首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Solar hard X-ray bursts (>10 keV) seem to show a centre-to-limb variation, while softer X-ray bursts show no directivity. This effect of hard X-ray bursts may be due to the directivity of the emission itself. As the cause of the directivity, two possibilities are suggested. One is the inverse Compton effect and the other is the bremsstrahlung from anisotropic electrons.  相似文献   

2.
Solar flare hard X-ray observations   总被引:2,自引:0,他引:2  
Recent hard X-ray observations of solar flares are reviewed with emphasis on results obtained with instruments on the Solar Maximum Mission satellite. Flares with three different sets of characteristics, designated as Type A, Type B, and Type C, are discussed and hard X-ray temporal, spatial, spectral, and polarization measurements are reviewed in this framework. Coincident observations are reviewed at other wavelengths including the UV, microwaves, and soft X-rays, with discussions of their interpretations. In conclusion, a brief outline is presented of the potential of future hard X-ray observations with sub-second time resolution, arcsecond spatial resolution, and keV energy resolution, and polarization measurements at the few percent level up to 100 keV.  相似文献   

3.
G. Trottet 《Solar physics》1986,104(1):145-163
Observations relevant to the relative timing of hard X-ray, microwave and lower frequency radio bursts in different phases of flare are reviewed. It is shown that such timing comparisons give important information concerning the electron acceleration/injection process, the magnetic field topology at the acceleration site and the flare development itself. In particular it is shown that acceleration begins before the flash phase of flares and that it keeps going on continuously during the entire duration of a flare. Moreover, despite their wide separation in altitude, hard X-ray, microwave and lower frequency sources appear to arise from a common injection of electrons going on continuously through the different phases of flare. In situ acceleration by shock waves giving rise to type II radio emission is briefly discussed. As an alternative interactions between small and large scale magnetic structures is proposed.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

4.
A study of the onset phase often great hard X-ray bursts is presented. It is shown from hard X-ray and radio observations in different wavelength ranges that the energization of the electrons proceeds on a global time-scale of some tens of seconds. In nine of the bursts two phases of emission can be distinguished during the onset phase: the pre-flash phase, during which emission up to an energy limit ranging from some tens of keV to 200 keV is observed, followed ten to some tens of seconds later by the flash phase, where the count rate in all detector channels rises simultaneously to within some seconds. For two of the events strong -ray line emission is observed and is shown to start close to the onset of the flash phase.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

5.
We analyze the time variation of microwave spectra and hard X-ray spectra of 1989 March 18, which are obtained from the Solar Array at the Owens Valley Radio Observatory (OVRO) and the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM), respectively. From this observation, it is noted that the hard X-ray spectra gradually soften over 50–200 keV on-and-after the maximum phase while the microwaves at 1–15 GHz show neither a change in spectral shape nor as rapid a decay as hard X-rays. This leads to decoupling of hard X-rays from the microwaves in the decay phase away from their good correlation seen in the initial rise phase. To interpret this observation, we adopt a view that microwave-emitting particles and hard X-ray particles are physically separated in an inhomogeneous magnetic loop, but linked via interactions with the Whistler waves generated during flares. From this viewpoint, it is argued that the observed decoupling of microwaves from hard X-rays may be due to the different ability of each source region to maintain high energy electrons in response to the Whistler waves passing through the entire loop. To demonstrate this possibility, we solve a Fokker-Planck equation that describes evolution of electrons interacting with the Whistler waves, taking into account the variation of Fokker-Planck coefficients with physical quantities of the background medium. The numerical Fokker-Planck solutions are then used to calculate microwave spectra and hard X-ray spectra for agreement with observations. Our model results are as follows: in a stronger field region, the energy loss by electron escape due to scattering by the waves is greatly enhanced resulting in steep particle distributions that reproduce the observed hard X-ray spectra. In a region with weaker fields and lower density, this loss term is reduced allowing high energy electrons to survive longer so that microwaves can be emitted there in excess of hard X-rays during the decay phase of the flare. Our results based on spectral fitting of a flare event are discussed in comparison with previous studies of microwaves and hard X-rays based on either temporal or spatial information.  相似文献   

6.
Radio and X-ray observations are presented for three flares which show significant activity for several minutes prior to the main impulsive increase in the hard X-ray flux. The activity in this ‘pre-flash’ phase is investigated using 3.5 to 461 keV X-ray data from the Solar Maximum Mission, 100 to 1000 MHz radio data from Zürich, and 169 MHz radio-heliograph data from Nançay. The major results of this study are as follows:
  1. Decimetric pulsations, interpreted as plasma emission at densities of 109–1010 cm?3, and soft X-rays are observed before any Hα or hard X-ray increase.
  2. Some of the metric type III radio bursts appear close in time to hard X-ray peaks but delayed between 0.5 and 1.5 s, with the shorter delays for the bursts with the higher starting frequencies.
  3. The starting frequencies of these type III bursts appear to correlate with the electron temperatures derived from isothermal fits to the hard X-ray spectra. Such a correlation is expected if the particles are released at a constant altitude with an evolving electron distribution. In addition to this effect we find evidence for a downward motion of the acceleration site at the onset of the flash phase.
  4. In some cases the earlier type III bursts occurred at a different location, far from the main position during the flash phase.
  5. The flash phase is characterized by higher hard X-ray temperatures, more rapid increase in X-ray flux, and higher starting frequency of the coincident type III bursts.
  相似文献   

7.
We present here an analysis of the X-ray properties of a sample of LINER galaxies observed with the ROSAT PSPC and HRI instruments. A spatial analysis shows that the bulk of the X-ray emission is consistent with arising from a point source; some extended emission appears at weak emission levels. The X-ray spectra are formally best described by a power law with photon indexΓx ≈ −2 or thermal emission from a Raymond-Smith plasma with highly subsolar abundances (Z ≤ 0.1).Several emission mechanisms that might contribute to the observed X-ray spectra are discussed. In particular, we take the very subsolar abundances derived from Raymond-Smith fits as an indication of a more complex emission mechanism, like the presence of a second hard component or plasma out of equilibrium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Observations are briefly discussed of an event in which microwave and hard X-ray emissions were not correlated in the accepted way. Two impulsive peaks of roughly equal intensity were observed at three different microwave frequencies. The hard X-ray peaks accompanying these, however, differ in intensity by almost two orders of magnitude. Various possible interpretations of this burst are discussed, in the context of familiar models of these emissions. The most likely explanation is that the electron spectrum in the first burst has a break at about 350 keV. General implications for interpretation of X-rays and microwaves are discussed.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

9.
Belinda Lipa 《Solar physics》1978,57(1):191-204
We have analyzed the hard X-ray emission from 28 large solar events, searching for pulsations in intensity profiles. Periodicity occurred in 26 events, usually soon after the onset, with periods in the range 10–100 s. Pulsations occurring at common frequencies in different energy bands are observed to be closely in phase. Periodic behavior in hard X-ray emission is related to that at microwave and decametric wavelength. We discuss our observations briefly in terms of two models: that of McClean et al. (1971), applied to X-ray emission, and that of Brown and Hoyng (1975). As periodicity is normal in extended hard X-ray bursts and occurs through a broad energy band, it is probably directly related to a principal flare acceleration mechanism. Our observations constrain possible mechanisms of flare acceleration and physical properties of the acceleration region.This work began when the author was at the Institute for Plasma Research, Stanford University.  相似文献   

10.
We study series of homologous flares, observed in the active region NOAA 2372 by the HXIS on the Solar Maximum Mission and ground based observatories. Changes in the flare homology, particularly those related to the location of the hard X-ray emission, show clear correlation with the development of magnetic shear within the active region. Following our early study (Machado et al., 1983) we propose that magnetic shear and reconnection are necessary for high power energy release, but the former may not be a sufficient condition in an isolated magnetic loop. These results are discussed within the context of a broader study, in order to explore their generality.  相似文献   

11.
It has been controversial whether the flare-associated hard X-ray bursts are thermal emission or non-thermal emission. Another controversial point is whether or not the associated microwave impulsive burst originates from the common electrons emitting the hard X-ray burst.It is shown in this paper that both the thermal and non-thermal bremsstrahlung should be taken into account in the quantitative explanation of the time characteristics of the hard X-ray bursts observed so far in the photon energy range of 10–150 keV. It is emphasized that the non-thermal electrons emitting the hard X-rays and those emitting the microwave impulsive burst are not common. The model is as follows, which is also consistent with the radio observations.At the explosive phase of the flare a hot coronal condensation is made, its temperature is generally 107 to 108K, the number density is about 1010 cm–3 and the total volume is of the order of 1029 cm3. A small fraction, 10–3–10–4, of the thermal electrons is accelerated to have power law distribution. Both the non-thermal and thermal electrons in the sporadic condensation contribute to the X-ray bursts above 10 keV as the bremsstrahlung. Fast decay of the harder X-rays (say, above 20 keV) for a few minutes is attributed to the decay of non-thermal electrons due to collisions with thermal electrons in the hot condensation. Slower decay of the softer X-rays including around 10 keV is attributed to the contribution of thermal component.The summary of this paper was presented at the Symposium on Solar Flares and Space Research, COSPAR, Tokyo, May, 1968.  相似文献   

12.
Observations of emission in the Mgi b2 line at 5172 Å are presented for 13 flares. Also discussed are 3 flares which occurred in regions under observation but which showed no Mg emission. The Mg flare kernels resemble white-light flare kernels in their general morphology and location. Comparison of Mg filtergrams with magnetograms indicates that the Mg kernels occur at the feet of magnetic arches across neutral lines. Time-lapse Mg filtergram films indicate photospheric shearing motions near flare sites for several hours before flare onset. We have compared flare Mg emission with microwave and both hard and soft X-ray flare emissions. Examination at the time development of the 1981, July 27 flare shows that the microwave and X-ray bursts may be clearly related to the appearance of successive Mg flare kernels. We have also compared subjective, relative Mg flare importances with other flare emission measurements. For the full sample of flares, Mg importance is significantly correlated with hard and soft X-ray emission peaks, with X-ray ‘hardness’ (ratio of hard to soft peaks) and with the rise slope of soft X-ray bursts. The Mg importance does not correlate with the microwave peaks when the full sample of flares is used, but for the subset showing Mg emission there is significant correlation. No correlation with Hα importance was found. Our results suggest that Mg emission is associated with an impulsive component which may be absent from some flares. The San Fernando Observatory magnesium etalon filter system is described.  相似文献   

13.
This paper explores the time evolution of microwave and hard X-ray spectral indexes in the solar flare observed by Nobeyama Radio Polarimeters (NoRP) and the Ramaty High Energy Solar Spectroscopy Imager (RHESSI) on 13 December 2006. The microwave spectral index, γ MW, is derived from the emissions at two frequencies, 17 and 35 GHz, and hard X-ray spectral index, γ HXR, is derived from RHESSI spectra. Fifteen subpeaks are detected at the microwave and hard X-ray emissions. The microwave spectral indexes tend to be harder than hard X-ray spectral indexes during the flare, which is consistent with previous findings. All detected subpeaks follow the soft-hard-soft spectral behaviours in the hard X-ray rise-peak-decay phases. However, the corresponding microwave subpeaks display different spectral behaviour, such as soft-hard-soft, soft-hard-harder, soft-hard-soft + hard or irregular patterns. These contradictions reveal the complicated acceleration mechanism for low- and high-energy electrons during this event. It is also interesting that the microwave interpeak spectral indexes are much more consistent with one another.  相似文献   

14.
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39?–?11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (\(\gtrsim 300\) keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.  相似文献   

15.
This study addresses the onset of coronal mass ejections. From examination of sensitive X-ray images from the Solar Maximum Mission around the projected onset time of coronal mass ejections we identify two important new features: (1) there is usually a weak, soft X-ray enhancement 15–30 min prior to the linearly extrapolated chromospheric departure time of the ejection; (2) this activity is generally from two widely separated ( 105 km) parts of the Sun. Possible physical mechanisms for these phenomena are examined and it is concluded that a plausible explanation is that the initial energy release is converted first into kinetic energy of suprathermal protons, 102–103 keV. The protons are trapped in a large magnetic loop which later breaks open as the mass ejection; Coulomb losses are the destabilizing agent but the mass ejection is probably magnetically driven. Protons that escape into the loss cone will impact the loop footpoints to heat the upper chromospheric material to a sufficiently high temperature to generate the weak soft X-ray emission. There will also be an H signature, and this is observed in a number of events. There is in general no radio emission or hard X-ray emission accompanying the soft X-ray precursor. When the coronal mass ejection is followed by a flare, then this is generally from a point close to, but not identical to, one of the points with the earlier soft X-ray enhancement.NCAR is sponsored by the National Science Foundation.  相似文献   

16.
We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of ∼50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2×105 more positrons than what is inferred from X-ray and γ-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and γ rays. We find that the same 5×1035 electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.  相似文献   

17.
18.
对于足点被日面边缘遮挡住的耀斑的观测研究是诊断日冕硬X射线辐射的一个重要方法.通过统计分析RHESSI (Reuven Ramaty High-Energy Solar Spectroscopic Imager)卫星观测到的71个此类耀斑硬X射线源发现,前人提出的两类源,即日冕X射线辐射中热辐射与非热辐射源区空间分离较小的源和分离较大的源,在能谱、成像、光变曲线以及GOES持续时间等方面都没有显著的区别,其中辐射区的面积、耀斑总热能以及GOES持续时间与分离距离之间有很好的相关性.这些结果支持近年来提出的一些耀斑统一模型.同时也表明Masuda耀斑只是一类非常特殊的事件,不具有日冕硬X射线辐射的一般特征.  相似文献   

19.
We evaluate the relationship between the hard X-ray photon spectrum and the flux of iron K emission in a thick-target electron bombardment model. Results are presented for various power-law hard X-ray spectra. We then apply these results to two events observed with the Hard X-Ray Burst Spectrometer and the K channel of the X-Ray Polychromator Bent Crystal Spectrometer on the Solar Maximum Mission satellite. For one of the events, on 29 March, 1980, at 09:18 UT, the K flux predicted for a thick-target non-thermal process is significant compared to the background fluorescent component, and the data are indeed consistent with an enhancement of the predicted amount. For the other event, on 14 October, 1980 at 06:09 UT, the hard X-ray spectrum is so steep that no significant Ka flux is predicted for this process, and no enhancement is seen. We conclude that the agreement between the predicted K flux and the observed magnitude of the K enhancement above the fluorescent background at the time of the large hard X-ray bursts lends support to a thick-target non-thermal interpretation of impulsive hard X-ray emission in solar flares.  相似文献   

20.
We present an analysis of the diffuse hard X-ray emission in the core of the young massive Galactic cluster Westerlund 1 based on a 48 ks XMM-Newton observation. Chandra results for the diffuse X-ray emission have indicated a soft thermal component together with a hard component that could be either thermal or non-thermal. We seek to resolve this ambiguity regarding the hard component exploiting the higher sensitivity of XMM-Newton to diffuse emission. Our new X-ray spectra from the central (2′ radius) diffuse emission are found to exhibit He-like Fe 6.7 keV line emission, demonstrating that the hard emission in the cluster core is predominantly thermal in origin. Potential sources of this hard component are reviewed, namely an unresolved Pre-Main Sequence population, a thermalized cluster wind and Supernova Remnants interacting with stellar winds. We find that the thermalized cluster wind likely contributes the majority of the hard emission with some contribution from the Pre-Main Sequence population. It is unlikely that Supernova Remnants are contributing significantly to the Westerlund 1 diffuse emission at the current epoch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号