首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 735 毫秒
1.
Seasonal variations in water temperature in Selenga Shallow Waters is studied. The contributions of the regimes of waves, river runoff, thermal fronts, and thermobars to the formation of physical structures are assessed.  相似文献   

2.
A simple method of the objective frontal analysis (OFA) based on a thermal definition of atmospheric fronts is proposed for the area of Central Europe with the aid of gridded numerical weather prediction model (NWP model) outputs. The OFA includes both mathematical and graphical techniques that enable a computer to draw fronts entirely automatically in atmospheric cross-sections by means of one locating equation and four masking criteria. The OFA also enables to analyse the frontal wave position and the type, activity, and future development of fronts.The OFA is applied to two synoptically analogous cold-frontal situations, which occurred over the Czech Republic in summer season and were characterised by quite different precipitation amounts. The outputs (12h, 18h, and 24h forecasts) of the NWP model Europa Modell/Deutschland Modell are used in computations. The equivalent potential temperature is considered as an input thermal parameter of the OFA. The impact of applying and changing the OFA masking criteria is various and among others also depends on synoptic situation. The comparison between the objective and subjective analysed fronts subserves to evaluate the values of masking threshold constants. Some obtained results of the analysis of the extreme precipitation situation support the possibility of enhanced precipitation amounts. The analysis of the second non-extreme precipitation situation revealed a few different features that do not support the forecast of enhanced precipitation amounts. The results show the OFA could contribute to the improvement of the general short-range weather forecast.  相似文献   

3.
During the time taken for seismic data to be acquired, reservoir pressure may fluctuate as a consequence of field production and operational procedures and fluid fronts may move significantly. These variations prevent accurate quantitative measurement of the reservoir change using 4D seismic data. Modelling studies on the Norne field simulation model using acquisition data from ocean-bottom seismometer and towed streamer systems indicate that the pre-stack intra-survey reservoir fluctuations are important and cannot be neglected. Similarly, the time-lapse seismic image in the post-stack domain does not represent a difference between two states of the reservoir at a unique base and monitor time, but is a mixed version of reality that depends on the sequence and timing of seismic shooting. The outcome is a lack of accuracy in the measurement of reservoir changes using the resulting processed and stacked 4D seismic data. Even for perfect spatial repeatability between surveys, a spatially variant noise floor is still anticipated to remain. For our particular North Sea acquisition data, we find that towed streamer data are more affected than the ocean-bottom seismometer data. We think that this may be typical for towed streamers due to their restricted aperture compared to ocean-bottom seismometer acquisitions, even for a favourable time sequence of shooting and spatial repeatability. Importantly, the pressure signals on the near and far offset stacks commonly used in quantitative 4D seismic inversion are found to be inconsistent due to the acquisition timestamp. Saturation changes at the boundaries of fluid fronts appear to show a similar inconsistency across sub-stacks. We recommend that 4D data are shot in a consistent manner to optimize aerial time coverage, and that additionally, the timestamp of the acquisition should be used to optimize pre-stack quantitative reservoir analysis.  相似文献   

4.
Chen  Huan-Huan  Qi  Yiquan  Wang  Yuntao  Chai  Fei 《Ocean Dynamics》2019,69(11):1387-1399

Fourteen years (September 2002 to August 2016) of high-resolution satellite observations of sea surface temperature (SST) data are used to describe the frontal pattern and frontogenesis on the southeastern continental shelf of Brazil. The daily SST fronts are obtained using an edge-detection algorithm, and the monthly frontal probability (FP) is subsequently calculated. High SST FPs are mainly distributed along the coast and decrease with distance from the coastline. The results from empirical orthogonal function (EOF) decompositions reveal strong seasonal variability of the coastal SST FP with maximum (minimum) in the astral summer (winter). Wind plays an important role in driving the frontal activities, and high FPs are accompanied by strong alongshore wind stress and wind stress curl. This is particularly true during the summer, when the total transport induced by the alongshore component of upwelling-favorable winds and the wind stress curl reaches the annual maximum. The fronts are influenced by multiple factors other than wind forcing, such as the orientation of the coastline, the seafloor topography, and the meandering of the Brazil Current. As a result, there is a slight difference between the seasonality of the SST fronts and the wind, and their relationship was varying with spatial locations. The impact of the air-sea interaction is further investigated in the frontal zone, and large coupling coefficients are found between the crosswind (downwind) SST gradients and the wind stress curl (divergence). The analysis of the SST fronts and wind leads to a better understanding of the dynamics and frontogenesis off the southeastern continental shelf of Brazil, and the results can be used to further understand the air-sea coupling process at regional level.

  相似文献   

5.
Knowing little about how porosity and permeability are distributed at depth, we commonly develop models of groundwater by treating the subsurface as a homogeneous black box even though porosity and permeability vary with depth. One reason for this depth variation is that infiltrating meteoric water reacts with minerals to affect porosity in localized zones called reaction fronts. We are beginning to learn to map and model these fronts beneath headwater catchments and show how they are distributed. The subsurface landscapes defined by these fronts lie subparallel to the soil-air interface but with lower relief. They can be situated above, below, or at the water table. These subsurface landscapes of reaction are important because porosity developed from weathering can control subsurface water storage. In addition, porosity often changes at the weathering fronts, and when this affects permeability significantly, the front can act like a valve that re-orients water flowing through the subsurface. We explore controls on the positions of reaction fronts under headwater landscapes by accounting for the timescales of erosion, chemical equilibration, and solute transport. One strong control on the landscape of subsurface reaction is the land surface geometry, which is in turn a function of the erosion rate. In addition, the reaction fronts, like the water table, are strongly affected by the lithology and water infiltration rate. We hypothesize that relationships among the land surface, reaction fronts, and the water table are controlled by feedbacks that can push landscapes towards an ‘ideal hill’. In this steady state, reaction-front valves partition water volumes into shallow and deep flowpaths. These flows dissolve low- and high-solubility minerals, respectively, allowing their reaction fronts to advance at the erosion rate. This conceptualization could inform better models of subsurface porosity and permeability, replacing the black box.  相似文献   

6.
Historical and recent oceanographic cruise data, MODIS chlorophyll-a satellite data, and an analytical model are used to examine SST fronts in the entrance to Spencer Gulf, South Australia. The fronts (2–3 °C) due to the contrast between warm Spencer Gulf waters and cooler waters of the continental shelf are readily observable on satellite imagery. Three water masses: cool, fresh upwelled shelf water; warm, salty Great Australian Bight water; and very warm and salty Spencer Gulf bottom water occupy the area. In consequence a summer density minimum is formed at the entrance to Spencer Gulf. The analytical model predicts that this thermohaline structure sets up an ageostrophic circulation, which favours upwelling in the central portion of the entrance. This is confirmed by the satellite data which show an increased chlorophyll-a concentration in the vicinity of the upwelling.  相似文献   

7.
It is well known that upwelling of subsurface water is dominant around the Taiwan Bank (TB) and the Penghu (PH) Islands in the southern Taiwan Strait in summertime. Sea surface temperature (SST) frontal features and related phenomena around the TB upwelling and the PH upwelling were investigated using long-term AVHRR (1996–2005) and SeaWiFS (1998–2005) data received at the station of National Taiwan Ocean University. SST and chlorophyll-a (Chl-a) images with a spatial resolution of 0.01° were generated and used for the monthly SST and Chl-a maps. SST fronts were extracted from each SST images and gradient magnitudes (GMs); the orientations were derived for the SST fronts. Monthly maps of cold fronts where the cooler SSTs were over a shallower bottom were produced from the orientation.  相似文献   

8.
采用Cloudsat/CPR云雷达,FY2C/TBB亮温,Aura/MLS大气成分等卫星遥感资料,结合ECMWF气象分析资料和HYSPLIT4轨迹模式,研究了2009年6月一次东亚切断低压的暖区深对流和异常副热带锋面的结构和演变.分析表明,由于低压切断前的旧槽背景,在低涡的近成熟期,内部冷、暖锋降水偏弱,边沿的高空副热带锋面异常发展到对流层底部,低空西南暖湿水汽在副热带锋前聚集,形成千公里长的暖区深对流降水带.随着该锋面的快速东移,副热带锋区进入原暖区雨带,锋区热力间接次级环流的强上升支,加强了锋下冷侧(原暖湿区)的深对流,但该锋面阻挡了来自暖侧的水汽补充,降水结束.该异常副热带锋区还发生了强烈的平流层-对流层相互交换,在高空急流出口区的下方,平流层1.5PVU等位涡线向下入侵可达5.5 km(约500 hPa)处,锋下向上的深对流注入可达10 km,在入侵-注入混合区,臭氧和水汽的散点图上出现了二者浓度双高和双低的特殊气团.  相似文献   

9.
《Continental Shelf Research》2005,25(9):1097-1114
South of the eastern end of Long Island (Montauk Point) along the Eastern U.S. coast, a coastal density front forms between the buoyant outflow plume of the Long Island Sound (LIS) and the denser shelf waters offshore. During a 2-day cruise in April 2002, measurements of the density and velocity structure of this front were obtained from high-resolution CTD and ADCP data. Transects show the front intersecting the bottom inshore of the 30 m isobath and shoaling offshore. Variability in the location of the front is small offshore of the 40 m isobath, yet tidal excursions of the front along the bottom are significant (5 km) inshore of this depth.The frontal structure of the LIS plume was similar to observations of bottom-trapped coastal density fronts and shelf break fronts. A coastal jet in the along front direction was the main feature of the mean velocity field and was found to be in thermal wind balance with the mean density field. Stronger than expected offshore velocities near the surface, most likely a result of wind forcing, were the only exception to these similarities. In addition, analysis of temperature and salinity gradients along isopycnals gives evidence of secondary cross-frontal circulation and detachment of the bottom boundary layer. Characteristics of the LIS plume are used to evaluate recent analytical models of bottom-trapped coastal density fronts and bottom-advected plume theory, finding good agreement.  相似文献   

10.
The fronts of two rock glaciers located in South Tyrol (Italian Alps) failed on 13 August 2014, initiating debris flows in their downslope channels. A multimethod approach including climate, meteorological, and ground temperature data analysis, aerial image correlation, as well as geotechnical testing and modeling, led to the reconstruction of the two events. An integrated investigation of static predisposing factors, slowly changing preparatory factors, and potential triggering events shed light on the most likely reasons for such failures. Our results suggest that the occurrence of front destabilization at the two rock glaciers can only partly be explained by the occurrence of heavy rainfall events. Indeed, antecedent hydrological and thermal ground conditions were characterized by a saturated active layer favored by a snow-rich winter and extensive precipitation in late spring and summer. Also, the rising trend of air temperature during spring and summer months since 1950s might explain the concurrent marked displacement of the two rock glaciers. Indeed, geotechnical investigations have provided strong indications that one of the investigated rock glacier fronts was at a marginally stable state prior to 2014. As rainfall events more intense than the one that occurred in August 2014 were previously recorded in the same area without resulting failures at the studied rock glaciers, we propose that both predisposing and preparatory destabilizing factors have played a key role in the 2014 rock glacier front failures.  相似文献   

11.
The neutron moisture probe is widely applicable to vadose zone monitoring problems which require measuring variable moisture contents. Neutron data are proportional to hydrogen density (modified by local chemistry) and sensitive to wetting fronts as well as changing volumes of hydrocarbon liquids. They cannot, however, be used to confirm contaminant chemistry, nor to detect steady-state flow. Neutron data are amenable to statistical analysis, providing a measure of the significance of data variations. Detection of incipient moisture changes at numerous monitoring locations is more practical using raw neutron data than data calibrated for moisture content because calibrations suffer from uncertainties associated with soil heterogeneities. When properly applied, the neutron probe is an effective monitoring tool as illustrated by three example applications described in this paper: (1) neutron moisture logs are used to detect subtle lithologic changes and identify monitoring horizons; (2) sequential neutron data are used to track induced saturation at a soil flushing pilot study; and (3) neutron logs from a horizontal access tube beneath a waste facility are used to pinpoint moisture anomalies.  相似文献   

12.
Blooms of the toxic dinoflagellates, Karenia spp. occur nearly annually in the eastern Gulf of Mexico with cell abundances typically >105 cells L−1. Thermal and ocean color satellite imagery shows sea surface temperature patterns indicative of upwelling events and the concentration of chlorophyll at fronts along the west Florida continental shelf. Daily cell counts of Karenia show greater increases in cell concentrations at fronts than can be explained by Karenia's maximum specific growth rate. This is observed in satellite images as up to a 10-fold greater increase in chlorophyll biomass over 1–2 d periods than can be explained by in situ growth. In this study, we propose a model that explains why surface blooms of Karenia may develop even when nutrients on the west Florida shelf are low. In the summer, northward winds produce a net flow east and southeast bringing water and nutrients from the Mississippi River plume onto the west Florida shelf at depths of 20–50 m. This water mass supplies utilizable inorganic and organic forms of nitrogen that promote the growth of Karenia to pre-bloom concentrations in sub-surface waters in the mid-shelf region. In the fall, a change to upwelling favorable winds produces onshore transport. This transport, coupled with the swimming behavior of Karenia, leads to physical accumulation at frontal regions near the coast, resulting in fall blooms. Strong thermal fronts during the winter provide a mechanism for re-intensification of the blooms, if Karenia cells are located north of the fronts. This conceptual model leads to testable hypotheses on bloom development throughout the Gulf of Mexico.  相似文献   

13.
Ocean surface fronts and filaments have a strong impact on the global ocean circulation and biogeochemistry. Surface Lagrangian advection with time-evolving altimetric geostrophic velocities can be used to simulate the submesoscale front and filament structures in large-scale tracer fields. We study this technique in the Southern Ocean region south of Tasmania, a domain marked by strong meso- to submesoscale features such as the fronts of the Antarctic Circumpolar Current (ACC). Starting with large-scale surface tracer fields that we stir with altimetric velocities, we determine ‘advected’ fields which compare well with high-resolution in situ or satellite tracer data. We find that fine scales are best represented in a statistical sense after an optimal advection time of ~2 weeks, with enhanced signatures of the ACC fronts and better spectral energy. The technique works best in moderate to high EKE regions where lateral advection dominates. This technique may be used to infer the distribution of unresolved small scales in any physical or biogeochemical surface tracer that is dominated by lateral advection. Submesoscale dynamics also impact the subsurface of the ocean, and the Lagrangian advection at depth shows promising results. Finally, we show that climatological tracer fields computed from the advected large-scale fields display improved fine-scale mean features, such as the ACC fronts, which can be useful in the context of ocean modelling.  相似文献   

14.
Current velocity and hydrographic profiles obtained for the first time in a Chilean glacial fjord were combined with under-way surface temperature and salinity measurements to describe the formation of tidal intrusion fronts and plume-like fronts. These fronts formed within several hundred meters from each other in the vicinity of a shallow sill, maximum depth of approximately 3 m, in a glacial fjord off the Strait of Magellan in the Chilean Patagonia. Measurements were obtained in mid-December of 2003 and 2004, during late austral spring, under active glacier melting and calving. The glacial fjord is approximately 18 km long from the face of the glacier to the connection with the Strait of Magellan and typically less than 1 km wide throughout the system. Between the glacier face and the 3-m sill, depths are typically less than 100 m, and seaward of the sill, depths increase to more than 200 m. Velocity and salinity data obtained during flood periods revealed that water with oceanic salinity was aspirated to near-surface levels from depths of approximately 30 m as flood flows accelerated from approximately 10 cm s−1, seaward of the sill, to approximately 60 cm s−1 at the sill crest. The upwelled water was then slightly diluted by mixing at the sill crest before plunging down to the basin between the glacier and the sill. The plunging of salty water over the sill created dramatic tidal intrusion fronts only a few tens of meters from the sill crest and pumping of salt with every flood period. During ebb periods, the low salinity waters derived from the glacier and a small river near the glacier converged at the sill crest. After some mixing, the buoyant waters were released within a thin layer (∼3 m deep) lead by a plume-like front that remained coherent for a few hundred meters seaward of the sill. The main findings of this study were that tidal intrusion and plume fronts were observed within 2 km from each other, and that tidal pumping was the predominant mechanism for salt fluxes into the system.  相似文献   

15.
An event based, long-term, climatological analysis is presented that allows the creation of coastal ocean atmospheric forcing on the coastal ocean that preserves both frequency of occurrence and event time history. An algorithm is developed that identifies individual storm event (cold fronts, warm fronts, and tropical storms) from meteorological records. The algorithm has been applied to a location along the South Atlantic Bight, off South Carolina, an area prone to cyclogenesis occurrence and passages of atmospheric fronts. Comparison against daily weather maps confirms that the algorithm is efficient in identifying cold fronts and warm fronts, while the identification of tropical storms is less successful. The average state of the storm events and their variability are represented by the temporal evolution of atmospheric pressure, air temperature, wind velocity, and wave directional spectral energy. The use of uncorrected algorithm-detected events provides climatologies that show a little deviation from those derived using corrected events. The effectiveness of this analysis method is further verified by numerically simulating the wave conditions driven by the characteristic wind forcing and comparing the results with the wave climatology that corresponds to each storm type. A high level of consistency found in the comparison indicates that this analysis method can be used for accurately characterizing event-based oceanic processes and long-term storm-induced morphodynamic processes on wind-dominated coasts.  相似文献   

16.
Cirque-wall exposures of cone-forming deposits of Pleistocene Broken Top volcano, Oregon Cascade Range, reveal that the volcano is composed of unconformity-bounded constructional units of coherent lava (lava-flow cores) and breccia. Coarse-grained autoclastic breccias are found above and below lava-flow cores and may extend downslope from coherent lava outcrops where they may or may not be associated with thin lava stringers. Mantle-bedded scoria-fall breccias are recognized by generally good sorting, mantle bedding, and presence of aerodynamically shaped bombs. These breccias vary considerably in thermal oxidation coloration (black, red, orange, purple). Many breccia layers are unsorted mixtures of scoria and lithic (nonvesicular) fragments that grade laterally to unambiguous autoclastic breccia or lava-flow cores. These layers are interpreted as hybrid pyroclastic–autoclastic deposits produced by incorporation of falling or fallen tephra into advancing lava-flow fronts. This latter breccia type is common at Broken Top and offers particular challenges for clast or deposit classification.Progressive thermal demagnetization results for selected examples of different breccia types show that most scoria-fall and autoclastic breccias are emplaced at elevated temperatures (averaging 100–300°C). Clasts within single deposits record different emplacement temperatures ranging, in some cases, from 100 to over 580°C indicating a lack of thermal equilibration within deposits. Magnetization directions for single breccia deposits are more dispersed than data typically reported for lava flows. Settling and rotation of clasts after cooling or incorporation of colder clasts that are not significantly reheated probably accounts for the relatively high dispersion and suggests that paleomagnetic studies demanding low within-site dispersion (e.g., for determining paleomagnetic poles or evaluating tectonic rotation) should avoid volcanic breccias.  相似文献   

17.
This paper presents a mechanism to explain the observed formation of a surface temperature minimum at tidal fronts in shelf seas. Tidal fronts mark the boundary between water which is kept vertically mixed by fast tidal currents and water which stratifies in summer. The fronts are associated with strong horizontal surface gradients of several water properties, including temperature. In the early studies of tidal fronts, a minimum in surface temperature was occasionally observed between the cool surface waters on the mixed side of the front and the warm surface waters on the stratified side. It was suggested that this was caused by upwelling of deep water at the front. In this paper we describe an alternative and simpler explanation based on the local balance of heating and stirring. The net heat flux into the sea in spring and early summer is greater on the mixed side of the front than on the stratified side. This happens because the heat loss mechanism is dependent on sea surface temperature and stratified waters, having a higher surface temperature, lose more heat. The stratified water near the front therefore has lower heat content (and lower depth-mean temperature) than the mixed water. If some of the stratified water becomes mixed, for example with increased tidal stirring at spring tides, a zone of minimum surface temperature will be formed at the front. A numerical model for the study of this mechanism shows that the temperature minimum at tidal fronts can be explained by the process described above. The minimum appears most clearly at spring tides, but can still be present in a weaker form at neap tides. A further prediction of the model is an increase of the horizontal temperature gradient at spring tides, which is in agreement with observations. An unexpected outcome of the modelling is the prediction of the formation of a marked sea surface temperature minimum, not yet observed, occurring in the autumn and located at the summer position of the tidal front.  相似文献   

18.
High-resolution models and realistic boundary conditions are necessary to reproduce the mesoscale dynamics of the Gulf of Mexico (GOM). In order to achieve this, we use a nested configuration of the Hybrid Coordinate Ocean Model (HYCOM), where the Atlantic TOPAZ system provides lateral boundary conditions to a high-resolution (5 km) model of the GOM . However, such models cannot provide accurate forecasts of mesoscale variability, such as eddy shedding event, without data assimilation. Eddy shedding events involve the rapid growth of nonlinear instabilities that are difficult to forecast. The known sources of error are the initial state, the atmospheric condition, and the lateral boundary condition. We present here the benefit of using a small ensemble forecast (10 members) for providing confidence indices for the prediction, while using a data assimilation scheme based on optimal interpolation. Our set of initial states is provided by using different values of a data assimilation parameter, while the atmospheric and lateral boundary conditions are perturbed randomly. Changes in the data assimilation parameter appear to control the main position of the large features of the GOM in the initial state, whereas changes in the boundary conditions (lateral and atmospheric) appears to control the propagation of cyclonic eddies at their boundary. The ensemble forecast is tested for the shedding of Eddy Yankee (2006). The Loop Current and eddy fronts observed from ocean color and altimetry are almost always within the estimated positions from the ensemble forecast. The ensemble spread is correlated both in space and time to the forecast error, which implies that confidence indices can be provided in addition to the forecast. Finally, the ensemble forecast permits the optimization of a data assimilation parameter for best performance at a given forecast horizon.  相似文献   

19.
Riassunto Si dimostra che i risultati ottenuti col microbarografo Macelwane, in occasione di parecchi passaggi del fronte freddo ad Ottawa ed a Florissant, concordano con quelli desunti dalle registrazioni raccolte col microbarografo Alfani durante il passaggio di analoghi fronti a Venezia.
Summary From the Macelwane-Microbarographs of cold fronts recorded in Ottawa and Florissant results have been obtained that are in well agreement with those found by the Author in Venice with an Alfani-Microbarograph at the passage of similar fronts.
  相似文献   

20.
A three-dimensional numerical model is used to simulate the development of disturbances on shelf-sea coastal currents and fronts. The model, which has a free surface, uses a finite difference grid ☐ scheme based on sigma coordinates. It has a semi-implicit scheme for the barotropic flow and a hydrid advection scheme to retain sharp fronts. The results demonstrate that (i) eddy formation follows changes at the inflow of a coastal current, (ii) a simple radiation boundary condition at the outflow produces nearly identical results for different outflow boundary positions, (iii) eddy growth, with matching behaviour of surface and bottom fronts, follows a small displacement on a tidal mixing front and (iv) effects of friction and mixing can significantly alter the behaviour of the front and the relative strength of the cyclonic and anticyclonic eddies formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号