首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The feedback induced by mesoscale wind stress-SST coupling to the ocean in the western coast of South America was studied using the Regional Ocean Modeling System(ROMS). To represent the feedback, an empirical mesoscale wind stress perturbation model was constructed from satellite observations, and was incorporated into the ocean model. Comparing two experiments with and without the mesoscale wind stress-SST coupling, it was found that SST in the mesoscale coupling experiment was reduced in the western coast of South America, with the maximum values of 0.5 ℃ in the Peru Sea and 0.7 ℃ in the Chile Sea. A mixed layer heat budget analysis indicates that horizontal advection is the main term that explains the reduction in SST. Specifically, the feedback induced by mesoscale wind stress-SST coupling to the ocean can enhance vertical velocity in the nearshore area through the Ekman pumping, which brings subsurface cold water to the sea surface. These results indicate that the feedback due to the mesoscale wind stress-SST coupling to the ocean has the potential for reducing the warm SST bias often seen in the large-scale climate model simulations in this region.  相似文献   

2.
Using a 19-year altimetric dataset, the mean properties and spatiotemporal variations of eddies in the Kuroshio recirculation region are examined. A total of 2 001 cyclonic tracks and 1 847 anticyclonic tracks were identifi ed using a geometry-based eddy detection method. The mean radius was 57 km for cyclonic eddies and was 61 km for anticyclonic eddies, respectively, and the mean lifetime was about 10 weeks for both type eddies. There were asymmetric spatial distributions for eddy generation and eddy termination, which were domain-dependent. Mean eddy generation rates were 2.0 per week for cyclonic eddies and were 1.9 per week for anticyclonic eddies. Both type eddies tended to deform during their lifetime and had different propagation characteristics, which mainly propagated westward and southwestward with velocities 4.0–9.9 cm/s, in the Kuroshio recirculation region. Further discussion illustrates that the eddy westward speed maybe infl uenced by the combined effect of vertical shear of horizontal currents and nonlinearity of eddy. To better understand the evolution of eddy tracks, a total of 134 long-lived tracks(lifetime ≥20 weeks) were examined. Comparison between short-span eddies(lifetime ≥4 weeks and 20 weeks) and long-lived eddies is also conducted and the result shows that the short-span and long-lived eddies have similar time evolution. Finally, eddy seasonal variations and interannual changes are discussed. Correlation analysis shows that eddy activity is sensitive to the wind stress curl and meridional gradient of sea surface temperature on interannual timescales. Besides, the strength and orientation of background fl ows also have impacts on the eddy genesis.  相似文献   

3.
Based on the GDEM hydrographic data with a resolution of 0.5°×0.5°, the current system (Kuroshio south of Japan and Kuroshio Extension east of Japan) is determined by using the P-Vector Method, and its seasonal variability is investigated. The Kuroshio Meander south of Japan, the two lee-wave meanders in the Kuroshio Extension and the bifurcation of the Kuroshio Extension are properly presented. The path of the Kuroshio Meander, the position of the second (east) meander in the Kuroshio Extension and the bifurcation of the Kuroshio Extension display evident seasonal variation.  相似文献   

4.
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy field and mean flow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean flow to the eddy field in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy field and mean flow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they flank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean flow to the eddy field.  相似文献   

5.
Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio (ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front (ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting (WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer (MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.  相似文献   

6.
Effect of meridional wind on gap-leaping western boundary current   总被引:1,自引:0,他引:1  
Using a 1.5-layer reduced-gravity nonlinear shallow-water equation model, we studied the effect of the meridional wind on the western boundary currents (WBC) at critical states with hysteresis courses. The results of the simulation indicate that the WBC is prone to penetrating into the gap under northerly winds, and its path is more difficult to alter due to the larger interval between the two critical transition curves (C 1 P and C 1 L). For southerly winds, the WBC is prone to leaping across the gap, and its path is easier to alter due to the smaller interval between the two critical transition curves. The simulation results also indicate that the meridional winds over the southern region of the gap are the dominant factor determining the formation of the WBC. The dynamic mechanism influencing the transport of WBC near the gap is both Ekman transport and the blocking of Ekman transport. Ekman transport induced by northerly winds may reduce the transport of the WBC, causing the β-effect to dominate the meridional advection (promoting the penetration). Southerly winds, however, may enhance the transport of the WBC, causing the meridional advection to dominate the β-effect (promoting the leaping state). These results explain some structural features of the Kuroshio at the Luzon Strait.  相似文献   

7.
Effect of meridional wind on gap-leaping western boundary current   总被引:1,自引:1,他引:1  
Using a 1.5-layer reduced-gravity nonlinear shallow-water equation model, we studied the effect of the meridional wind on the western boundary currents (WBC) at critical states with hysteresis courses. The results of the simulation indicate that the WBC is prone to penetrating into the gap under northerly winds, and its path is more difficult to alter due to the larger interval between the two critical transition curves (C1P and C1L). For southerly winds, the WBC is prone to leaping across the gap, and its path is easier to alter due to the smaller interval between the two critical transition curves. The simulation results also indicate that the meridional winds over the southern region of the gap are the dominant factor determining the formation of the WBC. The dynamic mechanism influencing the transport of WBC near the gap is both Ekman transport and the blocking of Ekman transport. Ekman transport induced by northerly winds may reduce the transport of the WBC, causing the β-effect to dominate the meridional advection (promoting the penetration). Southerly winds, however, may enhance the transport of the WBC, causing the meridional advection to dominate the β-effect (promoting the leaping state). These results explain some structural features of the Kuroshio at the Luzon Strait.  相似文献   

8.
Aerosol samples were collected with a Sierrer Model 235 cascade impactor in the marine atmosphere over the Kuroshio area in consecutive four seasons from 1987 to 1988. Na, Cl, Al, V, and water soluble and acid soluble Mn, Fe, Pb, Cu, V, Cd were determined by neutron activation analysis and atomic absorption spectrophotometry, respectively. Seawater source chemical species in the aerosols appeared in high content in large over 3.6 μm diameter particles, and crustal source vanadium appeared in 3.6 μm diameter particles, but pollution source vanadium appeared in less than 0.52 μm diameter particles. Trace metals in the aerosols mostly had the highest concentration of water soluble metals on fine particles, and acid soluble metals on large particles. The concentrations of trace metals in the aerosols were higher in autumn and winter, lower in spring and summer. Funds from the National Natural Science Foundation of China.  相似文献   

9.
The co-variation of surface wind speed and sea surface temperature(SST)over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data.Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer(MABL)height front,with active warm and cold-ocean eddies around.The MABL has an obvious transitional structure along the strong SST front,with greater(lesser)heights over the north(south)side.The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies.The surface wind speed increases(decreases)about 0.32(0.41)m/s and the MABL elevates(drops)approximate 55(54)m per 1℃ of SST perturbation induced by warm(cold)eddies.The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL,which is confirmed by the linear relationships between the downwind(cro sswind)SST gradient and wind divergence(curl).  相似文献   

10.
Cui  Chaoran  Zhang  Rong-Hua  Wang  Hongna  Wei  Yanzhou 《中国海洋湖沼学报》2020,38(3):679-694
Journal of Oceanology and Limnology - Interaction between mesoscale perturbations of sea surface temperature (SSTmeso) and wind stress (WSmeso) has great influences on the ocean upwelling system...  相似文献   

11.
For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.  相似文献   

12.
SST variations of the Kuroshio from AVHRR observation   总被引:1,自引:0,他引:1  
1 INTRODUCTION The Kuroshio Current (KC), being the western boundary current in the North Pacific subtropical gyre, is the second strongest current in the world af- ter the Gulf Stream and is famous as a strong and fast flow. KC plays an important role in…  相似文献   

13.
Impact of Kuroshio on the dissolved oxygen in the East China Sea region   总被引:1,自引:0,他引:1  
A marine survey was conducted from 18 May to 13 June 2014 in the East China Sea(ECS)and its adjacent Kuroshio Current to examine the spatial distribution and biogeochemical characteristics of dissolved oxygen(DO) in spring. Waters were sampled at 10-25 m intervals within 100 m depth, and at 25-500 m beyond 100 m. The depth, temperature, salinity, and density(sigma-t) were measured in situ with a conductivity-temperature-depth(CTD) sensor. DO concentrations were determined on board using traditional Winkler titration method. The results show that in the Kuroshio Current, DO content was the highest in the euphotic layer, then decreased sharply with depth to about 1 000 m, and increased with depth gradually thereafter. While in the ECS continental shelf area, DO content had high values in the coastal surface water and low values in the near-bottom water. In addition, a low-DO zone of f the Changjiang(Yangtze) River estuary was found in spring 2014, and it was formed under the combined influence of many factors, including water stratification, high primary productivity in the euphotic layers, high accumulation/sedimentation of organic matter below the euphotic layers, and mixing/transport of oceanic current waters on the shelf. Most notable among these is the Kuroshio intruded water, an oceanic current water which carried rich dissolved oxygen onto the continental shelf and alleviated the oxygen deficit phenomenon in the ECS, could impact the position, range, and intensity, thus the formation/destruction of the ECS Hypoxia Zone.  相似文献   

14.
To discuss the intrusion of the Kuroshio into the SCS, we examined the mixing between the North Pacific and South China Sea (SCS) waters based on in-situ CTD data collected in August and September 2008 and the moored ADCP data taken from mid September 2008 to early July 2009. The CTD survey included four meridional sections from 119°E to 122°E around the Luzon Strait, during which pressure, temperature, and salinity were measured. The CTD data show that the isopycnal surface tilted from the SCS to the North Pacific; and it was steeper in the lower layers than in the upper ones. Meanwhile, we found strong vertical mixing taken place in the areas near 121°E. The Kuroshio in high temperature and salinity intruded westward through Luzon Strait. The frequency of buoyancy was one order of magnitude greater than that of the common ones in the ocean, suggesting stronger stratification in the northeastern SCS. On the other hand, the long-term ADCP data show that before late October 2008, the direction of water flow in the SCS was eastward, and from November 2008 to late February 2009, it turned northwestward in the layers shallower than 150 m, while remained unchanged in deep layers from 200 to 450 m. From March to June 2009, the direction shifted with increasing depth from northward to southward, akin to the Ekman spiral. EOF analysis of the current time series revealed dominant empirical modes: the first mode corresponded to the mean current and showed that the Kuroshio intrusion occurred in the upper layers only from late December to early March. The temporal coefficient of the first and the second mode indicated clearly a dominant signal in a quasi-seasonal cycle.  相似文献   

15.
16.
Various satellite data, JRA-25 (Japan reanalysis of 25 years) reanalyzed data and WRF (Weather Research Forecast) model are used to investigate the in situ effect of the ESKF (East China Sea Kuroshio Front) on the MABL (marine atmospheric boundary layer). The intensity of the ESKF is most robust from January to April in its annual cycle. The local strong surface northerly/northeasterly winds are observed right over the ESKF in January and in April and the wind speeds decrease upward in the MABL. The thermal wind effect that is derived from the baroclinic MABL forced by the strong SST gradient contributes to the strong surface winds to a large degree. The convergence zone existing along the warm flank of the ESKF is stronger in April than in January corresponding to the steeper SST (sea surface temperature) gradient. The collocations of the cloud cover maximum and precipitation maximum are basically consistent with the convergence zone of the wind field. The clouds develop higher (lower) in the warm (cold) flank of the ESKF due to the less (more) stable stratification in the MABL. The lowest clouds are observed in April on the cold flank of the ESKF and over the Yellow Sea due to the existence of the pronounced temperature inversion. The numerical experiments with smoothed SST are consistent with the results from the ovservations.  相似文献   

17.
The aim of the study was 1)to determine the relation between the Kuroshio meander and the intensity of the subtropic high pressure over the Pacific Ocean, and then to obtain statistical validity for the observational conclusion that the occurrence time of the Kuroshio meander leads the time of strengthened C-circulation of Europe by one or more years; 2) to develop a method to predict the occurrence time of flood or drought periods in the Changjiang River Valley from the occurrence time of the Kuroshio meander, since there is a close relation between the occurrence time of the drought or flood periods in the Changjiang River Valley and the occurrence time of the strong or weak periods of C-circulation of Europe; and 3) to develop a logical explanation verifiable by remote sensing technique and other means that the warm species phytoplanktons collected recently in the Jiaozhou Bay of Shandong Peninsula in China were carried there by a new warm current branch of the Kuroshio in the East China Sea. This paper was presented at the Conference on Western Pacific Circulation Influence on the China Seas in Qingdao, 1987, and approved for publishing as a monograph.  相似文献   

18.
Pathways of mesoscale variability in the South China Sea   总被引:5,自引:0,他引:5  
The propagation of oceanic mesoscale signals in the South China Sea (SCS) is mapped from satellite altimetric observations and an eddy-resolving global ocean model by using the maximum cross-correlation (MCC) method. Significant mesoscale signals propagate along two major bands of high variability. The northern band is located west of the Luzon Strait, characterized by southwestward eddy propagation. Although eddies are the most active in winter, their southwestward migrations, steered by bathymetry, occur throughout the year. Advection by the mean flow plays a secondary role in modulating the propagating speed. The southern eddy band lies in the southwest part of the SCS deep basin and is oriented in an approximately meridional direction. Mesoscale variability propagates southward along the band in autumn. This southward eddy pathway could not be explained by mean flow advection and is likely related to eddy detachments from the western boundary current due to nonlinear effects. Our mapping of eddy propagation velocities provides important information for further understanding eddy dynamics in the SCS.  相似文献   

19.
Pathways of mesoscale variability in the South China Sea   总被引:1,自引:0,他引:1  
  相似文献   

20.
Tian  Di  Zhou  Feng  Zhang  Wenyan  Zhang  Han  Ma  Xiao  Guo  Xinyu 《中国海洋湖沼学报》2022,40(2):515-529
Journal of Oceanology and Limnology - The intrusion of the Kuroshio into the East China Sea (ECS) affects the development of hypoxia off the Changjiang (Yangtze) River estuary; however,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号