首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study deals with the depositional environment of Jumara Dome sediments. The Jumara Dome is an important outcrop of Bathonian to Oxfordian sediments amongst the Kachchh Mainland exposures. On the basis of facies analysis three associations have been documented, namely, G-1 consisting of low energy facies comprising of cross-bedded sandstone, massive sandstone, grey shale and thin bedded sandstone, bioclastic — lithoclastic grainstone, bioclastic — lithoclastic packstone, microbioclastic packstone/wackestone, bioturbated laminated wackestone to mudstone and pelagic lime mudstone; G-II consisting of moderate energy facies comprising of laminated sandstone and grapestone or agglutinated grainstone; G-III consisting of high energy facies comprising of interbedded gypsiferous shale and sandstone/siltstone, oolitic grainstone to conglomerate and bioclastic grainstone. The facies associations reflect an ideal shallowing upward sequence representing slope, bioclast bar, lagoon and inner shelf. Presence of wide range of facies indicates that the rocks of the studied area were deposited during the fluctuating sea level, interrupted by the storms, in the shallow marine environment.  相似文献   

2.
近年来,在浙江省北部钱塘江河口湾地区发现并开发了大量的晚第四纪浅层生物气藏。末次盛冰期,全球海平面的下降使河流梯度增加,下切作用增强,导致钱塘江下切河谷的形成。下切河谷内的沉积序列从下到上可划分为4种沉积相类型,分别为河床相、河漫滩-河口湾相、河口湾-浅海相和河口湾砂坝相。 所有的商业浅气田和气藏都分布于太湖下切河谷和钱塘江下切河谷及其支谷的河漫滩-河口湾相砂体中。钱塘江下切河谷的河漫滩-河口湾砂体埋深30~80 m,厚3~7 m,被非渗透的黏土包围,可能代表了下切河谷内分布的潮流沙脊。快速堆积的河口湾-浅海相沉积物为生物气藏的形成提供了充足的源岩和良好的保存条件。 河漫滩-河口湾相的黏土层为研究区浅层生物气藏的直接盖层,主要分布在下切河谷内,其埋深、残留地层厚度和孔隙度范围分别为30~80 m、10~30 m和42.2%~62.6%。河口湾-浅海相的淤泥层为间接盖层,覆盖了整个下切河谷,其埋深、残留地层厚度和孔隙度范围分别为5~35 m、10~20 m和50.6% ~53.9%。黏土层和淤泥层的孔隙水压力远大于下伏砂体的孔隙水压力,其差值可达0.48 MPa。在储集层和盖层分界面即浅气藏的顶部,孔隙水压力值达到最大。黏土层和淤泥层的孔隙水压力可以超过砂质储集层中气体压力和孔隙水压力之和。黏土和淤泥盖层的高孔隙水压力可能是浅层生物气被完全封闭住的最重要因素。直接盖层的封闭能力比间接盖层要好。黏土层和淤泥层的孔隙水压力消散时间很长,有时候很难达到稳定状态,这表明黏土层和淤泥层的渗透性差、封闭性好。随着埋深的增加,其压实程度和封闭性能增加。与黏土层和淤泥层相比,砂层的孔隙水压力消散较快,很容易达到稳定状态,而且消散时间与埋深无关,表明砂层渗透性好、封闭性差。气体一旦进入砂层,孔隙水就不能有效释放,导致砂层的孔隙水压力消散时间比黏土层和淤泥层的要长,这可能与生物气在孔隙水压力释放后的快速补充有关。  相似文献   

3.
Sedimentary rocks of the Solomon Islands-Bougainville Arc are described in terms of nine widespread facies. Four facies associations are recognised by grouping facies which developed in broadly similar sedimentary environments.A marine pelagic association of Early Cretaceous to Miocene rocks comprises three facies. Facies Al: Early Cretaceous siliceous mudstone, found only on Malaita, is interpreted as deep marine siliceous ooze. Facies A2: Early Cretaceous to Eocene limestone with chert, overlies the siliceous mudstone facies, and is widespread in the central and eastern Solomons. It represents lithified calcareous ooze. Facies A3: Oligocene to Miocene calcisiltite with thin tuffaceous beds, overlies Facies A2 in most areas, and also occurs in the western Solomons. This represents similar, but less lithified calcareous ooze, and the deposits of periodic andesitic volcanism.An open marine detrital association of Oligocene to Recent age occurs throughout the Solomons. This comprises two facies. Facies B1 is variably calcareous siltstone, of hemipelagic origin; and Facies B2 consists of volcanogenic clastic deposits, laid down from submarine mass flows.A third association, of shallow marine carbonates, ranges in age from Late Oligocene to Recent. Facies C1 is biohermal limestone, and Facies C2 is biostromal calcarenite.The fourth association comprises areally restricted Pliocene to Recent paralic detrital deposits. Facies D1 includes nearshore clastic sediments, and Facies D2 comprises alluvial sands and gravels.Pre-Oligocene pelagic sediments were deposited contemporaneously with, and subsequent to, the extrusion of oceanic tholeiite. Island arc volcanism commenced along the length of the Solomons during the Oligocene, and greatly influenced sedimentation. Thick volcaniclastic sequences were deposited from submarine mass flows, and shallow marine carbonates accumulated locally. Fine grained graded tuffaceous beds within the marine pelagic association are interpreted as products of this volcanism, suggesting that the Santa Isabel-Malaita-Ulawa area, where these beds are prevalent, was relatively close to the main Solomons chain at this time. A subduction zone may have dipped towards the northeast beneath this volcanic chain. Pliocene to Pleistocene calcalkaline volcanism and tectonism resulted in the emergence of all large islands and led to deposition of clastic and carbonate facies in paralic, shallow and deep marine environments.  相似文献   

4.
The Sylhet trough located on the north-eastern margin of present Bengal basin, contains ~22 km of Tertiary sediments and well known as a hydrocarbon producing province. A detailed facies characterization of the subsurface Miocene Surma Group sediments (especial emphasis on reservoirs sandstones) from Jalalabad gas field within the Sylhet trough has been done using core log analysis and wireline log (gamma ray) interpretation. Texture and sedimentary structures of the cores suggests that the nine individual lithofacies types which can be grouped together into three facies associations, namely, fine-grained facies associations (FFA), medium-grained facies association (MFA) and coarse-grained facies associations (CFA). Major changes in gamma ray log motifs and various bounding discontinuities indicate six para-sequence sets (basin wide) and twenty eight para-sequences (local environmental changes) within the depth range from 2200-2800 m. Detailed facies analysis of the cores and wireline log reveals that the interbedding facies within the associations in the Surma Group commonly develop small-scale fining-upward (FU) cycles, coarsening-upward (CU) and random intercalations (RD). The sediments of the Surma Group of the Jalalabad field have been interpreted as deposits of the shallow marine to tide-dominated deltaic depositional setting. The cyclic nature of sedimentation pattern of the Surma Group probably records an almost continuous existence of this prograding deltaic regime and a tectonic setting characterized by a mixture of prolonged basin subsidence and regional transgression coupled with sporadic regressive phases.  相似文献   

5.
The Ilchulbong tuff cone, Cheju Island, South Korea   总被引:3,自引:0,他引:3  
The Ilchulbong mount of Cheju Island, South Korea, is an emergent tuff cone of middle Pleistocene age formed by eruption of a vesiculating basaltic magma into shallow seawater. A sedimentological study reveals that the cone sequence can be represented by nine sedimentary facies that are grouped into four facies associations. Facies association I represents steep strata near the crater rim composed mostly of crudely and evenly bedded lapilli tuff and minor inversely graded lapilli tuff. These facies suggest fall-out from tephra finger jets and occasional grain flows, respectively. Facies association II represents flank or base-of-slope deposits composed of lenticular and hummocky beds of massive or backset-stacked deposits intercalated between crudely to thinly stratified lapilli tuffs. They suggest occasional resedimentation of tephra by debris flows and slides during the eruption. Facies association III comprises thin, gently dipping marginal strata, composed of thinly stratified lapilli tuff and tuff. This association results from pyroclastic surges and cosurge falls associated with occasional large-scale jets. Facies association IV comprises a reworked sequence of massive, inversely graded and cross-bedded (gravelly) sandstones. These facies represent post-eruptive reworking of tephra by debris and stream flows. The facies associations suggest that the Ilchulbong tuff cone grew by an alternation of vertical and lateral accumulation. The vertical buildup was accomplished by plastering of wet tephra finger jets. This resulted in oversteepening and periodic failure of the deposits, in which resedimentation contributed to the lateral growth. After the eruption ceased, the cone underwent subaerial erosion and faulting of intracrater deposits. A volcaniclastic apron accumulated with erosion of the original tuff cone; the faulting was caused by subsidence of the subvolcanic basement within the crater.  相似文献   

6.
This paper describes 11 microfacies types in late Bathonian–Early Callovian carbonates of the Kuldhar Member of the Jaisalmer Formation (Rajasthan) and the Keera Golden Oolite Member of the Chari Formation (Kachchh Mainland) western India. The different microfacies associations reported in this study reflect an ideal shallowing upward sequence, representing a system of bioclastic bars developed on the lower ramp, evolving into an oolitic bar-to-bank system separating restricted lagoonal—from lower ramp environment. Four main types of cements, i.e. bladed, fibrous, syntaxial overgrowth and blocky cement (characterized in a few cases by ferroan calcite and anhydrite II) occur in these carbonates. The study also reveals that chemical compaction followed the two phases of early mechanical compaction that largely governed porosity of these limestones. However, micritization and neomorphism also contributed significantly in this respect. Diagenetic signatures in these carbonates suggest that marine phreatic and fresh water phreatic environments dominated, but deep burial diagenesis also played its role in shaping these rocks. The early and late diagenetic changes have been controlled by the depositional facies evolving in a basin riddled with rifting in an extensional tectonic regime forcing regional-scale sea level fluctuations.  相似文献   

7.
The 600 m thick prograding sedimentary succession of Wagad ranging in age from Callovian to Early Kimmeridgian has been divided into three formations namely, Washtawa, Kanthkot and Gamdau. Present study is confined to younger part of the Washtawa Formation and early part of the Kanthkot Formation exposed around Kanthkot, Washtawa, Chitrod and Rapar. The depositional architecture and sedimentation processes of these deposits have been studied applying sequence stratigraphic context. Facies studies have led to identification of five upward stacking facies associations (A, B, C, D, and E) which reflect that deposition was controlled by one single transgressive — regressive cycle. The transgressive deposit is characterized by fining and thinning upward succession of facies consisting of two facies associations: (1) Association A: medium — to coarse-grained calcareous sandstone — mudrocks alternations (2) Association B: fine-grained calcareous sandstone — mudrocks alternations. The top of this association marks maximum flooding surface as identified by bioturbational fabrics and abundance of deep marine fauna (ammonites). Association A is interpreted as high energy transgressive deposit deposited during relative sea level rise. Whereas, facies association B indicates its deposition in low energy marine environment deposited during stand-still period with low supply of sediments. Regressive sedimentary package has been divided into three facies associations consisting of: (1) Association C: gypsiferous mudstone-siltstone/fine sandstone (2) Association D: laminated, medium-grained sandstone — siltstone (3) Association E: well laminated (coarse and fine mode) sandstone interbedded with coarse grained sandstone with trough cross stratification. Regressive succession of facies association C, D and E is interpreted as wave dominated shoreface, foreshore to backshore and dune environment respectively. Sequence stratigraphic concepts have been applied to subdivide these deposits into two genetic sequences: (i) the lower carbonate dominated (25 m) transgressive deposits (TST) include facies association A and B and the upper thick (75m) regressive deposits (HST) include facies association C, D and E. The two sequences are separated by maximum flooding surface (MFS) identified by sudden shift in facies association from B to C. The transgressive facies association A and B represent the sediments deposited during the syn-rift climax followed by regressive sediments comprising association C, D and E deposited during late syn-rift stage.  相似文献   

8.
The Bayana Basin forms the eastern most limit of north Delhi fold belt covering parts of northeastern Rajasthan. The deposition of sediments took place during middle Proterozoic in fluvial and shallow marine environments. The rocks are mainly clastics and include conglomerate, sandstone and shale. During mechanical compaction rearrangement of grains took place and point and long contacts were formed. The sandstones are cemented by iron oxide, silica, carbonate and barite. The porosity has developed due to dissolution of iron, carbonate cement and feldspar grains. Dissolution of quartz along grain boundaries and silica rich compaction pore water seems to be the main source of silica. These observations suggest progressive compaction which initiated at the sediment water interface and continued till deep burial diagenesis in a rapidly subsiding basin.  相似文献   

9.
The Dupi Tila Formation is composed of yellow to light brown medium to very fine moderately hard to loose sandstone, siltstone, silty clay, mudstone and shale with some conglomerates with clasts of petrified wood. The lithofacies of matrix supported conglomerate, trough cross bedded conglomerate, massive sandstone, trough cross bedded sandstone, planar cross bedded sandstone, ripple cross laminated sandstone-siltstone, flaser laminated sandstone-shale, lenticular laminated sandstone-siltstone-shale, parallel laminated sandstone-siltstone, wavy laminated shale, parallel laminated blue shale, and mudstone are delineated within this formation. Based on the grain size, sedimentary structures, water depth and genesis of individual facies, facies are grouped into three types of facies associations like (i) coarse-grained conglomerate facies association in relation to tractive current deposits of alluvial fan set up at the base of litho-succession (FAC), (ii) medium to fine-grained sandstone-siltstone-mudstone facies association or facies association in relation to strong tide (FAT) characterizing the middle part of litho-succession, (iii) very fine-grained sandstone-siltstone-mudstone facies association in relation to less frequent weak tide or heterolithic facies association (FAHL) characterizing upper part of litho-succession and shallow marine facies association (FASM) composing the uppermost litho-succession. Presence of gluconite indicates that the depositional environment was shallow to deep marine. The dominant paleoflow direction during the deposition of Dupi Tila Formation was toward southeast to southwestern direction. The rivers were of braided type at the piedmont alluvial depositional set up at the lower part, which later changed to estuarine-tidal flat type environmental set up in the middle part to upper part and paleo-environment was shallow marine in the uppermost part.  相似文献   

10.
Cool-water skeletal carbonate sediments are forming in Spencer Gulf, South Australia, an area of high salinity and moderate tidal range. Four environments can be distinguished: deeper marine areas (10–20 m); shallow subtidal platforms and banks (2–10 m); intertidal and supratidal zones; and coastal springs and lakes fed by saline continental groundwaters. The sediments are predominately bioclastic carbonate sands; muddy sediments occur in protected intertidal environments. The most common grain types are gastropods, bivalves, foraminifera, coralline algae and quartz. Indurated non-skeletal carbonate grains have not been seen. Composition of the sediment varies little between environments, but considerable textural variation results from variation in the stability of the substrate, hydrodynamic conditions, depth of water, period of tidal inundation, supply of terrigenous grains, temperature, and salinity. The Spencer Gulf data suggests that temperature, and particularly minimum temperature, controls the distribution of skeletal and non-skeletal grain associations in high-salinity environments. The textures of the sedimentary facies of Spencer Gulf closely parallel those of equivalent environments in warm-water carbonate provinces.  相似文献   

11.
ABSTRACT The Wagwater Trough is a fault-bounded basin which cuts across east-central Jamaica. The basin formed during the late Palaeocene or early Eocene and the earliest sediments deposited in the trough were the Wagwater and Richmond formations of the Wagwater Group. These formations are composed of up to 7000 m of conglomerates, sandstones, and shales. Six facies have been recognized in the Wagwater Group: Facies I-unfossiliferous massive conglomerates; Facies II—channelized, non-marine conglomerates, sandstones, and shales; Facies III-interbedded, fossiliferous conglomerates and sandstones; Facies IV—fossiliferous muddy conglomerates; Facies V—channelized, marine conglomerates, sandstones, and shales; and Facies VI—thin-bedded sheet sandstones and shales. The Wagwater and Richmond formations are interpreted as fan delta-submarine fan deposits. Facies associations suggest that humid-region fan deltas prograded into the basin from the adjacent highlands and discharged very coarse sediments on to a steep submarine slope. At the coast waves reworked the braided-fluvial deposits of the subaerial fan delta into coarse sand and gravel beaches. Sediments deposited on the delta-front slope were frequently remobilized and moved downslope as slumps, debris flows, and turbidity currents. At the slope-basin break submarine fans were deposited. The submarine fans are characterized by coarse inner and mid-fan deposits which grade laterally into thin bedded turbidites of the outer fan and basin floor.  相似文献   

12.
The discovery of whale fossils from Eocene strata in the Fayum Depression has provoked interest in the life and lifestyle of early whales. Excellent outcrop exposure also affords the dataset to develop sedimentological and stratigraphic models within the Eocene strata. Previous work generally asserts that the thick, sand‐rich deposits of the Fayum Depression represent shoreface and barrier island successions with fine‐grained lagoonal and fluvial associations capping progradational successions. However, a complete absence of wave‐generated sedimentary structures, a preponderance of thoroughly bioturbated strata and increasingly proximal sedimentary successions upwards are contrary to accepted models of the local sedimentological and stratigraphic development. This study considers data collected from two Middle to Upper Eocene successions exposed in outcrop in the Wadi El‐Hitan and Qasr El‐Sagha areas of the Fayum Depression to determine the depositional affinities of Fayum strata. Based on sedimentological and ichnological data, five facies associations (Facies Association 1 to Facies Association 5) are identified. The biological and sedimentological characteristics of the reported facies associations indicate that the whale‐bearing sandstones (Facies Association 1) record distal positions in a large, open, quiescent marine bay that is abruptly succeeded by a bay‐margin environment (Facies Association 2). Upwards, marginal‐marine lagoonal and shallow‐bay parasequences (Facies Association 3) are overlain by thick deltaic distributary channel deposits (Facies Association 4). The capping unit (Facies Association 5) represents a transgressive estuarine depositional environment. The general stratigraphic evolution resulted from a regional, tectonically controlled second‐order cycle, associated with northward regression of the Tethys. Subordinate cycles (i.e. third‐order and fourth‐order cycles) are evidenced by several Glossifungites‐ichnofacies demarcated discontinuities, which were emplaced at the base of flooding surfaces. The proposed depositional models recognize the importance of identifying and linking ichnological data with physical–sedimentological observations. As such – with the exception of wave‐generated ravinement surfaces – earlier assertions of wave‐dominated sedimentation can be discarded. Moreover, this study provides important data for the recognition of (rarely reported) completely bioturbated sand‐dominated offshore to nearshore sediments (Facies Association 1) and affords excellent characterization of bioturbated inclined heterolithic stratification of deltaic deposits. Another outcome of the study is the recognition that the whales of the Fayum Depression are restricted to the highstand systems tracts, and lived under conditions of low depositional energy, low to moderate sedimentation rates, and (not surprisingly) in fully marine waters characterized by a high biomass.  相似文献   

13.
塔里木盆地柯坪地区奥陶系鹰山组台内滩沉积特征   总被引:2,自引:0,他引:2  
周明  罗平  董琳  周川闽  杨宗玉  刘策 《沉积学报》2016,34(5):951-962
通过对柯坪地区蓬莱坝剖面奥陶系鹰山组的野外实测可以将其划分为下、中、上三段,每段都具有不同的相序结构和沉积特征,下段主要以含陆源泥质的泥晶粗砂屑灰岩为主,中段为亮晶粉-细砂屑灰岩和层纹石灰岩互层出现,上段主要为中-厚层状似球粒泥晶灰岩,台内颗粒滩主要发育在中、下两段;柯坪水泥厂剖面也可以划分为三段,但界限没有蓬莱坝剖面明显,主体表现为中层状的亮晶砂屑灰岩和泥晶砂屑灰岩交互出现。通过对蓬莱坝剖面和柯坪水泥厂剖面的岩石进行野外露头、偏光显微镜、扫描电镜等不同尺度的观测及沉积微相分析,理清了柯坪地区鹰山组的岩石类型和相序结构,建立了柯坪地区颗粒滩沉积模式:由于水体深度和能量的差异,柯坪地区发育了四种相带类型--高能颗粒滩相带、滩间洼地沉积相带、低能颗粒滩相带、开阔浅海沉积相带。中-低能颗粒滩相带主要发育泥晶中-粗砂屑颗粒滩,高能颗粒滩相带主要发育亮晶细-中砂屑颗粒滩,并且两种颗粒滩都可以划分出3种亚相--滩主体、滩翼和滩内洼地;在微生物主导的碳酸盐建造向后生动物主导的碳酸盐岩建造转换的地质背景下,柯坪地区在奥陶系鹰山组沉积时期总体处于大面积发育微生物似球粒的浅水环境,沉积物的形成与改造受微生物活动的影响,微生物作用一方面为颗粒滩的发育提供了良好的物质基础,另一方面也控制了该时期颗粒滩的沉积特征。  相似文献   

14.
The Wilde Kirche reef complex (Early-Late Rhaetian) grew as an isolated carbonate structure within the shallow Kössen Basin. At the Triassic/Jurassic boundary a single brief (c. 10–50 ka) period of subaerial exposure occurred. The preserved karst profile (70 m thick) displays a vadose zone, enhanced dissolution at a possible palaeo-watertable (5–15 m below the exposure surface), and a freshwater phreatic zone. Karst porosity was predominantly biomouldic. Primary cavities and biomoulds were enlarged and interconnected in the freshwater phreatic zone; cavity networks developed preferentially in patch reef facies. Resubmergence of the reef complex allowed minor modification of the palaeokarst surface by sea floor dissolution and Fe-Mn crust deposition on a sediment-starved passive margin. Fibrous calcite (FC). radiaxial fibrous calcite (RFC) and fascicular optic calcite (FOC) cements preserved as low Mg calcite (LMC) are abundant in primary and karst dissolution cavities. FC cement is restricted to primary porosity, particularly as a synsedimentary cement at the windward reef margin. FC, RFC and FOC contain microdolomite inclusions and show patchy non-/bright cathodoluminescence. δ18O values of non-luminescent portions (interpreted as near original) are − 1.16 to − 1.82%0 (close to the inferred δ18O of calcite precipitated from Late Triassic sea water). δ13C values are constant (+3 to + 2.2%0). These observations suggest FC, RFC and FOC were originally marine high Mg calcite (HMC) precipitates, and that the bulk of porosity occlusion occurred not in the karst environment but in the marine environment during and after marine transgression. The HMC to LMC transition may have occurred in contact with meteoric water only in the case of FC cement. The most altered (brightly luminescent) portions of RFC/FOC cements yield δ18O=−2.44 to − 5.8%0, suggesting HMC to LMC alteration at up to 34°C. in the shallow burial environment at depths of 180–250 m. Abundant equant cements with δ18O =−4·1 to −7.1%0 show crisp, uniform or zoned dull luminescence. They are interpreted as unaltered cements precipitated at 33–36°C at 200–290 m burial depth, from marine-derived fluids under a slightly enhanced geothermal gradient. Fluids carrying the equant cements may have induced the HMC to LMC transition in the fibrous cements.  相似文献   

15.
The Cretaceous Uhangri Formation, SW Korea: lacustrine margin facies   总被引:1,自引:0,他引:1  
The Uhangri Formation forms part of the Cretaceous sedimentary sequence deposited in a series of inland basins in the south-western Korean Peninsula. It comprises an approximately 400-m-thick epiclastic sequence of conglomerate, (gravelly) sandstone, cherty mudstone and black shale. The entire sequence can be represented by 16 distinctive sedimentary facies organized into four facies associations. Facies association I is characterized by thick homogeneous brownish siltstone, wedge-shaped disorganized conglomerate and thinly interlayered gravelly sandstone units. The siltstone units were formed by large floods submerging the alluvial fan fringe (floodplain), whereas the conglomerate and gravelly sandstone units were deposited by sheetfloods and debris flows. Facies association II consists of stratified conglomerate — gravelly sandstone, laminated sandstone and sandstone/siltstone couplets which form fining-upward cycles. Some facies units are low-angle trough cross-bedded and show broad channel geometries. This association represents subaqueous delta lobes fed by high- and low-concentration turbidity currents in the distal delta realm. Facies association III is characterized, by wedged conglomerate and gravelly sandstone facies with interfingered massive sandstone bounded by scoured bases. It represents a delta front where distributary channels and mouth bars are dominant. Facies association IV consists of laterally continuous sequence of laminated black shale, crudely stratified sandstone and convoluted sandstone/cherty mudstone. This facies association is suggestive of depositional processes controlled by chemical equilibrium resulting from an interaction between density inflows and lake water. The cherty mudstone resulted from inorganic precipitation from siliceous solution provided by acidic volcanism. The Uhangri sequence generally shows a fining-upward trend with a transition from alluvial fan fringe, coarse-grained subaqueous delta, to shallow lake. The retrogradation was probably due to continuous subsidence related to continental rifting in the oblique-slip mobile zone.  相似文献   

16.
Geological structures influence the formation and evolution of sedimentary rocks. The Minas do Camaquã fault zone is a primary structure of the Camaquã Basin, controlling the uplift of the ore-bearing units of the Santa Bárbara Group. To the south of the Camaquã River, the fault zone deforms alluvial and eolian sequences attributed either to the Santa Bárbara or Guaritas groups. In this study, a facies and petrographic composition and diagenetic analysis are presented to understand the evolution of the fault zone. Facies analysis was accomplished using high-resolution orthophoto mosaics and field surveys. Seven sedimentary facies were defined, grouped into three facies associations. Facies associations correspond to a succession of climate-influenced depositional environments. The transition from humid to dry conditions occurs from a fluvial (facies association 1) to eolian environments (facies association 2). These deposits are overlaid at the top by a high energy environment deposits characterized by amalgamated gravelly and sandy bodies, corresponding to an alluvial environment (facies association 3). Despite a small compositional variation, sandstones present a continental block provenance which may be related to mixed anorogenic or orogenic provenance. Diagenetic features are similar in the three facies associations, suggesting the same burial history for the sedimentary deposits separated by the fault zone. The Minas do Camaquã fault zone in the study area is an intraformational structure, as analyzed sequences are attributed to the Guaritas Group, implying a relatively high degree of deformation late after its deposition.  相似文献   

17.
The influence of palaeodrainage characteristics, palaeogeography and tectonic setting are rarely considered as controls on stratigraphic organization in palaeovalley or incised valley systems. This study is an examination of the influence of source region vs. downstream base level controls on the sedimentary architecture of a set of bedrock-confined palaeovalleys developed along the distal margin of the Alpine foreland basin in south-eastern France. Three distinct facies associations are observed within the palaeovalley fills. Fluvial facies association A is mainly dominated by poorly sorted, highly disorganized, clast-to-matrix-supported cobble-to-boulder conglomerates that are interpreted as streamflood deposits. Facies association B comprises mainly yellow siltstones and is interpreted as recording deposition in an estuarine basin environment. Estuarine marine facies association C comprises interstratified estuarine siltstones and clean, well-sorted washover sandstones. The sedimentary characteristics of the valley fill successions are related to the proximity of depositional sites to sediment source areas. Palaeovalleys located proximal to structurally controlled basement palaeohighs are entirely dominated by coarse fluvial streamflood deposits. In contrast, distal palaeovalley segments, which are located several kilometres downstream, contain successions showing upward transition from coarse fluvial facies into estuarine central basin fines, and finally into estuarine-marginal marine facies. Facies distributions suggest that the fluvial deposits form wedge-shaped, downstream-thinning sediment bodies, whereas the estuarine deposits form an upstream-thinning wedge. The vertical stacking of fluvial to estuarine to marginal marine depositional environments records the fluvial aggradation and subsequent transgression of relatively small bedrock-confined river valleys, which drained a rugged, upland terrain. Facies geometries suggest that a fluvial sediment wedge initially prograded downvalley, in response to high bed load sediment yields. Subsequently, palaeovalleys became drowned during the passage of a marine transgression, with the establishment of estuarine conditions. Initial fluvial aggradation and subsequent marine flooding of the palaeovalleys is a consequence of the interaction of high local rates of sediment supply and relative sea-level rise driven by flexural subsidence of the basin.  相似文献   

18.
The Maastrichtian Pab Formation in the southern part of Pakistan is composed of fine- to very coarse-grained texturally mature quartz arenite and subordinate sublitharenite varieties. The sandstones have undergone intense and complex diagenetic episodes due to burial and uplift. Diagenetic modifications were dependent mainly on the clastic composition of sandstone, burial depth and thrust tectonics. Diagenetic events identified include compaction, precipitation of calcite, quartz, clay minerals and iron oxide/hydroxide, dissolution and alteration of unstable clastic grains as feldspar and volcaniclithic fragments as well as tectonically induced grain fracturing. The unstable clastic grains like feldspar and lithic volcanic fragments suffered considerable alteration to kaolinite and chlorite. Dissolution and alteration of feldspar and volcanic lithic fragments and pressure solution were the main sources of quartz cements. Mechanical compaction and authigenic cements like calcite, quartz and iron oxide/hydroxide reduced the primary porosity, whereas dissolution of clastic grains and cements has produced secondary porosity. Chlorite coatings on clastic grains have prevented quartz cementation. Coarse-grained, thick bedded packages of fluviodeltaic, shelf delta lobe and submarine channels facies have higher average porosity than fine-grained, thin bedded and bioturbated sandstone of deeper shelf and abyssal plain environments and these facies are concluded to be possible future hydrocarbon prospects.  相似文献   

19.
N. L. BANKS 《Sedimentology》1973,20(2):213-228
The Duolbasgaissa Formation, Lower Cambrian, of northern Norway consists of 550 m of mineralogically and texturally mature sandstones with subordinate siltstones, mudstones and conglomerates. Four facies are defined on the basis of grain size, bed thickness and sedimentary structures. Facies 1–3 consist of a variety of erosively-based, cross-stratified and parallel-stratified sandstones interbedded with siltstone and mudstone. Many of these sandstones show evidence of deposition from waning currents. Facies 4 consists of trough cross-bedded sandstones with sets up to 4 m thick. Symmetrical ripples and bioturbation are ubiquitous. Bipolar palaeocurrent distributions are common to all facies and one mode is usually strongly dominant. Lateral facies variations and sedimentary structures suggest that deposition took place in a tide-dominated, offshore, shallow marine environment in which maximum sediment transport probably occurred when storm generated waves enhanced tidal currents. The four facies are thought to represent the deposits of various parts of tidal sediment transport paths such as exist in modern seas around Great Britain. Small scale coarsening upward sequences may represent the superposition of facies independently of changing water depth. Lack of information prevents a detailed palaeogeographic reconstruction. It is suggested that sand body shape is not accurately predictable.  相似文献   

20.
Four major sedimentary facies are present in coarse-grained, ice-marginal deposits from central East Jylland, Denmark. Facies A and B are matrix-supported gravels deposited by subaerial sediment gravity flows as mudflows (facies A) and debris flows (facies B). Facies C consists of clast-supported, water-laid gravels and facies D are cross-bedded sand and granules. The facies can be grouped into three facies associations related to the supraglacial and proglacial environments: (1) the flow-till association is made up of alternating beds of remobilized glacial mixton (facies A) and well-sorted cross-bedded sand (facies D); (2) the outwash apron association resembles the sediments of alluvial fans in containing coarse-grained debris-flow deposits (facies B), water-laid gravel deposited by sheet floods (facies C) and cross-bedded sand and granules (facies D) from braided distributaries; (3) the valley sandur association comprises water-laid gravel (facies C) interpreted as sheet bars and longitudinal bars interbedded with cross-bedded sand and granules (facies D) deposited in channels between bars in a braided environment.The general coarsening-upward trend of the sedimentary sequences caused by the transition of bars and channel-dominated facies to debris-flow-dominated facies indicate an increasing proximality of the outwash deposits, picturing the advance and still stand of a large continental lowland ice-sheet. The depositional properties suggest that sedimentation was caused by melting along a relatively steep, active glacier margin as a first step towards the final vanishing of the Late Weichselian icesheet (the East Jylland ice) covering eastern Denmark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号