首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The radionuclides 210Po and 210Pb were examined to trace the cycling of particulate organic carbon (POC) and particulate organic nitrogen (PON) in the Zhubi coral reef lagoon. The net export flux of POC to the open sea is 14 mgC m−2 d−1. However, the net exchange of PON has not yet been observed. On average, the vertical export fluxes in the lagoon of POC and PON, as derived from 210Po/210Pb disequilibria, are 43 mgC m−2 d−1 and 13.8 mgN m−2 d−1, respectively. The deficit of 210Po relative to 210Pb in particulate matter provides evidence for the degradation of particulate organic matter. According to the mass balance budgets, 310 mgC m−2 d−1 and 121 mgN m−2 d−1 were recycled into dissolved fractions. Based on a first-order kinetics model, the degradation rate constants of POC and PON are 0.28 and 0.30 m−1, respectively. Thus, 210Po and 210Pb can quantify the cycling of carbon and nitrogen in this coral lagoon.  相似文献   

2.
Dissolved and particulate (210)Pb and (210)Po were determined at 15 stations along the coastline off western Taiwan in April 2007. The (210)Pb activities in dissolved and particulate phases fell within a relatively small range of 2.4-5.2 dpm 100 L(-1) and 1.0-3.2 dpm 100 L(-1), respectively. The dissolved and particulate (210)Po activities also fell within a small range of 0.8-3.4 dpm 100 L(-1) and 1.1-2.9 dpm 100 L(-1), respectively. The correlation of the distribution coefficients (K(d)) of (210)Pb and (210)Po with particle concentration in turbid waters are not as evident as in the open ocean. The mass balance calculation shows that the residence times of (210)Pb and (210)Po with respect to particle removal from the nearshore waters ranges from 3 to 15 days and from 14 to 125 days, respectively. The flux of particulate organic carbon was estimated by (210)Po proxy and ranged from 4.8 to 33.7 mmol-C m(-2) d(-1).  相似文献   

3.
Naturally occurring 210Po (half-life 138.4d) is the granddaughter of 210Pb (half-life 22.3a), both are members of 238U decay series and have been inten-sively utilized to study kinetic aspects of material cy-cling in the ocean[1]. Based on radioactive disequilibria in the 226Ra-210Pb-210Po system, oceanographical processes with different timescales have been widely studied. Rama et al.[2] first detected excess 210Pb rela-tive to its precursor 226Ra in surface waters, and considered this exc…  相似文献   

4.
Activities of the naturally occurring radionuclides, 210Pb and 210Po, were measured in both dissolved (<0.45 μm) and particulate (>0.45 μm) phases from surface waters of the southern South China Sea. The average activity of particulate 210Pb, 0.23 Bq/m3 (n=23), accounted for about 12% of the total 210Pb, which corresponds with values of open oceans. Particulate 210Po, with an average activity of 0.43 Bq/m3, accounted for about 40% of the total 210Po, which was much higher than those of open and eutrophic oceans. The residence times of total 210Po and 210Pb in surface waters estimated from an irreversible steady-state model were 0.82 a and 1.16 a, respectively. The consistently high fractionation factor calculated either by scavenging rate constants (5.42) or Kd values (6.69) suggested that a significant fractionation occurred between 210Po and 210Pb during their removal from solution to particles and that the two radionuclides had different biogeochemical cycling pathways in the oligotrophic South China Sea. Furthermore, our results indicated that there exist different fractionation mechanisms between 210Po and 210Pb in different marine environments: in eutrophic ocean, plankton detritus and fecal pellets are the main carrier of 210Po and 210Pb, by which 210Po and 210Pb have been scavenged and removed; while in oligotrophic ocean, microbes could become the main carrier of 210Po and fractionate 210Po and 210Pb significantly as a result of scarce plankton detritus and fecal pellets. These results suggest the use of 210Po to trace marine biogeochemical processes relating to microbial activities and the cycling of sulfur group elements (S, Se, Te and Po).  相似文献   

5.
Profiles of226Ra and dissolved210Pb have been measured at several stations in the Red Sea. At one station in the central Red Sea an expanded profile was measured including226Ra and dissolved and particulate210Pb and210Po. These profiles show several distinct features: (1)226Ra displays a mid-depth maximum of about 13 dpm/100 kg at about 500 m; (2) dissolved210Pb concentrations are uniformly low at about 2 dpm/100 kg with little lateral or vertical variation; (3) the surface-water210Pb excess which is commonly observed in low-latitude open ocean regions is entirely lacking; (4)210Pb and210Po activities are essentially identical to each other in both particulate and dissolved phases although210Po activities appear somewhat lower; (5) about 20% of the210Pb and210Po in the water column residues on particulate matter.Assuming the atmospheric210Pb flux to be in the dissolved form and at the lower level of the normal range i.e. 0.5 dpm/cm2 yr, the residence time of the dissolved Pb is about 1.5 years. However, if the same atmospheric flux is entirely in particulate form, then the residence time of the dissolved Pb is about 5 years. The residence time of Pb in the particulate phase is less than 0.4 years if all the Pb is removed only by sinking particles.  相似文献   

6.
In recent years, there has been increasing interest in the significance of natural radionuclides, particularly (210)Po, in the marine environment. (210)Po, a naturally occurring alpha emitter, accumulates in marine organisms and reflects differences in their diets. In the literature, there is no data for (210)Po and (210)Pb activity concentrations for fish species on the Turkish coast of Aegean Sea. Therefore, in this study, multiple fish species were collected from six stations seasonally on the Turkish coast of Aegean Sea and were analyzed for their (210)Po and (210)Pb content. The (210)Po and (210)Pb concentrations in the fish samples were found to vary from undetectable levels to 499 ± 44 Bq kg(-1) dry weight (dw) and from 1.0 ± 0.3 Bq kg(-1) to 35 ± 4.0 Bq kg(-1) (dw), respectively. There were no significant differences in the activity concentrations of (210)Po and (210)Pb in fish samples between seasons (ANOVA, P>0.05). The highest dose contribution of (210)Po to humans was calculated to be 10,530 μSv year(-1).  相似文献   

7.
The temporal variability of 210Po and 210Pb was examined in the overlying water of the Zhubi Coral Reef flat to detect nutrient-like behavior of 210Po. Different mechanisms influencing their geochemical behaviors were observed. Excess 210Po relative to 210Pb revealed an additional input of 210Po other than in situ production from 210Pb. The 210Po input comes from the reef flat sediment through diffusion. The diffusion contributes 62% of the total 210Po. This diffusion of 210Po directly highlights its nutrient-like behavior. No input, but the slight removal, of 210Pb was observed. Fractionation factors indicate that particulate matter prefers to adsorb 210Po rather than 210Pb. In combination with particulate composition, 210Po diffusion was closely related to organic matter. These results reveal that 210Po might be a potential tracer for quantifying nutrient recycling in the Coral Reef system.  相似文献   

8.
The progressive weakening and final disappearance (in 1979) of the long-term meromictic structure of the Dead Sea are clearly reflected in the depth profiles of210Pb and210Po. In 1977/78, prior to overturn, dissolved210Pb (35–50 dpm kg?1) predominated over particulate210Pb (1–2 dpm kg?1) in the oxic upper waters, whereas the reverse was true in the anoxic deep waters (16–20 dpm kg?1 particulate vs. 2–5 dpm kg?1 dissolved). The exact extent of the disequilibrium between210Pb and226Ra is hard to evaluate in the upper oxic layers, because the progressive deepenings resulted in mixing with deep waters. By contrast, one can estimate the residence time of dissolved210Pb in the unperturbed anoxic deepest layers, because these remained isolated, at about 3 years. Following the overturn of 1979, dissolved210Pb exceeded particulate210Pb at all depths. The210Po profiles of the stratified lake resembled in shape those of its grandparent210Pb, but with distinct characteristics of their own in the oxic upper waters where particulate210Po (8–12 dpm kg?1) was greatly in excess over particulate210Pb, while dissolved210Po (25–40 dpm kg?1) was slightly deficient. Immediately following the overturn, dissolved and particulate210Po were similar (about 15 dpm kg?1), at all depths. The destruction of the lake's meromictic structure was accompanied by a reduction of its210Pb inventory, while that of210Po was almost unaffected. Thus, at overturn a transient state was created with the inventory of210Po exceeding that of210Pb.  相似文献   

9.
226Ra,210Pb and210Po were measured in oceanic profiles at two stations near the Bonin and Kurile trenches.210Po is depleted by 50% on average relative to210Pb in the surface water. In the deep water,210Pb is about 25% deficient relative to226Ra. Based on the deficiency,210Pb residence time with respect to removal by particulate matter was estimated to be less than 96 years in the deep water.210Pb deficiency in the bottom water was significantly greater than that of the adjacent deep water, indicating more effective removal near or at the bottom interface.210Pb,210Po and Th appear to have similar overall rate constants of particulate removal throughout the water column.  相似文献   

10.
The distribution of210Po and210Po in dissolved (<0.4 μm) and particulate (>0.4 μm) phases has been measured at ten stations in the tropical and eastern North Atlantic and at two stations in the Pacific. Both radionuclides occur principally in the dissolved phase. Unsupported210Pb activities, maintained by flux from the atmosphere, are present in the surface mixed layer and penetrate into the thermocline to depths of about 500 m. Dissolved210Po is ordinarily present in the mixed layer at less than equilibrium concentrations, suggesting rapid biological removal of this nuclide. Particulate matter is enriched in210Po, with210Po/210Pb activity ratios greater than 1.0, similar to those reported for phytoplankton. Box-model calculations yield a 2.5-year residence time for210Pb and a 0.6-year residence time for210Po in the mixed layer. These residence times are considerably longer than the time calculated for turnover of particles in the mixed layer (about 0.1 year). At depths of 100–300 m,210Po maxima occur and unsupported210Po is frequently present. Calculations indicate that at least 50% of the210Po removed from the mixed layer is recycled within the thermocline. Similar calculations for210Pb suggest much lower recycling efficiencies.Comparison of the210Pb distribution with the reported distribution of226Ra at nearby GEOSECS stations has confirmed the widespread existence of a210Pb/226Ra disequilibrium in the deep sea. Vertical profiles of particulate210Pb were used to test the hypothesis that210Pb is removed from deep water by in-situ scavenging. With the exception of one profile taken near the Mid-Atlantic Ridge, significant vertical gradients in particulate210Pb concentration were not observed, and it is necessary to invoke exceptionally high particle sinking velocities to account for the inferred210Pb flux. It is proposed instead that an additional sink for210Pb in the deep sea must be sought. Estimates of the dissolved210Pb/226Ra activity ratio at depths greater than 1000 m range from 0.2 to 0.8 and reveal a systematic increase, in both vertical and horizontal directions, with increasing distance from the sea floor. This observation implies rapid scavenging of210Pb at the sediment-water interface and is consistent with a horizontal eddy diffusivity of 3?6 × 107 cm2/sec. The more reactive element Po, on the other hand, shows evidence of rapid in-situ scavenging. In filtered seawater,210Po is deficient, on the average, by ca. 10% relative to210Pb; a corresponding enrichment is found in the particulate phase. Total inventories of210Pb and210Po over the entire water column, however, show no significant departure from secular equilibrium.  相似文献   

11.
Two ocean profiles from the Peru Basin from regions with different surface productivities were analyzed for total210Pb and201Po to evaluate the influence of particulates in the water column on their distribution. Comparison with a published226Ra profile for the region was made. The profile closest to the coast, where upwelling and productivity are high, shows depletion of210Pb relative to226Ra at all depths, with particularly marked excursions from radioactive equilibrium at the surface and in the bottom water.210Po appears to be deficient relative to210Pb at depth as well. Mean residence times in the deep water, relative to particulate removal from the water column to the sediments, of about 100 years for210Pb and about two years for210Po are indicated. The profile northwest of the upwelling region shows the226Ra210Pb210Po system close to equilibrium at all depths to 1500 m (except for the effect of atmospheric210Pb input seen at the surface.  相似文献   

12.
Samples of the surface microlayer, of bulk seawater from 20-cm depth and of the neustonic organisms inhabiting the top 5 cm of the sea were collected at regular intervals over a period of 17 months at a site 3 km off Monaco and analysed for the naturally occurring radionuclides210Po and210Pb. Enrichment of210Po in the microlayer compared with the bulk seawater was always observed, and the degree of enrichment was found to be correlated significantly with the neuston biomass per unit volume. Enrichment of210Pb in the microlayer was also observed, but only under the higher neuston biomass conditions. The210Po:210Pb ratio was always higher in the microlayer than in the bulk seawater. Additional information was obtained from210Po measurements made on the bulk seawater in which the neuston had been collected and in which it had stood for periods of 2 to 4 h. These showed that the neuston lost210Po to the water at a rate of about 1 pCi g?1 dry biomass h?1. A significant flux of210Po from bulk seawater to the surface microlayer, and thence possibly to the atmosphere, is estimated. This flux is mediated by the biota, and will vary seasonally with the planktonic biomass. Under high biomass conditions a similar flux for210Pb may also be significant. An association of210Po with the organic cycle at the top of the sea, and with marine bacteria in particular, is suggested.  相似文献   

13.
Disequilibrium between210Po and210Pb and between210Pb and226Ra has been mapped in the eastern and central Indian Ocean based on stations from Legs 3 and 4 of the GEOSECS Indian Ocean expedition.210Po/210Pb activity ratios are less than 1.0 in the surface mixed layer and indicate a residence time for Po of 0.6 years.210Po and210Pb are generally in radioactive equilibrium elsewhere in the water column except at depths of 100–500 m, where Po may be returned to solution after removal from the surface water, and in samples taken near the bottom at a few stations.210Pb excesses relative to226Ra are observed in the surface water but these excesses are not as pronounced as in the North Pacific and North Atlantic. The difference is attributable to a lower flux of210Pb from the atmosphere to the Indian Ocean. Below the main thermocline,210Pb activities increase with depth to a broad maximum before decreasing to lower values near the bottom. Departures from this pattern are especially evident at stations taken in the Bay of Bengal (where210Pb/226Ra activity ratios as low as 0.16 are observed) and near the Mid-Indian Ridge. The data suggest that removal of210Pb at oceanic boundaries, coupled with eddy diffusion along isopycnals, can explain gradients in210Pb near the boundary. Application of a simple model including isopycnal diffusion, chemical removal, production and radioactive decay produces fits the observed210Pb/226Ra gradients for eddy diffusion coeffients of ~ 107 cm2/s. High productivity in surface waters of the Bay of Bengal makes this region a sink for reactive nuclides in the northern Indian Ocean.  相似文献   

14.
Rivers of South and Southeast Asia disgorge large suspended sediment loads, reflecting exceptionally high rates of erosion promoted by natural processes (tectonic and climatic) and anthropogenic (land‐use change) activities that are characteristic of the region. While particulate carbon and nitrogen fluxes have been characterized in some large Asian rivers, less is known about the headwater systems where much sediment and organic material are initially mobilized. This study, conducted in the 74‐km2 Mae Sa Experimental Catchment in northern Thailand, shows that the Sa River is an important source for particulate organic carbon (POC) and particulate organic nitrogen (PON) transported to larger river systems and downstream reservoirs. However, the yields during three years of investigation varied greatly: 5.0–22.3 Mg POC km?2 y?1 and 0.48–2.02 Mg PON km?2 y?1. The 22.3 Mg POC km?2 y?1 yield is the highest reported for any river on the Asian continent. Stream samples collected during 12 storms showed that almost 3% of the total suspended solid load is POC 0.7 µm to 2.0 mm in size. This percentage is higher than other values for most large rivers on the continent. Further, we documented a strong pulse hysteretic behaviour in the stream, whereby peak fluxes of POC and PON are often delayed (anticlockwise hysteresis) or accelerated (clockwise hysteresis) relative to stream flow peaks (or are complex), complicating the prediction of storm‐based or annual particulate carbon and nitrogen fluxes. Stream turbidity and total suspended sediment are reasonable proxies for POC and PON concentrations, while stream discharge is not a good predictor variable. Observed C:N ratios for measured particulate samples range from 3 to 83, with the high‐end values likely associated with fresh (non‐decomposed) vegetative material greater than 2 mm in diameter. The C:N ratio (weighted based on three sediment sizes) for 12 events ranges from 7.5 to 15.3. These modest values reflect the relatively low C:N ratios for small size fractions (0.7–0.63 µm) that comprise 50–90% of the TSS load in the events. Overall, organic material <0.63 µm contribute about 75% of the total POC load and 80% of the PON load. The annual C:N ratio for the river is approximately 10–11. Collectively, our findings indicate the occasionally high yields make the Sa River—and potentially other similar headwater rivers—a hot spot for POC and PON transported to downstream water bodies. Complex hysteresis patterns and high year‐to‐year variability hinders our ability to calculate and predict these yields without continuous, automated monitoring of discharge and turbidity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
在博斯腾湖选取了13个点位,于2012年5、8、10月测定表层和底层水体中的颗粒有机碳、溶解有机碳、颗粒有机氮和叶绿素a含量.结果显示颗粒和溶解有机碳在表层水体中的浓度与底层相近.博斯腾湖水体中颗粒有机碳的季节变化十分明显,其平均浓度从春季(0.64 mg/L)到夏季(0.71 mg/L)变化不大,但在秋季变化十分显著(浓度达1.58 mg/L).其中西北湖区和湖心区颗粒有机碳的季节变化最明显,东部湖区颗粒有机碳的季节变化相对较小.博斯腾湖水体的颗粒有机碳在春、秋两季主要来自外源输入,在夏季受水体中浮游生物的影响较大.博斯腾湖水体中溶解有机碳也具有一定的季节变化,夏季浓度(平均为9.3 mg/L)略低于春、秋两季(平均为10.3 mg/L).溶解有机碳在河口区的季节变化最强,其夏季浓度明显偏低,主要是由于开都河河水的稀释作用.总体上,博斯腾湖水体中溶解有机碳浓度的变化主要受外部因素的影响.  相似文献   

16.
Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Atmospherically-delivered ~7Be,~(210)Po and ~(210)Pb in bulk precipitation and air samples collected around the globe have provided valuable quantification on the rates of removal, as well as proportional mixing of attendant air masses; however, such studies during thunderstorm and typhoon events are limited. We report the first continuous time-series rainwater sampling and analysis of ~7Be,~(210)Pb and ~(210)Po from two typhoons and one thunderstorm during 2015 summer in Shanghai. The depositional fluxes within individual rain events of typhoons and thunderstorms varied by a factor of 10 for ~7Be, 5.7 for ~(210)Pb, 7.4 for ~(210)Po,and 7.0 for ~7Be/~(210)Pb activity ratios(AR). Such large observed variations in the depositional fluxes of ~7Be,~(210)Pb,~(210)Po and ~7Be/~(210)Pb activity ratios were attributed to air masses injected from surrounding high pressure system adjoining the typhoon to low pressure system within the typhoon. Based on ~7Be/~(210)Pb activity ratios, we estimated the variations in the fraction of maritime and continental air masses into the typhoon. Observed constancy in the ~(210)Po/~(210)Pb AR indicates that the residence times of air masses contributing to the typhoon during heavy rain are similar. From a synthesis of global fallout of ~7Be and ~(210)Pb during pulse events(precipitation≥50 mm from single rainout event), we quantify the importance of pulse events in the atmospheric fallout of these radionuclides.  相似文献   

18.
By modelling the observed distribution of210Pb and210Po in surface waters of the Pacific, residence times relative to particulate removal are determined. For the center of the North Pacific gyre these are τPo = 0.6years andτPb = 1.7years. The surface ocean τPb is determined by particulate transport rather than plankton settling. The fact that it is about two orders of magnitude smaller than τPb for the deep ocean implies a sharp change in the adsorptive quality of particles during descent through the water column.  相似文献   

19.
Polonium‐210 (210Po) is a highly toxic alpha emitter that is rarely found in groundwater at activities exceeding 1 pCi/L. 210Po activities in 63 domestic and public‐supply wells in Lahontan Valley in Churchill County in northern Nevada, United States, ranged from 0.01 ± 0.005 to 178 ± 16 pCi/L with a median activity of 2.88 pCi/L. Wells with high 210Po activities had low dissolved oxygen concentrations (less than 0.1 mg/L) and commonly had pH greater than 9. Lead‐210 activities are low and aqueous 210Po is unsupported by 210Pb, indicating that the 210Po is mobilized from aquifer sediments. The only significant contributors to alpha particle activity in Lahontan Valley groundwater are 234/238U, 222Rn, and 210Po. Radon‐222 activities were below 1000 pCi/L and were uncorrelated with 210Po activity. The only applicable drinking water standard for 210Po in the United States is the adjusted gross alpha radioactivity (GAR) standard of 15 pCi/L. 210Po was not volatile in a Nevada well, but volatile 210Po has been reported in a Florida well. Additional information on the volatility of 210Po is needed because GAR is an inappropriate method to screen for volatile radionuclides. About 25% of the samples had 210Po activities that exceed the level associated with a lifetime total cancer risk of 1× 10?4 (1.1 pCi/L) without exceeding the GAR standard. In cases where the 72‐h GAR exceeds the uranium activity by more than 5 to 10 pCi/L, an analysis to rule out the presence of 210Po may be justified to protect human health even though the maximum contaminant level for adjusted GAR is not exceeded.  相似文献   

20.
Particulate and soluble,210Pb activities have been measured by filtration of large-volume water samples at two stations in the South Atlantic. Particulate phase210Pb (caught by a 0.4-μm filter) varies from 0.3% of total210Pb in equatorial surface water to 15% in the bottom water. The “absolute activity” of210Pb per unit mass of particulate matter is about 107 times the activity of soluble210Pb per unit mass of water, but because the mass ratio of particulate matter to water is about 10?8, the particulate phase carries only about 10% of the total activity. In Antarctic surface water the particulate phase carries 40% of the total210Pb activity; the absolute activity of this material is about the same as in other water masses and the higher fraction is due to the much larger concentration of suspended matter in surface water in this region.In the equatorial Atlantic the particulate phase210Pb activity increases with depth, by a factor of 40 from surface to bottom, and by a factor of 4 from the Antarctic Intermediate Water core to the Antarctic Bottom Water. This increase with depth is predicted by our previously proposed particulate scavenging model which indicated a scavenging residence time of 50 years for210Pb in the deep sea. A scavenging experiment showed that red clay sediment removes all the210Pb from seawater in less than a week. The Antarctic particulate profile shows little or no evidence of scavenging in this region, which may be due to the siliceous nature of the particulate phase in circumpolar waters. Our previous observation that the210Pb/226Ra activity ratio is of the order of 0.5 in the deep water is further confirmed by the two South Atlantic profiles analyzed in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号