times of sea‐level lowstands. Reduced sedimentation on carbonate contourite drifts leads to early marine cementation and hardened surfaces, which are often reworked when current strength increases. As a result, reworked lithoclasts are a common component in carbonate drifts. In areas of temperate and cool water carbonates, currents are able to flow across carbonate producing areas and incorporate sediment directly to the current. The entrained skeletal carbonate particles have variable bulk density and shapes that lower the prediction of transport rates in energy‐based transport models, as well as prediction of current velocity based on grain size. All types of contourite drifts known in clastic environments are found in carbonate environments, but three additional drift types occur in carbonates because of local sources and current flow diversion in the complicated topography inherent to carbonate systems. The periplatform drift is a carbonate‐specific plastered drift that is nearly exclusively made of periplatform ooze. Its geometry is built by the interaction of along‐slope currents and downslope currents, which deliver sediment from the adjacent shallow‐water carbonate realm to the contour current via a line source. Because the periplatform drift is plastered on the slopes of the platforms it is also subject to mass gravity flow and large slope failures. At platform edges, a special type of patch drift develops. These hemiconal platform‐edge drifts also contain exclusively periplatform ooze but their geometry is controlled by the current around the corner of the platform. At the north‐western end of Little and Great Bahama Bank are platform‐edge drifts that are over 100 km long and up to 600 m thick. A special type of channel‐related drift forms when passages between carbonate buildups or channels within a platform open into deeper water. A current flowing in these channels will entrain material shed from the sediment producing areas. At the channel mouth, the sediment‐charged current deposits its sediment load into the deeper basin. With continuous flow, a submarine delta drift is built that progrades into the deep water. The strongly focused current forming the delta drift, is able to rework coarse skeletal grains and clasts, making this type of carbonate drift the coarsest drift type.  相似文献   

18.
During the Aptian, some carbonate platforms of the sub‐tropical realm (for example, on the northern Tethys margin or in the Gulf of Mexico) were affected repeatedly by severe perturbations in the carbonate production factory and drowning, preferentially during global warming events such as the Early Aptian Oceanic Anoxic Event 1a and a prominent mid‐Late Aptian warming interval. These platform growth crises have been explained mainly by strongly increased coastal runoff (for example, siliciclastics and nutrients) in combination with pronounced eustatic sea‐level rises. In the last few years, increasing evidence suggests that carbonate platforms of lower latitudes were generally less or even not affected by environmental perturbations during these events. This raises the question as to the responsible factors that promoted platform growth or decline in different latitudinal areas. In this study, Upper Aptian (Middle Gargasian to Uppermost Clansayesian) inner‐tropical carbonate ramp deposits of the Serdj Formation at Djebel Serdj, north‐central Tunisia are studied in detail with regard to microfacies, lithology, biostratigraphy and chemostratigraphy. These data allow reconstruction of the palaeoenvironmental evolution of the Tunisian carbonate platform margin and investigation of its response to the prominent mid‐Late Aptian warming interval. The unusually expanded, 600 m thick Serdj Formation consists of limestones, marlstones and siltstones, suggesting deposition within mid‐ramp to inner‐ramp palaeoenvironments. Deposits of the mid‐Late Aptian are represented by quartz‐rich platform carbonates and siltstones, probably resulting from increased coastal runoff on the Tunisian shelf as a response to global warming and accelerated water cycling. The siliciclastic input was accompanied by elevated nutrient levels as indicated by a partial decline in the abundance of oligotrophic biota and mass occurrences of orbitolines and green algae. Carbonate platform drowning during the mid‐Late Aptian, as reported from the sub‐tropical realm, has not been identified. A comparison with other tropical river‐influenced platforms suggests that none of them drowned during the mid‐Late Aptian. One important reason might be widespread arid to semi‐arid climatic conditions within lower latitudes during that time, promoting platform growth due to comparably low nutrient runoff.  相似文献   

19.
Strongly influenced by seasonal and interannual (i.e. El Niño‐Southern Oscillation) upwelling, the equatorial setting of the Galápagos Archipelago is divided into well‐defined temperature, nutrient and calcium carbonate saturation (Ωaragonite) regions. To understand the relationship between oceanographic properties and sediment grain associations, grain size, carbonate content and components from sea floor surface samples were analysed, representing the main geographical regions of the Galápagos Archipelago. The shallow‐water rocky reefs of the Galápagos Archipelago are characterized by mixed carbonate–siliciclastic slightly gravelly sands. Despite minor differences in carbonate content, major differences exist in the distribution and composition of key carbonate producing biota. Halimeda is absent and benthic foraminifera occur in extremely low abundance. The western side of the Galápagos Archipelago is strongly influenced by nutrient‐rich, low‐Ωaragonite, subtropical water, which generates a heterozoan carbonate biofacies in a tropical realm resembling cold‐water counterparts (i.e. serpulid, echinoderm, gastropod, barnacle and bryozoan‐rich facies). The Central East region is composed of a transitional‐heterozoan biofacies. Biofacies observed in the northern region have an increased occurrence of tropical corals, albeit with a minor overall contribution to the carbonate components. Although the temperature gradient would allow for a broader distribution of photozoan biofacies, the increased nutrient concentration and related reduced light penetration from the upwelled waters favour heterozoan carbonate factories, mimicking cool‐water, deeper or higher latitude environments. The recent sedimentary record of the Galápagos Archipelago presents a range of tropical heterozoan carbonate communities, responding to more than simply latitude or temperature but a much more complex mixture of physical, evolutionary and geological processes.  相似文献   

20.
Calcareous aeolianites are an integral part of many carbonate platforms and ramps. Such limestones are particularly common in heterozoan, Late Cenozoic carbonate systems, and it has been postulated that they could contain a particularly sensitive record of their offshore source. This hypothesis is tested herein by documenting and interpreting part of the most extensive and temporally longest such system in the modern world. The deposits are a combination of extraclasts and biofragments. Extraclasts are detrital quartz, relict allochems, older Pleistocene particles and Oligocene–Miocene limestone clasts. Biofragments are penecontemporaneous coralline algae, echinoderms, small benthic foraminifera, molluscs and bryozoans. The aeolianites differ in composition from distant, open shelf sediments because they contain more mollusc fragments and many fewer bryozoans. This difference is interpreted to be due to (i) most sediment was derived from near‐shore seagrass meadows and macroalgal reefs; (ii) all sediments were modified by hydrodynamics in near‐shore and beach environments; and (iii) fragments of infaunal, beach‐dwelling bivalves were added to the sediment at the strandline. Extraclasts should be expected in older Pleistocene and Cenozoic heterozoan deposits, because the limestones are poorly lithified, largely due to the lack of meteoric cementation, and so easily eroded. Thus, cool‐water aeolianites ought to contain more extraclasts than their warm‐water, tropical cousins. Seagrasses in temperate environments are more productive than in the tropics and thus potentially might contribute many more particles to the beach and dunes than do tropical systems. Although particle breakage in the surf zone cannot be proven, herein the abundance of whole benthic foraminifera and delicate bryozoans implies that suspension and flotsam shoreward transport was an essential process. The similarity of Pleistocene aeolianites over such a long time period herein suggests that the combination of postulated sedimentological, biogenic and hydrodynamic processes could be universally important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号